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1. Introduction  

Bladder cancer is one of the most common cancers among men and women, with men being 
twice as likely affected from the disease (Jemal et al., 2005). The most common type of 
bladder cancer is transitional cell carcinoma (TCC), which is derived from the urothelium 
and constitutes more than 90 % of all bladder cancers (Bischoff & Clark, 2009). Cisplatin-
based combination therapy is the standard therapy for the treatment of advanced or 
metastatic bladder cancers (Cohen et al., 2006, Kaufman, 2006). However, the outcome of 
patients with metastatic bladder cancer remains poor, as tumors become resistant to 
cisplatin therapy. It is still not entirely known, which factors influence the response of 
bladder cancers to the drug and how this cancer acquires cisplatin resistance. Cisplatin is a 
neutral planar complex (Figure 1A). 
 

 

 

Fig. 1. A: The chemical structure of cisplatin. B: After entering the cells, cisplatin is 
transformed to a positively charged molecule that reacts with DNA C: Cisplatin induced 
lesions. Cisplatin preferably binds to the nucleophilic N7 position of the purine bases 
guanine or adenine, leading to different types of lesions  including monoadducts, 
intrastrand crosslinks, interstrand crosslinks and DNA-protein crosslinks 
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After entering the cell, it is activated through a series of aquation reactions, in which the 
chloro ligands are replaced by water molecules (Figure 1B). The resulting positively charged 
molecule can react with nucleophilic sites on macromolecules, leading to DNA, RNA and 
protein adducts. It preferably binds to the nucleophilic N7 position of the purine bases 
guanine or adenine, which leads to different types of lesions (Figure 1C) (Jamieson & 
Lippard, 1999). In a first reaction, cisplatin binds to DNA, leading to monoadducts, which in 
a second reaction lead to the formation of DNA crosslinks. The most frequently observed 
cisplatin DNA lesions are DNA intrastrand crosslinks between adjacent guanines (65 % of 
all lesions) or intrastrand crosslinks between guanine and adenine (25 %). Interstrand 
crosslinks between two guanines on the opposite strands of DNA account for less than 5% 
of all cisplatin-induced lesions. It is still unknown, which of the various DNA lesions 
ultimately results in cell death (Chu, 1994, Jordan & Carmo-Fonseca, 2000, Kartalou & 
Essigmann, 2001).  
The efficacy of cisplatin in cancer chemotherapy, however, is limited by resistance. While 
cancers of the bladder, lung and ovary respond initially in 50 % or more of cases, they will 
almost inevitably relapse with drug-resistant disease. The mechanisms of cisplatin resistance 
have been studied in numerous cell culture models of cisplatin sensitive and resistant cancer 
cells lines. It has been shown that a cancer cell can develop cisplatin resistance through 
different mechanisms (Figure 2). Cisplatin resistance can be due to (i) changes in drug 
transport, leading to reduced cellular cisplatin accumulation, (ii) increased drug 
detoxification, also resulting in reduced cellular cisplatin accumulation, (iii) changes in 
DNA repair mechanisms including nucleotide excision repair, interstrand crosslink repair 
and mismatch repair, (iv) changes in DNA tolerance mechanisms, and finally (v) alterations 
in the apoptotic cell death pathways (Köberle et al., 2010, Rabik & Dolan, 2007, Siddik, 2003). 
In this chapter we describe and discuss the contribution of these mechanisms for the 
development of cisplatin resistance in bladder cancer cells in vitro and compare the 
preclinical findings to data obtained in clinical studies. A better understanding of the 
molecular basis of cisplatin resistance may lead to new anticancer strategies that will 
sensitize unresponsive bladder cancers to cisplatin-based chemotherapy.  
 

 

Fig. 2. Mechanisms of resistance towards cisplatin include: Reduced drug accumulation due 
to changes in drug uptake, efflux or detoxification. Alterations in DNA repair such as 
increased removal of the damage by nucleotide excision repair (NER) or interstrand 
crosslink repair (ICL repair) as well as decreased mismatch repair (MMR). Enhanced 
translesion synthesis (TLS) to tolerate unrepaired cisplatin lesions. Alterations in apoptosis 
pathways: changes in expression levels of pro- and anti-apoptotic proteins. 
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2. Intracellular drug accumulation as a determinant of cellular cisplatin 
sensitivity 

2.1 Cellular uptake and efflux of cisplatin 

Reduced intracellular cisplatin accumulation has been associated with cisplatin resistance in 
numerous cancer cell lines (Siddik, 2003). A correlation between intracellular cisplatin 
accumulation and cisplatin resistance was observed in a series of seven bladder cancer cell 
lines displaying different sensitivities to cisplatin (Koga et al., 2000). Similarly, using a bladder 
cancer cell line and its cisplatin-resistant subline, we found reduced accumulation of cisplatin 
in the resistant subline when compared to its parental cells (Köberle et al., 1996). Reduced 
accumulation may result from changes in drug transport or increased drug detoxification. 
Even though the exact mechanism by which cisplatin is taken up by the cells is not fully 
understood, both passive diffusion and active transport appear to be involved. For active 
transport the copper transporter 1 (Ctr1), which controls intracellular copper homeostasis, 
seems to play an important role (Kuo et al., 2007, Safaei, 2006). It has been reported that loss of 
Ctr1 lead to cisplatin resistance in various cell lines (Holzer et al., 2006, Ishida et al., 2002, Song 
et al., 2004). However, no data as to Ctr1 expression in bladder cancer cell lines or tumor tissue 
have been reported to date. Therefore, no conclusion about the importance of uptake for 
cisplatin response can be drawn for bladder cancer cells (Table 1). 
Increased efflux of cisplatin from the cell may also lead to resistance. Efflux pumps such as 

MRP1/2 (multidrug resistance associated protein) and p-glycoprotein/multidrug resistance 

1 (MDR1) are implicated as efflux pumps for cisplatin (Taniguchi et al., 1996, Yeh et al., 

2005). Tada and co-workers investigated the relationship between expression of p-

glycoprotein expression or MRP1/2 and drug sensitivity in 47 clinical samples of bladder 

cancer. They showed that expression of p-glycoprotein and MRP1/2 was higher in samples 

of recurrent tumors than in untreated primary tumors (Tada et al., 2002), indicating that 

increased efflux can contribute to the development of drug resistance and poor clinical 

outcome in bladder cancers (Table 1). 

2.2 Detoxification of cisplatin by intracellular thiol molecules 

Cisplatin resistance can be the result of increased inactivation of the drug by intracellular 
thiol-containing molecules such as glutathione and metallothionein. Glutathione is a 
tripeptide that plays an important role for the detoxification of xenobiotic substances by 
scavenging free radicals. Cisplatin can be conjugated with glutathione, which will inhibit its 
binding to DNA and other cellular molecules. This reaction is catalyzed by the glutathione-
S-transferase (GST) (Mannervik, 1987). Extensive studies about the role of the glutathione 
system for cisplatin resistance have been carried out in cell lines and in cancer tissue. A 
correlation between expression of the glutathione system and cisplatin resistance has been 
reported for ovarian, cervical and lung cancer cell lines (Jansen et al., 2002, Meijer et al., 
1992, Mellish et al., 1993). Attempts to correlate expression of the glutathione system with 
cisplatin resistance in bladder cancer cell lines showed inconsistent findings. Bedford and 
co-workers investigated the expression of the glutatione system in different bladder cancer 
cells lines and reported higher levels of glutathione and GST in the less sensitive cells 
(Bedford et al., 1987). Similarly, using a model system of a bladder cancer cell line and two 
derived sublines with acquired cisplatin resistance, Kotoh and co-workers observed an 
increased glutathione content and elevated GST activity in the sublines (Kotoh et al., 1997). 
Buthionine sulphoximine (BSO), which depletes glutathione, or indomethacin, which blocks 
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GST, significantly decreased the cisplatin resistance in T24 bladder cancer cells, which is yet 
another indication that the glutathione-based detoxification system is involved in cisplatin 
resistance in bladder cancer cells (Byun et al., 2005). However, no correlation between 
glutathione content and resistance to cisplatin was observed in a study by Koga and co-
workers (Koga et al., 2000). In this study, the expression of GST was also not significantly 
related to cisplatin resistance. In another study with bladder cancer cells, which were either 
sensitive or progressively resistant to cisplatin, it was observed that expression of GST was 
increased in the cisplatin resistant cells, however, the increase in glutathione contents did 
not reach statistical significance (Hour et al., 2000). In conclusion, bladder cancer cells may 
gain cisplatin resistance through up-regulation of GST, while glutathione contents seems to 
play a less important role for the development of cisplatin resistance. 
Metallothioneins (MT) belong to a family of low molecular weight, thiol-rich proteins that 
play a role in metal homeostasis and detoxification (Kagi & Schaffer, 1988). MTs can bind to 
cisplatin, leading to the inactivation of the drug. For numerous cancer cell lines (derived 
from prostate, lung, ovary and cervical cancer), a correlation between MT expression and 
cisplatin resistance has been observed (Kasahara et al., 1991, Kondo et al., 1995, Mellish et 
al., 1993, Surowiak et al., 2007). For bladder cancer cell lines cisplatin resistance, was also 
correlated with increased levels of MT (Siegsmund et al., 1999, Singh et al., 1995). A role of 
MT for cisplatin resistance in bladder cancer has been proposed by Satoh and co-workers 
(Satoh et al., 1994). The authors investigated the effect of modulation of the MT levels for the 
antitumor activity of cisplatin in nude mice inoculated with human bladder cancer cells. 
While increasing MT levels reduced the antitumor activity of cisplatin, decreased levels of 
MT diminished the resistance to the drug (Satoh et al., 1994). Using a different bladder 
tumor model in mice, it was also suggested that MT might play a role for acquired 
resistance towards cisplatin (Saga et al., 2004). The clinical relevance of MT levels for 
cisplatin chemotherapy in bladder cancers has been investigated in a number of studies. In 
an investigation involving 118 patients with bladder cancer, it was observed that 
overexpression of MT was associated with a poorer outcome from cisplatin-based 
chemotherapy (Siu et al., 1998). Similarly, for intrinsic cisplatin resistance of urinary tract 
TCCs, an involvement of MT has been suggested (Kotoh et al., 1994), and MT 
overexpression was proposed to be a mechanism for cisplatin resistance in bladder cancer 
tissue (Wood et al., 1993). In line with this observations are more recent studies, which also 
reported that high levels of MT expression in bladder cancer tissue were correlated with 
poor survival after cisplatin chemotherapy (Hinkel et al., 2008, Wülfing et al., 2007). Taken 
together, the data indicate that high levels of MT in bladder cancers might be a major 
problem for effective cisplatin-based chemotherapy. In our opinion, expression of MT is one 
of the main cellular factors for both intrinsic and acquired cisplatin resistance in bladder 
cancers (Table 1).  

3. DNA repair and cisplatin resistance 

The contribution of DNA repair for cisplatin resistance has been investigated for many 

years. In model systems of tumor cell lines and sublines with acquired cisplatin resistance, 

increased removal of cisplatin induced lesions has been observed in the sublines. For 

example, ovarian cancer cells with acquired resistance towards cisplatin show an increased 

removal of cisplatin induced lesions in comparison with their cisplatin sensitive 

counterparts (Johnson et al., 1994a, Johnson et al., 1994b, Parker et al., 1991). Similarly, colon  
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Table 1. Mechanisms of cisplatin resistance in bladder cancers: preclinical findings and 
clinical evidence (Table adapted from Köberle et al., 2010) 

carcinoma cell lines with acquired cisplatin resistance showed a higher extent of removal of 
DNA platination compared to the parental cells (Oldenburg et al., 1994), indicating that the 
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acquired resistance to cisplatin might be related to the increased DNA repair capacity. In 
contrast, when we investigated DNA damage removal in a bladder cancer cell line with 
acquired cisplatin resistance, we observed no enhanced repair compared to the parental cell 
line, suggesting that this bladder cancer cell line did not acquire resistance to cisplatin by 
increasing the DNA repair capacity (Köberle et al., 1996). However, when we compared 
bladder cancer cell lines with cisplatin sensitive testis tumor cells, we observed that bladder 
cancer cells are proficient in removing cisplatin damage from the DNA, while testis tumor 
cells were repair deficient (Köberle et al., 1997), supporting the hypothesis that susceptibility 
to cisplatin might be related to the repair capacity.  

3.1 Nucleotide excision repair 

Cisplatin-induced GpG and GpA DNA intrastrand crosslinks are repaired by nucleotide 

excision repair (NER). NER is a multistep mechanism, which deals with bulky helix-

distorting lesions such as UV-induced cyclobutane pyrimidine dimers and 6-4 

photoproducts, and DNA lesions induced by many chemotherapeutic drugs (Gillet & 

Schärer, 2006, Shuck et al., 2008, Wood et al., 2000). The repair of the lesions begins with 

recognition of the damage and incision on both sides of the lesion, followed by DNA 

synthesis to replace the excised fragment. The core incision reaction requires the protein 

factors XPA, RPA, XPC-HR23B, TFIIH, ERCC1-XPF and XPG (Aboussekhra et al., 1995). It is 

possible to carry out the core NER reaction in a cell free system using cellular protein 

extracts (Shivji et al., 1999, Shivji et al., 2005). Using this system, it could be confirmed that 

the increased removal of cisplatin lesions, which has been observed in cisplatin resistant 

ovarian cancer cells, is in fact due to enhanced NER (Ferry et al., 2000). We found that 

cellular protein extracts of a bladder cancer cell line were proficient for NER (Köberle et al., 

1999). Furthermore, the core NER proteins are expressed to a similar extent in bladder 

cancer cell lines compared to normal non-cancerous cells (Köberle et al., 1999, Welsh et al., 

2004). The removal of cisplatin induced DNA platination, which we previously observed in 

bladder cancer cell lines (Köberle et al., 1997), is therefore, at least in part, due to NER 

proficiency in these cells. 

Conclusive evidence for functionally increased NER in cisplatin-resistant cancers, however, 

has not yet been presented. This is due to the lack of methods to easily and reliably measure 

NER activities in tissue samples. For example, even in protein extracts prepared from cell 

lines, a significant variability in NER capacity is observed. Even more, in protein extracts 

prepared from biopsies of human ovarian carcinoma, Jones and co-workers found that the 

NER capacity varied significantly by as much as ten-fold (Jones et al., 1994). This could be 

due to either inter-individual variations or to technical problems to obtain active extracts 

from tissue material. Therefore, as measuring NER capacity in tissue samples is a 

challenging task, a different approach is to investigate the expression of NER factors on the 

mRNA or protein level and attempt to correlate these with response to chemotherapy. In 

these studies, special emphasis was given to ERCC1, the first human DNA repair gene 

cloned (Westerveld et al., 1984). In preclinical studies, a correlation between ERCC1 

expression and cisplatin resistance has been presented (Li et al., 1998, Li et al., 2000, Metzger 

et al., 1998). By demonstrating that down-regulation of ERCC1 by siRNA sensitized bladder 

cancer cell lines to cisplatin, we could confirm the importance of ERCC1 for cisplatin 

resistance in bladder cancer cells (Usanova et al., 2010). 
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In cancer tissues, ERCC1 mRNA or protein levels show an inverse correlation with the 
response to platinum therapy or overall survival. High ERCC1 mRNA levels are associated 
with resistance to cisplatin-based chemotherapy in ovarian, cervical, gastric, colorectal, head 
and neck, esophageal and lung cancer (Dabholkar et al., 1992, Dabholkar et al., 1994, 
Gossage & Madhusudan, 2007, Handra-Luca et al., 2007, Jun et al., 2008, Kim et al., 2008, 
Metzger et al., 1998, Olaussen et al., 2006, Weberpals et al., 2009). Based on these findings, it 
was suggested that ERCC1 can be used as a predictive and prognostic marker for the 
outcome of cisplatin-based chemotherapy. For patients with advanced bladder cancer, a 
significantly higher survival rate was reported when ERCC1 levels in the tumor tissue were 
low (Bellmunt et al., 2007). However, in another study, no significant difference in overall 
survival between bladder cancer patients with ERCC1 negative tumors and ERCC1 positive 
tumors was observed (Kim et al., 2010). On the other hand, the authors reported that 
progression free survival was longer in patients with ERCC1 negative bladder cancers 
compared to ERCC1 positive cancers (Kim et al., 2010). Based on these conflicting results, it 
is difficult to conclude that ERCC1 expression in bladder cancer negatively contributes to 
the clinical outcome. Furthermore, even though ERCC1 positive tumors would be expected 
to have a high NER capacity, and ERCC1 negative tumors would be expected to have low 
NER capacity, these conclusions must be drawn with caution, as functional NER assays for 
tissue material are still missing. It therefore remains speculative whether altered ERCC1 
levels have an impact on NER in tumor tissue. Therefore, the question about the 
contribution of enhanced NER for cisplatin resistance in cancers, especially in bladder 
cancers, remains to be solved (Table 1).  

3.2 Interstrand crosslink repair 

Besides intrastrand adducts, cisplatin induces interstrand crosslinks (ICLs), which are 
removed by ICL repair, a process less understood than NER (McHugh et al., 2001). Repair of 
ICLs is a challenging problem for cells. In bacteria and lower eukaryotes, NER and 
homologous recombination are involved in ICL repair (Cole, 1973, Jachymczyk et al., 1981). In 
mammalian cells, these both pathways may also operate (De Silva et al., 2000). Besides that, 
mammalian cells have additional pathways of ICL repair involving DNA polymerases that can 
bypass the lesion (Sarkar et al., 2006, Shen et al., 2006, Zheng et al., 2005). A contribution of 
increased ICL repair for acquired resistance to cisplatin has been described for ovarian cancer 
cells in culture (Zhen et al., 1992). It also seems to play a role for clinical cisplatin resistance, as 
in paired tumor samples obtained prior to treatment and at relapse following platinum 
chemotherapy, increased repair of cisplatin ICLs in cells of relapsed ovarian cancer was 
observed (Wynne et al., 2007). We found that bladder cancer cell lines, which are relatively 
resistant to cisplatin, are proficient in repairing ICLs (Usanova et al., 2010). Biochemical and 
cell biological data implicate that ERCC1 is not only involved in NER, but also in ICL repair 
(Kuraoka et al., 2000, Niedernhofer et al., 2004, Sijbers et al., 1996). Our own experiments 
revealed that down-regulation of ERCC1 by siRNA affected ICL repair in the bladder cancer 
cell lines and rendered the cells more sensitive to cisplatin supporting the notion about the 
importance of ICL repair for cisplatin resistance in cancer cells. However, to date there is no 
information as to ICL repair in bladder cancer tissue (Table 1). 

3.3 Translesion synthesis (TLS) 

As described in 3.1 and 3.2, cisplatin damage is removed by NER and ICL repair. However, 

some lesions may remain. A mechanism, by which cells can tolerate unrepaired DNA 
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lesions, is translesion synthesis (TLS). TLS is carried out by a group of specialized DNA 

polymerases, which are capable of bypassing unrepaired DNA lesions. For mammalian cells 

pol ┟ (POLH), pol ┡ (POLI), pol ┢ (POLK), REV1 and pol ┞ (REV3 and REV7) are the main 

TLS polymerases, which have been shown to possess different substrate specificity. 

Depending on the type of damage, different combinations of TLS polymerases act in concert 

to bypass the DNA lesions (Shachar et al., 2009). Cisplatin GpG intrastrand crosslinks seem 

to be bypassed by pol ┟ and pol  ┞ (Alt et al., 2007, Shachar et al., 2009). For pol ┢ conflicting 

results have been reported. While an in vitro assay suggests that pol ┢ is unable to bypass a 

GpG intrastrand crosslink, in vivo TLS assays implicated pol ┢ in combination with pol ┟ for 

TLS across cisplatin GpG intrastrand crosslinks (Ohashi et al., 2000, Shachar et al., 2009). The 

importance of TLS in the tolerance towards cisplatin has been shown in cell lines deficient in 

TLS polymerase activity (Cruet-Hennequart et al., 2008, Cruet-Hennequart et al., 2009, 

Albertella et al., 2005a, Roos et al., 2009, Wittschieben et al., 2006). Similarly, TLS 

polymerases may play a role for cisplatin resistance in tumor samples (Albertella et al., 

2005b, Ceppi et al., 2009, Wang et al., 2009). However, no data have been reported as to the 

expression of TLS polymerases in bladder cancer cell lines and tumor specimens. We 

therefore can neither include nor exclude TLS polymerases as a factor determining efficacy 

of cisplatin therapy in the clinic (Table 1). 

3.4 DNA mismatch repair (MMR) 

Mismatch repair (MMR) is the pathway that removes mispaired nucleotides or 

insertion/deletion loops, which arise during DNA replication or as a result of damage to 

DNA. MMR consists of following steps: (1) recognition of the mismatch, (2) identification 

and excision of the mispairs or looped intermediates, and (3) resynthesis of the excised 

strand (Kunkel & Erie, 2005). In early investigations it has been observed that loss of MMR 

led to resistance to cisplatin and other platinating agents (Aebi et al., 1996, Fink et al., 1996). 

A possible explanation for the association of absence of a repair mechanism with increased 

drug resistance was the observation that MMR proteins can bind to cisplatin damage 

possibly leading to futile repair and therefore increased drug lethality. The mismatch repair 

complex MutS (which is a heterodimer containing MSH2 and MSH6) binds to cisplatin 

DNA lesions in vitro (Duckett et al., 1996, Mello et al., 1996). Binding of MutS to cisplatin 

crosslinks could start the MMR process by recruiting the mismatch repair complex MutL 

(consisting of MLH1 and PMS2). It is assumed that lethal intermediates arise by the attempt 

of the MMR machinery to remove cisplatin lesions, and these lethal intermediates might set 

off a futile MMR cycle, similar to what has been reported for methylating agents (Dunkern 

et al., 2001). An alternative model suggests that binding of the MMR complex to cisplatin 

DNA damage might cause direct activation of the DNA damage response (DDR). A third 

model is based on the finding that TLS polymerases can bypass of 1,2-intrastrand crosslinks 

(Alt et al., 2007, Shachar et al., 2009). Since TLS polymerases are error prone causing mis-

incorporation of bases, mismatches will be generated that are recognised by the MutS 

complex. This in turn causes a futile repair cycle that triggers DDR. New data suggest that 

mitochondrial pro-death signaling involving cytochrome c and caspases-9 and -3 is required 

for the execution of MMR protein-mediated induction of cell death by cisplatin (Topping et 

al., 2009). The importance of MMR for cisplatin resistance has been investigated in a number 

of cancer cell lines, however, with conflicting results. On the one hand it was observed that 
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MMR deficient cell lines were more tolerant to cisplatin (Bignami et al., 2003, Fink et al., 

1996, Papouli et al., 2004). This was explained by the hypothesis that cisplatin lesions are not 

processed into lethal intermediates. In other studies, however, it was shown that defective 

MMR is only a minor contributor for the cisplatin resistance phenotype or is not involved at 

all ( Branch et al., 2000, Claij & te Riele, 2004, Massey et al., 2003). We found that the MMR 

protein MSH2 was expressed at lower levels in bladder cancer cells compared to cisplatin 

sensitive testis tumor cells. However, no difference was observed in the expression level of 

the MMR proteins hMLH1 and PMS2 in this model system of cisplatin resistant and 

sensitive cell lines. Even more, no difference in the levels of MSH2, MLH1 and PMS2 was 

observed in parental RT112 bladder cancer cells and the subline with acquired cisplatin 

resistance (Köberle, unpublished results), suggesting that MMR may not be of importance 

for cisplatin resistance in our model system.  
The clinical relevance of loss of MMR for cisplatin chemotherapy has been investigated in 
a number of clinical studies, and it was concluded that MMR deficiency is associated with 
chemotherapy resistance in ovarian and testicular germ cell tumors (Gifford et al., 2004, 
Helleman et al., 2006, Wei et al., 2002). In 115 patients with bladder cancers, the 
expression pattern of hMSH2 protein was investigated and a reduced expression of 
hMSH2 was significantly more frequent in high grade tumors (Jin et al., 1999). Similarly, 
Catto and co-workers reported that reduced expression of hMLH1 and hMSH2 was seen 
more commonly in muscle invasive and high grade bladder cancer (Catto et al., 2003). In 
contrast, in a set of 130 urothelial carcinomas of the bladder, hMSH2 and hMSH6 negative 
tumors were found to have a favorable impact on overall patient survival (Mylona et al., 
2008). In a number of studies, the degree of microsatellite instability (MSI) was 
investigated in different cancer tissues, such as colorectal-, ovarian- and gastric carcinoma 
(Dietmaier et al., 1997, Ichikawa et al., 1999, Ottini et al., 1997). MSI is the result from 
inactivating mutations in MMR genes and suggests MMR deficiency (Parsons et al., 1993, 
Strand et al., 1993). However, MSI has been observed only infrequently in bladder cancer 
tissues (Bonnal et al., 2000, Gonzalez-Zulueta et al., 1993, Hartmann et al., 2002). 
Furthermore, reduced expression of hMLH1 and hMSH2 was not correlated with MSI in 
bladder cancer (Catto et al., 2003). Based on these conflicting data, a conclusion as to 
whether MMR impacts the development of cisplatin resistance in bladder cancer in the 
clinic cannot be drawn to date (Table 1).  

4. DNA damage response and apoptosis pathways in cisplatin resistance 

It is known that cisplatin treatment induces apoptosis in cells, thereby killing the cells (Chu, 

1994). The apoptotic pathways, which are induced following cisplatin treatment, were 

extensively studied, hence not yet fully understood. Cisplatin-induced apoptosis may be 

triggered through the extrinsic death receptor pathway, which is mediated through the JNK 

signaling cascade. Alternatively, the intrinsic mitochondrial pathway may be induced, 

mediated through p53 and anti- or pro-apoptotic members of the Bcl-2 family proteins 

(Brozovic et al., 2004, Pabla et al., 2008, Siddik, 2003). Decreased expression or loss of pro-

apoptotic proteins may result in cisplatin resistance, similarly may increased expression of 

anti-apoptotic proteins lead to cisplatin resistance (Brozovic & Osmak, 2007). The 

contribution of these mechanisms for preclinical and clinical cisplatin resistance of bladder 

cancer cells will be discussed in the following section. 
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4.1 p53 and cisplatin resistance of bladder cancer cells 

The tumor suppressor protein p53 is activated in cancer cells after treatment with 
chemotherapeutic drugs and has a central role for the induction of apoptosis. The influence 
of the p53 status for cisplatin resistance has been studied in numerous cancer cell lines, 
however, with contradictory results. While no correlation between cisplatin resistance and 
p53 status was observed in testis and ovarian cancer cell lines (Burger et al., 1997, De Feudis 
et al., 1997), other studies using breast, lung, colon, kidney, ovarian, leukaemia, melanoma 
and prostate cancer cell lines showed that p53 mutated cell lines were more resistant to 
cisplatin compared to p53 wild-type cell lines (Branch et al., 2000, O'Connor et al., 1997). 
Contradictory results about the importance of p53 status for cisplatin resistance are also 
reported for bladder cancer cells. Comparing the cisplatin sensitivity in bladder cancer cell 
lines with different p53 status revealed that p53 wild type bladder cancer cells were more 
susceptible to cisplatin, while mutant cell lines were resistant (Kawasaki et al., 1996, 
Konstantakou et al., 2009). In line with these findings, it was also shown that cisplatin 
resistance in bladder cancer cells was enhanced by overexpression of mutant p53 protein 
(Miyake et al., 1999). Our own studies revealed that cisplatin resistant bladder cancer cell 
lines were mutated for p53, while cisplatin sensitive testis tumor cells showed functional 
p53 activity after cisplatin treatment (unpublished results). Contrary to these observations, 
Chang and co-workers investigated the effect of p53 mutations for drug sensitivity and 
found that bladder cancer cell lines expressing various human mutated p53 proteins 
displayed enhanced cisplatin sensitivity (Chang & Lai, 2001). Even more, when cisplatin 
sensitivity was measured in a series using 89 bladder cancer cell lines with different p53 
status, it was found that p53 heterozygous cells were most susceptible to cisplatin (Chang & 
Lai, 2000). Altogether, we therefore conclude that, at least in bladder cancer cell lines, p53 
mutations do not always lead to the development of cisplatin resistance.  
In a number of studies it has been investigated whether the p53 status can be a predictor for 

the response to platinum-based chemotherapy in the clinic. Gadducci and co-workers 

reported that ovarian cancer patients with tumors harbouring p53 mutations experience a 

lower chance to achieve a complete response following cisplatin therapy, while patients 

with wild-type p53 tumors have a good chance to respond (Gadducci et al., 2002). In bladder 

cancers, mutations in the p53 gene are a frequent event (Esrig et al., 1994). However, there 

are conflicting results whether the p53 status can be used to predict the responsiveness to 

cisplatin treatment in bladder cancers (Nishiyama et al., 2008). On the one hand, it was 

shown that in a cohort of patients with TCC only the patients with altered p53 in the tumor 

would benefit from adjuvant cisplatin chemotherapy (Cote et al., 1997). On the other hand, 

p53 immunoreactivity could not be used to predict tumor response and patient survival in a 

cohort of 83 patients (Qureshi et al., 1999). Similarly, no clear conclusion as to whether p53 

wild type was related to increased resistance or increased responsiveness could be drawn by 

Watanabe and co-workers in a study investigating 75 tumor specimens (Watanabe et al., 

2004). Therefore, it cannot be concluded to date that the p53 status influences cisplatin 

responsiveness in bladder cancers (Table 1). 

4.2 Anti-apoptotic proteins and cisplatin resistance 

Cisplatin resistance has been associated with the expression of a number of anti-apoptotic 
proteins, both in cell cultures and in clinical samples. Expression of the anti-apoptotic 
proteins Bcl-2 and Bcl-xL resulted in cisplatin resistance in ovarian cancer cell lines (Yang et 
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al., 2004). In bladder cancer cell lines, which were resistant to cisplatin and etoposide, 
Chresta and co-workers also observed high levels of Bcl-2 (Chresta et al., 1996). In addition, 
levels of the pro-apoptotic protein Bax were very low in the three bladder cancer cell lines 
under investigation (Chresta et al., 1996). We also observed low endogenous levels of Bax in 
cisplatin resistant bladder cancer cells compared to cisplatin sensitive testis tumor cell lines 
(unpublished observations). Furthermore, cisplatin treatment lead to translocation of Bax to 
the mitochondrial membrane in testis tumor cells, which was not observed in bladder cancer 
cell lines (unpublished observations). An association between cisplatin resistance, Bcl-2 
expression and Bax translocation has also been proposed by Cho and co-workers who 
observed in cisplatin resistant bladder cancer sublines that Bcl-2 was up-regulated, which 
resulted in inhibition of Bax translocation to the mitochondrial membrane and reduced cell 
death (Cho et al., 2006). To elucidate the role of Bcl-2 for cisplatin resistance in bladder 
cancer cells, Miake and co-workers transfected the human bladder transitional cell 
carcinoma line KoTTC-1 with an expression plasmid for Bcl-2 and observed that 
overexpression conferred resistance to cisplatin (Miyake et al., 1998). Stably expressing Bcl-2 
cells were then injected  subcutaneously into nude mice to determine whether the Bcl-2 
status can affect the efficacy of cisplatin treatment. Using this tumor cell implantation 
model, the authors could show that mice with tumors expressing Bcl-2 have an inferior 
prognosis compared to mice with tumors with no detectable Bcl-2 protein (Miyake et al., 
1998). Altogether, the data suggest that Bcl-2 might  be one of the factors influencing 
cisplatin resistance in bladder cancer cells. In proof of principle experiments, Bcl-2 levels in 
bladder cancer cells were decreased using Bcl-2 antisense oligonucleotides. These studies 
revealed that down-regulation of Bcl-2 expression resulted in a significant increase in 
toxicity of cisplatin in various bladder cancer cell lines (Bolenz et al., 2007, Hong et al., 2002), 
supporting the notion that expression of Bcl-2 may be associated with cisplatin resistance in 
bladder cancer cells (Table 1). 
Expression levels of the anti-apoptotic factors Bcl-2 and Bcl-xL were determined in tumor 
samples from a diverse range of tissue to investigate for a possible involvement in clinical 
resistance, however, with contradictory results. While in ovarian carcinoma patients, 
expression of Bcl-xL was correlated with a decreased response to platinum chemotherapy 
(Williams et al., 2005), no association between response and Bcl-2 expression was observed 
in breast cancer patients (Parton et al., 2002). For bladder cancers, the clinical relevance of 
Bcl-2 expression for cisplatin resistance has been shown by Cooke and co-workers. The 
authors observed in a cohort of 51 patients with bladder cell carcinoma who received neo-
adjuvant cisplatin chemotherapy that patients with Bcl-2 negative tumors had a significantly 
better prognosis (Cooke et al., 2000). An improved survival of patients with Bcl-2 negative 
tumors was also observed in a cohort of 89 patients with invasive bladder cancers who 
received cisplatin-based chemotherapy (Kong et al., 1998). In conclusion, expression of the 
anti-apoptotic factor Bcl-2 appears to affect the efficacy of cisplatin therapy for bladder 
cancers and might be used as a prognostic marker to predict the response to treatment. 
The inhibitor of apoptosis (IAP) gene family encodes proteins, which have been reported to 
play an important role in cellular drug resistance. These proteins have been shown to be 
endogenous inhibitors of caspases, thus resulting in inhibition of cell death. Survivin, one of 
the members of the IAP family, is activated by cisplatin, which in part protects cells from 
cisplatin-induced apoptosis (Belyanskaya et al., 2005). An associated between survivin levels 
and cisplatin resistance has been reported for a number of cell lines derived from various 
cancer tissues including thyroid, lung and colon (Tirro et al., 2006) (Belyanskaya et al., 2005, 
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Hopkins-Donaldson et al., 2006, Pani et al., 2007). Bladder cancer cell lines showed a high 
expression of survivin compared to non-cancerous uro-epithelial cells (Yang et al., 2010).  
In clinical studies it has been investigated whether survivin might serve as a prognostic 
marker to predict clinical outcome. In tumor material of 30 patients with advanced bladder 
cancer, survivin expression has been identified as a marker for poor clinical outcome (Als et 
al., 2007). Similarly, Shariat and co-workers identified survivin as an independent predictor 
for recurrence of the disease in a cohort of 726 patients (Shariat et al., 2009). 
The X-linked inhibitor of apoptosis (XIAP) is another member of the family of IAP proteins. 
Preclinical studies indicate that XIAP expression may be associated with cisplatin resistance. 
In ovarian carcinoma cell lines, for example, enhanced expression of XIAP was connected to 
the acquisition of cisplatin resistance (Mansouri et al., 2003). Bilim and co-workers reported 
considerable levels of XIAP in a panel of 4 bladder cancer cell lines, which are known to be 
cisplatin resistant (Bilim et al., 2003). The clinical relevance of XIAP for the efficacy of 
cisplatin treatment has been studied in a number of studies. Parton and co-workers found 
no association between XIAP expression and response to chemotherapy in ovarian cancer 
tissue (Parton et al., 2002). An inverse correlation between XIAP expression in the cancer 
tissue and pathological response was observed for patients with advanced bladder cancer 
(Pinho et al., 2009). The correlation, however, was not statistically significant. This study 
also demonstrated that bladder cancer patients with high levels of XIAP-associated factor 1 
protein (XAF1) in the cancer tissue had a better prognosis after cisplatin based 
chemotherapy (Pinho et al., 2009). XAF1 inhibits the anti-caspase activity of XIAP, therefore 
antagonizing the anti-apoptotic action (Liston et al., 2001). Most likely, this resulted in 
increased sensitivity towards cisplatin. Another study investigated the expression of XIAP 
in bladder tumor specimens of 108 patients and found that XIAP was expressed at 
significantly higher levels in tumors compared to normal urothelium (Bilim et al., 2003). 
Unfortunately, it was not investigated, whether XIAP positivity was correlated with clinical 
response to cisplatin. However, it was suggested that XIAP upregulation might play a role 
in early TCC carcinogenesis (Bilim et al., 2003). 
Altogether, information about expression of factors involved in cisplatin-induced apoptotic 
cell death pathways and its relation to cisplatin resistance is still emerging (Table 1). More 
information about the clinical relevance of apoptosis-related factors for the clinical outcome 
is needed, as this may identify new targets for pharmacological intervention.  

5. Strategies for overcoming cisplatin resistance 

As cisplatin resistance influences the clinical outcome, strategies are needed to circumvent 
the resistance phenotype. In a number of preclinical studies, modulators of cisplatin 
resistance were specifically targeted, and it was investigated whether this would influence 
cisplatin sensitivity. For example, the glutathione system may be modulated by glutathione 
depletion or GST blocking agents. Using these approaches, Buyn and co-workers could 
significantly enhance the cisplatin toxicity in bladder cancer cell lines (Byun et al., 2005). 
Similarly, inhibition of DNA repair has the potential to enhance the cytotoxicity of 
anticancer agents, as preclinical studies have confirmed that modulation of repair pathways 
can enhance the sensitivity to DNA damaging agents (Damia & D'Incalci, 2007, Ding et al., 
2006). We found that siRNA-mediated down-regulation of the repair factor ERCC1-XFP 
decreased the repair of cisplatin-induced ICLs in bladder cancer cells and subsequently 
resulted in reduced cisplatin resistance (Usanova et al., 2010). In a number of studies, the 
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effect of down-regulation of anti-apoptotic proteins for cisplatin resistance was studied. 
Down-regulation of Bcl-2 and Bcl-xL with antisense oligonucleotides enhanced the cisplatin 
sensitivity in four human bladder cancer cell lines (Bolenz et al., 2007). Antisense 
oligonucleotides against Bcl-2 were also used by Schaaf and co-workers who also observed 
an synergistic effect on cisplatin sensitivity (Schaaf et al., 2004). These findings show that 
reducing anti-apoptotic proteins positively influences cisplatin efficacy in bladder cancer 
cell lines and imply that targeting these factors may be a new therapeutic strategy for the 
treatment of bladder cancer. 

6. Novel therapeutic strategies for bladder cancer treatment 

Gemcitabine (2´,2´-difluorodeoxycytidine) is a deoxycytidine analogue, which can inhibit 
the ribonucleotide reductase or may be incorporated into DNA as a false base. Both 
mechanisms result in inhibition of DNA synthesis thereby leading to induction of apoptosis 
(Mini et al., 2006). Gemcitabine is used either as a single agent or in combination with other 
chemotherapeutic drugs for the treatment of cancer. For patients with locally advanced and 
metastatic bladder cancer, combination treatment of cisplatin or carboplatin and 
gemcitabine is the current standard chemotherapy regimen (von der Maase et al., 2005). 
Even though drug resistance is a major clinical problem, the resistance phenotype of bladder 
cancer cells to gemcitabine has not been investigated in great detail. An increase in 
expression of the anti-apoptotic protein clusterin has been described as a mechanism for 
acquired gemcitabine resistance in bladder cancer cells  (Muramaki et al., 2009). Knock-
down of clusterin sensitized gemcitabine-resistant bladder cancer cells indicating clinical 
significance (Muramaki et al., 2009). Gemcitabine resistance in bladder cancer cells might 
differ from cisplatin resistance as gemcitabine has been used for the treatment of cisplatin-
refractory metastatic bladder cancer (Soga et al., 2010). The beneficial effect of gemcitabine 
for the treatment of cisplatin-refractory urothelial carcinoma, however, was not observed in 
the study of Lin and co-workers who reported that gemcitabine and ifosfamide showed 
insufficient clinical activity in patients with cisplatin-refractory bladder cancer (Lin et al., 
2007). More promising approaches to increase the activity of cisplatin plus gemcitabine for 
treating metastatic bladder cancer have been reported in a number of recent studies. 
Addition of vitamin D3 increased the antitumor activity of cisplatin plus gemcitabine in 
bladder cancer cells and enhanced the antitumor activity in a xenograft model (Ma et al., 
2010). The antibody Bevacizumab, which is directed against vascular endothelial growth 
factor (VEGF), has been shown to have a beneficial effect on cisplatin plus gemcitabine in 
patients with metastatic bladder cancer (Hahn et al., 2011). More clinical trials combining 
novel agents with cisplatin and gemcitabine, however, are needed to improve the treatment 
of bladder cancers.  

7. Conclusion 

Cisplatin-based combination therapy is the standard therapy for the treatment of advanced 
or metastatic cancer of the bladder. However, the efficacy of cisplatin is limited by intrinsic 
or acquired resistance to the drug. Mechanisms determining cisplatin resistance include 
drug transport, detoxification, DNA repair and expression of pro- and anti-apoptotic 
proteins. The clinical significance of these mechanisms for bladder cancers is not yet fully 
understood and still evolving.  A better understanding about resistance mechanisms in 

www.intechopen.com



 
Bladder Cancer – From Basic Science to Robotic Surgery 

 

278 

bladder cancers is essential for developing therapeutic strategies aimed at circumventing 
cisplatin resistance for improving cancer therapy. 
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