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1. Introduction 

Neuroscience as a scientific discipline has enjoyed enormous growth and success in the past 
decade. Some have called the early 20th century the golden age of physics, the latter half of 
the 20th century a period when the genomic revolution blossomed and predict that the early 
21st century will be a period when brain sciences achieve remarkable success. While 
understanding the basic mechanisms of the brain and how they relate to thought and 
behavior may be the foundation for applications to medicine, there is a great need for 
technological innovation if more than academic results are to be achieved. The need for 
neurotechnology is already great. Traumatic brain injury and damaged limbs require 
prosthetic devices that can be controlled in some way by willful volition. Ideally, direct 
connections between thought and action are desirable to restore natural functions. Mental 
health is a branch of medicine that has long been relegated to a secondary status within 
medicine. The reasons for this may be many, but they certainly include the difficulty of 
understanding and measuring brain activity in a quantitative way and relating those 
measurements to behavior and cognitive activity. As healthcare costs continue to spiral out 
of control in both developed and developing regions of the world, the need for engineers to 
become involved in neuroscience and neurotechnology research and development has never 
been greater. Innovative engineering ideas, with a view toward practical application and 
affordable cost have much to contribute to clinical applications of brain science. A key 
contribution of neuroengineering will be innovative methods for quantitative measurement 
of brain activity and mapping of those measurements to behavior and thought. The term 
psychiatric biomarkers will be used here in this broad sense to indicate quantitative 
measurements of the brain and the algorithms necessary to interpret them in psychiatric or 
psychological descriptions or diagnoses. 
One important way in which psychiatric biomarkers differ from other physiological 
biomarkers is in that the mapping from biomarker to symptom or disease is much more 
complex. A biomarker for a specific cancer, for example, may be a gene mutation that is in 
some way directly involved in the disease progression itself. The relationship between 
biomarker and the manifestation of interest – cancer, in this case – is rather simple and 
direct. That is not to say that the gene or the gene expression patterns are simple to find, but 
only that the conceptual relationship between the marker and disease is simple to 
understand. In the case of psychiatric biomarkers, the phenomena of interest, thought and 
behavior, are complex, emergent phenomena of brain neural activity. The relationship 
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between neural firing patterns and the communication deficits that are clearly evident in a 
person with a mental disorder is not at all clear, even if we posit that all thought is indeed 
dependent upon neural activity. The relationship in this case is somewhat like the 
relationship between letters of the alphabet and a metaphor in great literature. Certainly 
metaphors depend on spelling and grammar, but the concept is much more than spelling 
and grammar. Similarly, the complex patterns of neural activity that distinguish the way a 
person with autism responds to someone speaking directly to them from someone 
considered “normal” are quite complex.  
Normal and abnormal behavior are differentiated by subtle, complex patterns of activity 
that a trained expert observes or discovers through systematic diagnostic tests. If brain 
function and behavior are mirrors of each other, as is commonly accepted (Cowan and 
Kandel, 2001; Hyman, 2007; Kandel, 1998; Singh and Rose, 2009), then biomarkers of mental 
disorders may be hidden in subtle, complex patterns of neurobiological data. There is a 
growing realization that the neurophysiological mechanisms that underlie brain function 
cannot be understood by pure reduction to physiological causes (Stam, 2005; Ward, 2003). 
The dynamics of the brain is inherently nonlinear, exhibiting emergent dynamics such as 
chaotic and transiently synchronized phenomena that may be central to understanding the 
mind-brain relationship (Varela et al., 2001) or the ‘dynamic core’ (Le Van Quyen, 2003). The 
behaviors and thoughts that characterize mental dysfunction may be emergent phenomena 
or complex patterns of physiological processes, especially neural processes. For example, 
major depression or the communication deficits present in a child with autism are emergent 
phenomena that reflect complex patterns in brain function that differ from some socially-
defined norm. The task of the neuroengineer is to create new technology to measure and 
interpret the patterns of brain activity that connect brain measurements to observed 
behavioral patterns. 
A key challenge in cognitive neuropsychiatry is to discover the neural correlates underlying 
behavior. To be clinically useful, these discoveries must be accompanied by technology that 
enables brain activity to be measured and interpreted safely, inexpensively and easily. The 
explosive growth of neuroimaging studies that link functional brain activity to behavior 
promises exciting opportunities for measuring nonlinear brain activity that may indicate 
abnormalities or allow response to therapy to be monitored. While several imaging 
modalities are available for neuroscience research, most have significant limitations that 
prohibit their use as routine clinical tools.  Cost and ease of use are essential qualities for 
clinically useful tools, which may not be as important or relevant in a scientific research 
context. Neuroengineers must be cognizant of these constraints when considering the 
intended use of the technology. 
Measurements of brain electrical activity with electroencephalography (EEG) have long 
been a valuable source of information for neuroscience research, yet this rich resource may 
be under-utilized for clinical applications in neurology and psychiatry (Niedermeyer, 2003; 
Niedermeyer and Lopes da Silva, 2005). To fully exploit this data, methods for discovering 
subtle nonlinear patterns and deeper understanding of the relationship between emergent 
signal features, neurophysiology and behavior are needed. Near infrared spectroscopy 
(NIRS) has recently been introduced as a safe, portable alternative for measuring blood 
oxygen level dependent (BOLD) response in infants (Irani et al., 2007; Muehlemann et al., 
2008). One of the primary advantages of NIRS, like EEG, is that it is safe for all ages, 
relatively inexpensive and portable. As a new brain-imaging tool, much remains to be 
discovered about the value and limitations of NIRS as a clinical instrument. In addition, 
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coupling EEG and NIRS may have some advantages for clinical use and remains to be 
explored by researchers. Many of the advances in non-invasive functional brain 
measurement are being driven by the brain computer interface community, where mobility 
and cost requirements limit the technologies that can be adopted (Dornhege, 2007). 
Neuropsychology and cognitive neuropsychiatry can learn from this community, while 
adapting the methods to the particular needs of behavioral, affective and cognitive 
assessment.  
In this chapter some relevant information concerning our current understanding of complex 
network organization and implications for finding neural correlates of behavior will be 
reviewed with goal of motivating engineers to consider contributing their skills to 
developing new neurotechnology. Considerable attention will be given to EEG 
measurements as one of the most promising technologies for clinical application to 
neuropsychiatry. Novel methods for extracting information from EEG signals are beginning 
to appear, taking advantage of advances in the physics of nonlinear systems and signals, 
complex network theory and machine learning algorithms. The need for innovative 
neurotechnology to meet the need for mental and neurological healthcare in developing 
regions of the world is great, but the promise is even greater. The primary goal of this 
chapter is to provide information to enable researchers interested in brain disorders and 
mental health to become involved in creating innovative neurotechnology for clinical use. 

2. The brain as a complex system 

2.1 Complex networks 

The human brain contains on the order of 1011 neurons and more than 1014 synaptic 
connections (Kandel et al., 2000). Although sparsely connected, each neuron is within a few 
synaptic connections of any other neuron (Buzsáki, 2006). This remarkable connectivity is 
achieved by a kind of hierarchical organization that is not fully understood in the brain, but 
is ubiquitous in nature, called scale-free or complex networks (Barabasi, 2009; Bassett and 
Bullmore, 2006; Ravasz and Barabasi, 2003). Complex networks are characterized by dense 
local connectivity and sparser long-range connectivity (Barabasi, 2009) that is fractal or self-
similar at all scales.  
Many brain disorders appear to be associated with abnormal brain connectivity that may 
vary between different regions and different scales (Bassett and Bullmore, 2009; Craddock et 
al., 2009; Noonan et al., 2009). Examples include autism (Belmonte et al., 2004; Noonan et al., 
2009), schizophrenia (Raghavendra et al., 2009; Uhlhaas et al., 2008; Whittington, 2008), 
depression (Li et al., 2008; Sheline et al., 2009) and epilepsy (Douw et al., 2010; Percha et al., 
2005). Methods for estimating neural connectivity or changes in neural connectivity might 
be effective diagnostic biomarkers for abnormal connectivity development that is associated 
with brain dysfunction. The electrical signals produced by neural networks are believed to 
contain information about the neural network structure on several scales in the vicinity of 
the EEG sensor (Raghavendra et al., 2009; Stam, 2005; Zavaglia et al., 2008).  
Novel analysis methods from nonlinear systems theory are able to extract information from 
EEG signals that reflect the underlying network organization. System invariants will be 
encoded in the time series produced and measured by EEG sensors (Fuchs et al., 2007; Gao 
and Jin, 2009). Multiscale entropy (MSE) is one invariant measure of system dynamics that 
has been shown to particularly sensitive to changes in physiological systems (Costa et al., 
2005b; Hu et al., 2009b; Takahashi et al., 2010), including mental disorders such as 
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Alzheimer’s Disease (Abasolo et al., 2006), schizophrenia (Takahashi et al., 2010), the effect 
of antipsychotic drugs (Takahashi et al., 2010) normal aging (Bruce et al., 2009) and autism 
spectrum disorders (Bosl et al., 2011).  
A comparison of functional network properties using fMRI showed that children and 
young-adults' brains have similar "small-world" organization at the global level, but differ 
significantly in hierarchical organization and interregional connectivity (Supekar et al., 
2009). The networks measured with fMRI in this study are those that are formed among 
correlated voxels, which may represent a different spatial scale from that measured by 
single EEG sensors. Transient or sustained generalized synchronization between EEG 
sensors is another measurement of functional connectivity in the brain. A simultaneous 
study of EEG and fMRI signals in patients with a degenerative type of epilepsy showed that 
in the non-myoclonus state, subtle abnormalities that were detected in EEG signals did not 
affect fMRI, suggesting that EEG measurements of connectivity may measure different 
connectivity or may be more sensitive to temporal synchronization that occurs on a time 
scale less than that of fMRI (on the order of one second). 
Neuroscience has made great progress using linear methods of spectral (Fourier) analysis, it 
is likely that much more information is contained in the complex patterns of brain activity 
(see, for example, (Bruce et al., 2009). EEG may be under-utilized for clinical applications in 
neurology and psychiatry (Niedermeyer, 2003; Niedermeyer and Lopes da Silva, 2005) 
particularly now as new developments in complex systems and multivariate nonlinear time 
series analysis may allow previously unexplored information to be extracted from EEG 
signals (Kulisek et al., 2008; Mizuhara et al., 2005; Stam, 2005; Varela et al., 2001). Sensors 
such as EEGs measure the coordinated electrical response of many neurons to produce time 
series that reflect the dynamics of this complex system. In order to extract salient 
information from this data, methods appropriate for analyzing nonlinear time series are 
required. Although many useful techniques for nonlinear time series and system analysis 
have been developed in other disciplines (Bosl, 2000; Braha et al., 2006; Elnashaie and Grace, 
2007; Holland, 1995; Stauffer, 2006), it is not immediately clear which are most appropriate 
for neuroscience research. Nevertheless, recent research results are quite promising.  
The complexity of EEG signals was found in one study to be associated with the ability to 
attend to a task and adapt to new cognitive tasks; a significant difference in complexity was 
found between normal subjects and those with diagnosed schizophrenia (Li et al., 2008). 
Schizophrenic patients were found to have lower complexity than normal controls in some 
EEG channels and significantly higher interhemispheric and intrahemispheric cross mutual 
information values (another measure of signal complexity) than normal controls (Na et al., 
2002).  
Methods for chaotic signal and phase synchronization analysis arose from a need to 
rigorously describe physical phenomena that exhibited what was formerly thought to be 
purely stochastic behavior but was then discovered to represent complex, aperiodic self-
organized dynamics (Pikovsky et al., 2001). The analysis of signal complexity and 
interaction between signals leading to transient synchronization may reveal information 
about local neural complexity and long-range communication between brain regions 
(Buzsáki, 2006; Stam, 2005; Varela et al., 2001).  
The synchronization patterns of complex networks have been shown to be closely related to 
the topology of the network (Arenas et al., 2006) and are related to brain connectivity 
(Sakkalis et al., 2008). EEG signals are believed to derive from pyramidal cells aligned in 
parallel in the cerebral cortex and hippocampus (Sörnmo and Laguna, 2005), which act as 
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many interacting nonlinear oscillators (Nunez and Srinivasan, 2006). As a consequence of 
the scale-free network organization of neurons, EEG signals exhibit complex system 
characteristics reflecting the underlying network topology, including transient 
synchronization between frequencies, short and long range correlations and cross-
modulation of amplitudes and frequencies (Gans et al., 2009). A great deal of information 
about interrelationships in the nervous system likely remains hidden because the linear 
analysis techniques currently in use fail even to detect them (Drongelen, 2007).  

2.2 Mental processes as emergent phenomena 

Much of modern scientific medicine is reductionist, involving a search for ultimate basic 
causes of disease. This paradigm for scientific research follows naturally from the 
extraordinary success of physics in the last century, with its search for the fundamental laws 
of the universe. But that model is giving way to a new vision of the universe as a complex 
dynamical system, one in which fundamental laws may in fact be emergent properties of the 
system (Laughlin, 2005).  
Emergent properties are those that result from the organization of individual parts and do 
not exist apart from the organizational whole. The saying that the whole is more than the 
sum of the parts is a description of an emergent property. The process of cell division, for 
example, is an emergent process that cannot be explained or studied using quantum 
mechanics – even though quantum mechanics is a good description of how atoms interact, 
and a cell is made up of many atoms, each obeying the fundamental physics of quantum 
theory. Similarly, the difference between a well-written high school essay for a college 
admissions committee and a Pulitzer Prize winning novel is not to be found in grammar and 
spelling, even though proper spelling and grammar are essential to the meaning of 
literature. Literature, genre and metaphor are emergent phenomena, more than words and 
sentences. 
Developing neurotechnology, including devices and analysis methods, may be the most 
challenging subfield of biomedical engineering because the phenomenon of interest, a  
mental state or a complex set of behaviors that may indicate a diagnosis of a mental 
disorder, is an emergent phenomenon. Human behavior is controlled by the brain, which is 
ultimately a complex network of neurons that transmit electrochemical signals. Thought and 
behavior cannot be understood or measured by studying neurons (or genes) alone. 
Psychiatric biomarkers that focus on complex system properties may be the most 
informative measurements for assessing mental state. We now present a survey of complex 
system properties that can be computed from time series of brain electrical activity. Neural 
activity is electrochemical activity. Taking into account degradation due to the skull and 
scalp and the introduction of noise by the electronic sensors, EEG may be the most direct 
measurement of brain function that is possible. Thought might be considered an emergent 
phenomenon of neural electrical activity. 

3. Methods 

3.1 Univariate measures 

Many different methods for computing the complexity of time series have been defined and 
used successfully to analyze EEG data (Chen et al., 2009; Kuusela et al., 2002). Sample 
entropy, a measure of nonlinear time series complexity, was significantly higher in certain 
regions of the right hemisphere in pre-term neonates that received skin-to-skin contact than 
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in those that did not, indicating faster brain maturation (Scher et al., 2009). Sample entropy 
has also been used as a marker of brain maturation in neonates (de la Cruz et al., 2007) and 
was found to increase prenatally until maturation at about 42 weeks, then decreased after 
newborns reached full term (Zhang et al., 2009). A study of the correlation dimension 
(another measure of signal complexity) of EEG signals in healthy subjects showed an 
increase with aging, interpreted as an increase in the number of independent synchronous 
networks in the brain (Stam, 2005).  
Intuitively, complexity is associated with structural richness, depth, patterns upon 
patterns, incorporating correlations over multiple spatio-temporal scales (Costa et al., 
2005b). There is no consensus on a definition of complexity, but algorithms have been 
developed to attempt to give meaning to complexity. In the context of time series analysis, 
the concept of entropy is relevant. The use of entropy measures to describe the 
information content of time series began with the publication of Shannon’s Mathematical 
Theory of Communication (Shannon and Weaver, 1949). In an intuitive sense, information 
is a measure of the difference in uncertainty before and after a measurement. In the 
context of time series, information is related to the predictability of the series. Entropy is a 
mathematical function of the probability that the next point in a sequence or time series 
will be a certain values, given the previous (Baddeley, 2000). Several different entropy 
measures can be defined algorithmically, including Shannon entropy, spectral entropy, 
approximate entropy, Lempel-Ziv complexity and sample entropy (Sabeti et al., 2009), 
each with certain advantages for particular time series characteristics (length, amount of 
noise, for example).  The sample entropy has been used for a number of investigations of 
physiological signals. Changes in sample entropy appear to correlate with aging and 
pathological conditions in the context of cardiac health (Bruce et al., 2009; Costa et al., 
2008; Norris et al., 2008) and for normal brain development (Zhang et al., 2009) and to 
distinguish certain mental disorders such as schizophrenia (Sabeti et al., 2009; Takahashi 
et al., 2010). 
The multiscale entropy (MSE) analysis is one method for computing the complexity of a 
time series that builds on the sample entropy and expands the concept. It has been used to 
analyze a number of physiological processes (Costa et al., 2005b; Hornero et al., 2009; Norris 
et al., 2008; Takahashi et al., 2010). The multiscale entropy algorithm incorporates two steps. 
The first is a coarse-graining procedure that uses successive averaging of a time series to 
create new coarse-grained time series. For a window size τ, τ = 1, 2, … j, the jth coarse-grain 
series, yτ

j, is computed by averaging non-overlapping windows: 

                                                             

(1)

                          

where xi is the original time series of length N and τ is the scale factor satisfying 1< τ < N/τ. 
A schematic illustration of this process is shown in equation 2.     
   

 (2)

 

y j
τ =
1

τ
x i

i= j−1( )τ +1
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The coarse-graining method for extracting signal variability on different scales used by 
(Costa et al., 2005b) seems to be a heuristic procedure without any solid theoretical 
foundation. Other procedures can be substituted that may be justified on similar grounds. 
Perhaps the most immediate alternative would be to use the median rather than the mean 
value in each coarse graining step. This would have the effect of emphasizing the variability 
of the original signal rather than smoothing out such variability. Another procedure would 
be to select every kth point from the original series, where k is the desired scale, and use a 
pre-selected window size to compute an average value at the kth point. A systematic 
discussion and computational experiments have yet to be done for the coarse graining 
procedure that is central to the multiscale entropy algorithm.  

The second step is to then compute the entropy of each of the coarse-grain time series yτ
j, 

using some entropy measure. The sample entropy is the most common entropy formulation 
to be used for analyzing physiological signals (Costa et al., 2005b). A useful variation to the 
original multiscale entropy algorithm uses the modified sample entropy defined in (Xie et 
al., 2008). The practical effect of using the modified sample entropy is the computed entropy 
values are more robust to noise and results are more consistent with short time series. In 
brief, the similarity functions Am and Bm defined by equations (7) and (9) in (Xie et al., 2008) 
are computed for each coarse-grained time series defined in equation 1. The modified 
multiscale entropy (mMSE) is then defined as the series of modified sample entropy values 
at each of the coarse grain scales. This method was used for complexity analysis of EEG time 
series as a biomarker for autism risk (Bosl, et al. 2011).  
An alternative to the MSE is the scale dependent Lyapunov exponent (SDLE) algorithm 
described in (Gao, 2007; Gao et al., 2006). This measure of complexity is stable for short, 
noisy time series and reportedly is able to distinguish a number of different types of chaotic 
motion, including noise-induced chaos, stochastic oscillations and others, which entropy 
measures are not able to do. SDLE has not yet been used to analyze EEG signals in young 
children or infants. The SDLE algorithm is based on following the time evolution of all pairs 
of vectors in phase space that satisfy a given embedding restriction. This results in a rather 
straightforward algorithm for computing the SDLE. The SDLE is reportedly better at 
distinguishing noise from chaotic dynamics in time series. SDLE was shown to be a more 
effective measure of heart disease than sample entropy and MSE (Hu et al., 2009a). 
Similarly, SDLE was shown to be more effective in retrospectively identifying changes in 
EEG signal complexity just prior to the onset of epileptic seizures than MSE, but few other 
studies of SDLE with EEG time series have been done. This is a potentially promising 
measure to be investigated further.  

3.2 Detecting nonlinearity in time series 

Living systems exhibit a fundamental propensity to move forward in time. This property 
also describes physical systems that are far from an equilibrium state. For example, heat 
moves in only one direction, from hot to cold areas. In thermodynamics, this property is 
related to the requirement that all systems must move in the direction of higher entropy. 
Time irreversibility was found to be a characteristic of healthy human heart 
electrocardiogram (EKG) recordings and was shown to be a reliable way to distinguish 
between actual EKG recordings and model EKG simulations (Costa et al., 2008). EKG signals 
from patients with congestive heart disease were found to have lower time irreversibility 
indices than healthy patients (Costa et al., 2005a). Interestingly, time irreversibility of EEG 
signals has been associated with epileptic regions of the brain and this measure has been 
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proposed as a biomarker for seizure foci (Gautama et al., 2003). Time irreversibility may be 
used as a practical test for nonlinearity in a time series. 
As an illustration, a time irreversibility index (trev) was computed for different resolutions of 
the EEG time series using the algorithm of (Costa et al., 2008).  The third column of Figure 1 
shows trev for several different linear and nonlinear time series. Of particular note is that 
only the sine wave time series and both random time series have nearly zero irreversibility 
indices, while the index for the nonlinear logistic series and the representative EEG signal 
are both nonzero on all scales shown. 
  

 

Fig. 1. Characteristics of five different time series are shown. Column 1 shows the time series 
amplitudes. Column two is the multiscale entropy, where the horizontal axis is the coarse 
graining scale, from 1 to 20. Column 3 is the multiscale time asymmetry value. The value of 
a in the lower right corner of the time asymmetry plot is the value of the time asymmetry 
index summed over scales 1 to 5. A non-zero time asymmetry value is a sufficient condition 
for nonlinearity of a time series. 

After computing multiple resolutions of the EEG time series using the multiscale algorithm 
shown in equation 2, an estimate of the time irreversibility for each resolution is computed 
by noting that a symmetric function or time series will have the same number of increments 
as decrements. That is, the number times |xi+1 – xi | > 0 will be approximately the same as 
the number of times |xi+1 – xi | < 0. Thus, an estimate of the time series symmetry (or 
reversibility) was found by summing increments and decrements and dividing by the length 
of the series. A reversible time series will have a value of zero. For a series of 5000 points, as 
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used in figure 1, trev > 0.1 is a significant indicator of irreversibility and thus of nonlinearity 
(Schreiber and Schmitz, 1997). This information is used only to indicate that nonlinear 
information is contained in the EEG time series that is not used in linear analysis methods, 
suggesting that the MSE may contain more diagnostically useful information than power 
spectra analysis alone. 
Additional methods for characterizing nonlinear signals may be derived from recurrence 
plot analysis, to be discussed separately below. Communications and electrical engineers 
may be especially well suited to research in analyzing brain activity and applying methods 
from communication signals analysis to find information that can be correlated to 
behavioral and cognitive assessment data. Integration of new results from both nonlinear 
time series analysis and complex network research may prove to be a fruitful approach for 
engineers interested in finding patterns in neural activity that are correlated to complex 
behavioral patterns that psychiatrists and psychologists use to characterize mental health. 

3.3 Synchronization 

While signal complexity is a property of a single time series or EEG channel, transient 
synchronized activity is a measure of the interaction between different channels and an 
indication of communication and coordination between different brain regions. 
Synchronization may be used as a marker for diagnosing underlying mental disorders that 
involve aberrant long-range connectivity in the brain and may also reveal causal 
mechanisms (Whittington, 2008). The complexity of synchronization patterns appears to 
change during network development and reflects different neural wiring schemes and levels 
of cluster organization (Fuchs et al., 2007).  
The synchronization patterns of complex networks have been shown to be closely related to 
the topology of the network (Arenas et al., 2006) and are related to brain connectivity 
(Sakkalis et al., 2008). Synchronization between sensors is an indicator of connectivity 
between brain regions on a scale commensurate with the sensor spacing. EEG signals are 
believed to derive from pyramidal cells aligned in parallel in the cerebral cortex and 
hippocampus (Sörnmo and Laguna, 2005), which act as many interacting nonlinear 
oscillators (Nunez and Srinivasan, 2006). Synchronization between gamma activity 
(typically defined to be 30-50 Hz range) is believed to be involved in long-range 
communication between brain regions. A possible link between gamma activity and the 
hemodynamic response measured by fMRI was found in a study of auditory response. 
Distinct activations in the gamma frequency range were found in subcortical structures, 
including the anterior cingulate cortex (ACC) and thalamus (Mulert et al., 2007). 
Synchronized oscillations are transiently stable, thus form and decay rapidly. Synchrony can 
result from a common input oscillator, such as in cardiac synchronization. It can also be an 
emergent, self-organized phenomenon that is related to the network structure itself. The 
latter is of particular relevance to the search for psychiatric biomarkers that are associated 
with complex behaviors. The complexity of synchronization patterns appears to change 
during network development and reflects different neural wiring schemes and levels of 
cluster organization (Fuchs et al., 2007). It is thus reasonable to suppose that the developing 
brain will show different but characteristic synchronization patterns at different 
developmental stages. While the fundamental neurophysiological correlates of these 
patterns may be difficult to ascertain, they nevertheless may serve as a marker for normal 
and abnormal brain functional development.  The emergence of a “social brain network” 
during early childhood was found in a study of evoked response potentials (ERPs) in 3-, 4-, 
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and 12-month-old infants viewing faces of different orientation and direction of eye gaze 
(Johnson et al., 2005), suggesting a particular pattern of brain connectivity that develops in 
early childhood. Default mode networks (DMNs) found in adults and (negatively) 
associated with particular cognitive and sensorimotor activities were lacking in a study of 
(premature) 3 month old infants (Fransson et al., 2007). However, resting state networks 
have recently been shown to emerge in the first year of life, suggesting development of 
brain networks and their potential disruption in neurodevelopmental disorders (Supekar et 
al.; Uddin et al., 2010).  
There is no consensus at this time on the best methods for determining nonlinear 

synchronization in neurological data and a number of different algorithms have been 

proposed (Kreuz et al., 2007; Sakkalis et al., 2009). Although strong signal synchronization 

would likely be detected by any of several nonlinear synchronization measures, two 

measures that are based on different algorithmic approaches are chosen here (see (Sakkalis 

et al., 2009) for more thorough discussion of some of the relative merits of each).  

Two methods outlined here for computing bivariate synchronization matrix are: (1) the 

synchronization likelihood (SL) method (Montez et al., 2006); and (2) the instantaneous cross 

modulation from the circular phase Hilbert transform-based synchronization index (HI), 

which is robust to signal noise and short time windows (Gans et al., 2009).  

Synchronization indices may be searched for correlation in each frequency bands using 

centered moving averages (Bashan et al., 2008). This approach will find weak or strong 

correlations with time lags. For each pair, the relative phase index can be computed and 

stored in a correlation matrix. At each time, some channels may be synchronized. A 

clustering algorithm can be applied to all channels at a single (averaged) time segment. The 

result is analogous to gene expression profile clustering (Ramoni et al., 2002). Statistical 

significance of clusters can be determined by assigning a numerical label to each channel 

involved in a cluster and the fractional overlap of clusters in different individuals computed. 

Synchronized clusters may also exhibit very low frequency oscillations, with frequencies of 

1 to 0.01 hertz. These have been found in fMRI studies of default mode networks (Broyd et 

al., 2009; Greicius et al., 2008; Uddin et al., 2010).    

Synchronization likelihood (SL) is a method based on the assumption that neurons are 

highly nonlinear devices, hence methods from chaotic dynamical systems may effectively 

capture the relevant dynamics of the system (Sakkalis et al., 2009). It is an unbiased 

generalized synchronization method that relies on detection of simultaneously occurring 

patterns that may differ in two time series. A method for automatically computing all but 

two user parameters for the SL algorithm has been developed and will be used here 

(Montez et al., 2006).  

Instantaneous cross modulation (synchronization) of EEG channels can be computed using 
the Hilbert transform method (Gans et al., 2009). This method is robust to noise and detects 
synchronization across all frequency bands. The n:m cyclic relative phase index y1,2 between 
two signals, f1(t) and f2(t), at a specific time t is computed over a time interval using a sliding 
window as: 

 ( ) ( ) ( ),
1,2 1 2 ,n mΨ t n t m tφ φ= −   mod 1  (3) 

where f(t)=arctan(H(y)/y) and H(y) is the Hilbert transform of the time series y. This 
approach is stable for nonstationary data (Gans et al., 2009), which is appropriate for our 
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data. The mod 1 term ensures that significant phase differences will be detected even in the 
presence of noise-induced phase jumps. In most cases n=m=1 is commonly assumed, 
though cross correlation of signals with n not equal m will be used here. Two signals are 
defined to be synchronized when  is less than a specified constant. This algorithm is 
stable for nonstationary data and will detect synchronization without the need to 
distinguish between noise and chaos (Gans et al., 2009). A sliding window will be used to 
compute sync over 5 minutes. 
A number of methods have been used for determining synchronization in neurological data 
and a number of different algorithms have been proposed (Kreuz et al., 2007; Sakkalis et al., 
2009). Although useful, many of these methods have difficulties with nonstationary, 
nonlinear signals and either fail to find true synchrony or introduce spurious 
synchronization (Fine et al., 2010). Spurious synchronization due to volume conduction 
effects can be removed by applying a spatial algorithm to ICA decomposition (Hironaga 
and Ioannides, 2007). ICA eliminates volume conduction effects while maintaining the same 
time resolution, thus still allowing generalized synchronization to be computed.  
As Fourier spectrum can only give meaningful interpretation to linear and stationary 
processes, its application to data from nonlinear and nonstationary processes is 
problematical. A relatively new method for extracting instantaneous phase and frequency 
information from both linear and nonlinear, chaotic signals is the Huang-Hilbert transform 
(Huang and Wu, 2005; Huang et al., 2009). Determination of instantaneous phase and 
frequency is usually accomplished using the Hilbert transform method (Kreuz et al., 2007). 
However, this is only appropriate for monofrequency analytic signals that have a single 
center of rotation in the complex plane. The Empirical Mode Decomposition (EMD) 
introduced by Huang makes no assumptions about linearity. The EMF decomposes a 
nonlinear, nonstationary time series into adaptively determined characteristic time scales of 
each of the components (Huang et al., 2009). These component functions are termed intrinsic 
mode functions (IMF) and are analogous to Fourier components in a traditional linear 
decomposition. The IMFs computed using the empirical mode transform (EMF) have the 
property of a single center of rotation in the complex plane, ideally satisfying the 
requirements for the application of the Hilbert transform to determine instantaneous phase 
and frequency (Fine et al., 2010; Huang et al., 2009). 
After computation of IMFs for each EEG channel, the IMF components with the highest 
power will be used to compute an instantaneous phase coherence matrix, R, using a sliding 
window. Following (Bialonski and Lehnertz, 2006), R is computed: 
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where w is the number of time samples in the time series segment or window, i and j 
designate the channel number (or the IMF component of the channel) and 
f(t)=arctan(H(y)/y) and H(y) is the Hilbert transform of the IMF component. The mod 1 
term ensures that significant phase differences will be detected even in the presence of 
noise-induced phase jumps.  The Hilbert transform obtains the best fit of a sinusoid to each 
IMF at every point in time, identifying an instantaneous frequency (IF), along with its 
associated instantaneous amplitude (IA). The IF and IA provide a time-frequency 
decomposition of the data that is highly effective at resolving non-linear and transient 
features. This algorithm is stable for nonstationary data and will detect synchronization 

Ψ
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without the need to distinguish between noise and chaos (Gans et al., 2009). An example of 
bivariate synchronization between two EEG sensors in the right medical parietal region is 
shown in figure 2. The synchronization likelihood in this example was computed using the 
only the first three IMFs from each sensor, without searching for cross band 
synchronization. 
To identify synchronized clusters of EEG channels, a method based on an eigenvector space 

method, using eigenvalues of R, can be used, following the algorithm developed and 

applied in (Allefeld and Bialonski, 2007; Bialonski and Lehnertz, 2006; Fine et al., 2010). The 

outcome of this algorithm will be synchronized clusters of EEG channels. These may be 

mapped onto scalp plots and the identified clusters compared to default mode networks 

that have been identified in young children (Sauseng and Klimesch, 2008; Supekar et al., 

2009; Supekar et al., 2010). It will be of particular interest to determine if synchronization 

clusters are significantly correlated with functional networks in the brain and are 

biomarkers of abnormalities in brain network function (Assaf et al., 2010; Kennedy and 

Courchesne, 2008). To date, most research on functional brain networks, including the 

default mode network, has relied on functional MRI. Networks determined by fMRI reflect 

only the hemodynamic or metabolic response of neurons (Power et al., 2010). This can be 

considered a kind of amplitude correlation but not true synchronization of brain regions.  

If synchronization of electrical activity can be shown to be an alternative measure of brain 
network activity it would open up much more exploration of the role of brain networks in 
cognitive activity, brain computer interfaces and neuropsychiatric disorders. Aberrations to 
default mode networks have been implicated in a number of brain disorders (Broyd et al., 
2009) including post traumatic stress syndrome (Daniels et al., 2010), social phobias (Gentili 
et al., 2009), depression (Sheline et al., 2009), ADHD (Uddin et al., 2008), autism (Di Martino 
et al., 2009), and schizophrenia (Lagioia et al., 2010). fMRI  is far too expensive to be used 
routinely as a clinical screening and monitoring tool. Yet the apparent widespread role of 
synchronized brain networks in many neuropsychiatric disorders suggests that a less 
expensive and easy to administer technology for analyzing brain networks would be widely 
useful in clinical practice. 

3.3 Recurrence quantitative analysis 

Several univariate measures of time series complexity and a number of approaches for 

computing the degree of synchronization between signals have been used to analyze EEG 

data. Applications of these methods to psychiatric care and mental health continue to show 

promise. A more general framework for characterizing the dynamics of complex systems 

may be to construct recurrence plots (Marwan et al., 2007) and compute quantitative 

properties. The idea to use recurrence plots as a representation of complex system dynamics 

was first proposed by (Eckmann et al., 1987) in the late 1980s. The original tool presented a 

graphical means for visualizing differences in system dynamics. Methods for quantifying 

the small scale structures in recurrence plots were devised and shown to be capable of 

revealing system parameters and transitions that are not easily obtained by other methods 

(Marwan et al., 2002; Zbilut et al., 2002). Some dynamical parameters, such as K2 entropy 

and mutual information can also be derived from recurrence plots without RQA methods by 

computing the distribution of line lengths in the recurrence plot (Marwan et al., 2007). 

Readers are referred to the references for reviews of this unifying approach to nonlinear 

systems analysis.  
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(Schinkel et al., 2007) demonstrated that a single measure from RQA analysis could detect a 
change in the N400 response in single trials when subjects were presented with an oddball 
task, suggesting that RQA may be a sensitive measure of transient brain states. Few studies 
have been done using RQA to determine more stable brain functional characteristics. This 
may be a promising new field for research on EEG biomarkers of psychiatric disorders. 

4. Clinical applications 

4.1 Infant brain development and autism spectrum disorders 

Autism spectrum disorder (ASD) constitutes a heterogeneous developmental syndrome that 
is characterized by a triad of impairments that affect social interaction, communication 
skills, and a restricted range of interests and activities (APA, 2000), with highly variable 
outcomes. Studies have consistently shown that early intervention leads to better long-term 
outcomes. But early intervention is predicated on early detection. Behavioral measures have 
thus far proven ineffective in diagnosing autism before about 18 months of age, in part 
because the behavioral repertoire of infants is so limited. Neural development may precede 
overt behavioral observations and thus provide an earlier marker for emerging autistic 
behaviors. Yet, measuring functional brain development is difficult because few 
noninvasive methods are available for infants and it is not clear what features to measure 
that are biomarkers of normal development. As discussed above, multiscale entropy 
computed from EEG time series has been shown to be a particularly informative analysis 
tool for physiological signals.    
Complex mental disorders such as autism are associated with abnormal brain connectivity 
that may vary between different regions and different scales (Noonan et al., 2009). 
Estimation of changes in neural connectivity might be an effective diagnostic biomarker for 
abnormal connectivity development that leads to ASD behaviors. The electrical signals 
produced by neural networks are believed to contain information about the network 
structure (Raghavendra et al., 2009; Stam, 2005; Zavaglia et al., 2008). The physics of 
complex networks suggests that system invariants will be encoded in the time series 
produced and measured by EEG sensors (Fuchs et al., 2007; Gao and Jin, 2009). Multiscale 
entropy (MSE) discussed above is one invariant measure of system dynamics that has been 
shown to particularly sensitive to changes in physiological systems (Costa et al., 2005b; Hu 
et al., 2009b; Takahashi et al., 2010), including mental disorders such as Alzheimer’s Disease 
(Abasolo et al., 2006), schizophrenia (Takahashi et al., 2010), the effect of antipsychotic drugs 
(Takahashi et al., 2010) and normal aging (Bruce et al., 2009). Preliminary results suggest 
that MSE may be a biomarker for autism endophenotypes (Bosl et al., 2011) and may 
provide an earlier diagnosis than behavioral assessments.  
MSE values were computed for 79 different infants: 46 at high risk for ASD (hereafter 
referred to as HRA) based on having an older sibling with a confirmed diagnosis of ASD 
and 33 controls, defined on the basis of a typically developing older sibling and no family 
history of neurodevelopmental disorders. The study participants were part of an on-going 
longitudinal study and for this analysis visits were evaluated at regular intervals. Infants 
were seated on their mothers’ laps in a dimly lit room while a research assistant engaged 
their attention by blowing bubbles. This procedure was followed to limit the amount of 
head movement made by the infant that would interfere with the recording process. 
Continuous EEG was recorded with a 64-channel Sensor Net System. The data were 
amplified, filtered (band pass 0.1-100.0 Hz), and sampled at a frequency of 250 Hz. Data 
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were manually reviewed to remove sections with obvious artifacts and continuous, clean 20 
second segments were identified to compute alert, resting state MSE values.  
Results shown in figure 2 were computing by averaging all channels in a given region, 
including left/right hemispheres, left/right frontal and total scalp MSE values. The plots are 
derived by averaging regional MSE values for all infants at a given age. These reveal a 
significant difference between high risk and typically developing infants (Bosl et al., 2011). 
The data suggest that there are not only significant differences between the high risk group 
and typically developing controls, but MSE follows characteristic trajectories during 
development. To our knowledge, these preliminary results are the first demonstration of a 
complex systems analysis of EEG data for biomarkers in infants at risk for a complex 
neurodevelopmental disorder. More details about this study and the use of machine 
learning to discover diagnostically significant patterns in MSE data can be found in (Bosl et 
al., 2011). 
 

 

Fig.  2. The change in mean MSE over all channels is shown for each age. Averaging over 
all channels reveals that in general MSE is higher than the normal controls than in the 
high risk group, but regional differences cannot be seen. 

The trajectory of the curves between 6 and 12 months in figure 2 appear to be as informative 
as information at any specific age. This is a period of important changes in brain function 
that are foundational for the emergence of higher level social and communicative skills that 
are at the heart of ASD. A key characteristic of autism is lack of social perception; autistic 
spectral disorders are also associated with abnormal brain connectivity (Belmonte et al., 
2004; Kleinhans et al., 2008). A number of major cognitive milestones typically occur 
beginning at around the age 9 months and perhaps earlier in girls. These include joint 
perception (Behne et al., 2005) and loss of the ability to discriminate certain categories of 
faces (Pascalis et al., 2002).  The latter developments are especially significant because they 
reveal how socially-grounded experiences influence changes in the neurocognitive mechanisms 
that underlie speech and face processing.  In a prospective study, (Ozonoff et al., 2010) 
found that social communicative behaviors in infants that later developed ASD declined 
dramatically between 6 and 18 months when compared to typically developing infants. The 
results shown here may indicate that MSE is sensitive to neural correlates underlying the 
observed social and cognitive developments. 
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Currently there are no objective medical tests for diagnosing autism. According to the 
American Academy of Pediatrics (AAP), data strongly suggest better outcomes in children 
whose conditions are diagnosed early and participate in early intervention programs. 
Children who are diagnosed early and given intensive behavioral intervention can often be 
mainstreamed and live normal, productive lives. The AAP recommends that all children be 
screened for autism at 18 and again at 24 months. Unfortunately, behavioral assessment is 
time consuming and requires specialized training, both of which pose a problem for routine 
screening. Because atypical brain development is likely to precede abnormal behavior by 
months or even years, a critical developmental window for early intervention may be 
missed if diagnosis is based entirely on a behavioral phenotype. If reliable methods can be 
developed to lower the age of diagnosis, and if insight is gained into the biological 
mechanisms that underlie the disorder, it may be possible to develop intervention strategies 
that can be implemented during the first year of life. Complex systems analysis of EEG may 
enable a relatively inexpensive and reliable way to estimate the risk of developmental 
disorders within the first year of life.  

4.2 Schizophrenia 
Early studies of signal synchronization in patients diagnosed with schizophrenia used a 
linear measure of complexity based on global correlation of all channels (Wackermann et al., 
1993) and synchronization based on linear correlation between amplitudes (Saito et al., 
1998). Although these methods will necessarily miss nonlinear signal characteristics, they 
found significant differences between patients and normal controls that were interpreted to 
reflect decreased coordination between different brain regions, a characteristic of 
schizophrenia (Uhlhaas et al., 2008; Whittington, 2008). 
One interpretation of biological complexity is that it reflects a systems’ ability to quickly 
adapt and function in a changing environment (Costa et al., 2005b). The complexity of EEG 
signals was found in one study to be associated with the ability to attend to a task and adapt 
to new cognitive tasks; a significant difference in complexity was found between normal 
subjects and those with diagnosed schizophrenia (Li et al., 2008). Schizophrenic patients 
were found to have lower complexity than normal controls in some EEG channels and 
significantly higher interhemispheric and intrahemispheric cross mutual information values 
(another measure of signal complexity) than the normal controls (Na et al., 2002).   
While signal complexity is a property of a single time series or EEG channel, transient 
synchronized activity is a measure of the interaction between different channels and an 
indication of communication and coordination between different brain regions. 
Synchronization may be used as a marker for diagnosing underlying mental disorders such 
as schizophrenia and may also reveal causal mechanisms (Whittington, 2008). The 
complexity of synchronization patterns changes during network development and reflects 
different neural wiring schemes and levels of cluster organization (Fuchs et al., 2007).  
Abnormalities in phase synchronization between multiple bands have been found to be 
sensitive biomarkers for mental dysfunction in schizophrenic patients (Uhlhaas et al., 2008; 
Whittington, 2008). Unfortunately, similar abnormalities in synchronous activity have been 
found associated with a number of other mental disorders (Uhlhaas et al., 2008), so further 
research is required to discover if more refined patterns of synchrony exist for 
discriminating different disorders or subtypes. A developmental perspective may be useful 
here. For example, while many attempts to correlate cortical thickness with intelligence have 
failed, recent research demonstrated that specific characteristic growth trajectories of cortical 
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thickness from infancy to early teen years were highly correlated with above or below 
average intelligence (Shaw et al., 2006), suggesting that growth curves of brain function may 
contain more information than any combination of measurements at one specific age. This 
would require routine brain measurements become part of the medical record and 
algorithms that recognize abnormal trends would need to be used to interpret data after 
regular checkups. 

5. Neurotechnology for global mental health 

Mental healthcare in developing nations has long been overlooked by organizations 
concerned with global health needs. A number of reasons can be cited for this, but one 
significant factor is the difficulty of accurately diagnosing and classifying mental disorders 
and the relatively intensive need for human expertise to administer assessments and care. 
Precision healthcare is a term coined by Clayton Christensen to describe objective medical 
diagnosis and prescription that is enabled by new technologies. Innovative 
neurotechnologies that enable basic mental diagnosis to be administered in a cost effective 
manner in clinics that may be staffed by technicians is urgently needed in developing 
nations. Even if the diagnostic precision is not as high as might be possible in big city 
hospital in the developed world, low-cost basic care would serve to alleviate a great deal of 
personal suffering as well as the economic burden imposed.   
The need for neurotechnology to enable precision mental healthcare has never been greater. 
The developed world is spending greater and greater amounts of money on healthcare and 
costs threaten their economic vitality. Developing nations will benefit tremendously from 
even basic neurological and mental healthcare.   
While considerable resources have been devoted to finding cures for infectious diseases 
such as HIV and malaria, relatively little attention has been given to the neurological and 
cognitive effects of these infections on young patients that recover from the acute infection. 
A majority of HIV infected patients manifest HIV-associated neurocognitive disorders 
despite receiving highly active antiretroviral therapy (Van Rie et al., 2009). The developing 
brains of children who have acquired HIV through vertical infection are particularly 
vulnerable to central nervous system insults either directly, through secondary infections or 
from side effects of antiretroviral therapies (LLorente et al., 2009). For example, school age 
children with perinatally acquired HIV infections receiving antiretroviral therapy displayed 
lower cognitive function than either HIV affected or HIV unaffected children. Although the 
antiretroviral therapy reduced HIV symptoms, the cognitive deficits were not improved 
(Puthanakit et al., 2010).  
These clinical observations inform the need to obtain a better understanding of how and 
when HIV affects cognitive function and to develop novel therapeutic drug candidates to 
prevent or interfere with progression of HIV associated neurocognitive impairment 
(Robertson et al., 2010). Some treatments for the primary or secondary infections, may be 
more harmful to vulnerable brain tissue in children that have been compromised by HIV 
infection than in adults (LLorente et al., 2009). Research on the effects of HIV infection on 
the developing brain is a topic of increasing importance as new antiretroviral treatments 
become more widely available causing many more HIV-1 infections to be treated as a 
chronic condition to be managed rather than as a fatal disease (Abubakar et al., 2008). Few 
longitudinal studies have been done of HIV infected children in developing regions who 
have been receiving antiretroviral therapy. The methods for measuring and analyzing brain 
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electrical activity developed here may help to fill the need for objective, cross-cultural 
measures of cognitive function to estimate the effects of HIV on brain development in 
children.  
It is hoped that neuroengineers will adopt methods outlined in this chapter to discover 
biomarkers for monitoring the progression of cognitive development and demonstration 
their utility in the context of HIV associated neurocognitive disability (HAND). Protocols 
are needed for early assessment and diagnosis of mental and cognitive impairment due to 
HIV infection, secondary infections and drug therapy. These may also be used as a clinical 
tool for widespread screening of HIV infected or exposed infants that may enable 
developmental cognitive impairments to be diagnosed before other HIV symptoms are 
apparent. Such tools would represent a major step forward in the effort to understand the 
long-term impact of chronic HIV infection and other infections on cognitive development in 
children and to provide a new approach for monitoring the cognitive effects of long term 
management of HIV as a chronic condition in developing regions of the world. 

6. Conclusion 

Neuroscience has been called the next frontier science after the breakthroughs achieved by 
physics in the mid-twentieth century and genetics and biophysics at the end of the 20th 
century and early 21st century. The brain is of great scientific interest because of the 
emergent phenomenon of thought that arises from the vast complexity of this organ. While 
the question of how the brain thinks is likely to remain a challenging scientific and 
philosophical topic for a long time, the need for practical innovations to meet the healthcare 
needs of the world is more urgent. Two issues drive this need at the present time. First, of 
course, is the tremendous amount of suffering that is the result of brain injury and mental 
disease. Mental disorders in particular are a difficult challenge for medicine because in most 
cases there is not a single cause that can easily be diagnosed and “cured”. Rather, the 
perspective throughout this chapter has been that mental disorders are complex emergent 
phenomena and must therefore be analyzed as such.  
This is an exciting and promising time for clinical neuroscience research due to the 
convergent development of several technologies at this time in history. Although EEG 
equipment has been around since the 1920s, the creation of inexpensive, wireless, high 
quality EEG headsets by innovative companies such as Emotiv Systems and Neurosky 
opens up research possibilities with EEG equipment for many more neuroscientists. As the 
cost comes down and quality goes up, these tools become practical for routine clinical use. 
The rapid development of the physics of complex networks and systems, as well as 
mathematical methods for analyzing complex (chaotic) time series that are produced by 
complex networks enables new information from the signals measured with inexpensive 
EEG devices to be extracted and studied as markers for neural correlates of behavior. 
Finally, the continuing advance of pattern recognition algorithms from the artificial 
intelligence community enables more subtle pattern-markers to be discovered in complex 
EEG signal features. 
The high cost of healthcare threatens the economies of developed nations and prevents 
many people in developing regions from obtaining the psychiatric care that they need. On 
both of these fronts, innovative neurotechnologies for early detection and monitoring of 
mental disorders are urgently needed. The ready availability of mobile communication 
devices introduces a platform for making information technology based mental healthcare 
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available to many people that have no access at this time. Integration of EEG devices and 
complex systems methods with clinical decision support tools and mobile device-based 
health records promises both greatly improved neuropsychiatric healthcare and lower costs. 
It is hoped that the methods introduced in this chapter will inspire a new generation of 
bioengineers concerned with mental health to create new tools for clinical neuroscience 
while closing the gap between neurology and psychiatry.  
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