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1. Introduction  

Injury and infection, seemingly unrelated conditions, converge on a common process - 
inflammation, which is mediated partly by innate immune cells including macrophages and 
monocytes. These innate immune cells are equipped with pattern recognition receptors (such 
as TLR2, TLR4, and TLR9) (Brightbill et al. 1999; Poltorak et al. 1998; Hemmi et al. 2000), and 
can recognize both damage- and pathogen-associated molecular patterns (DAMPs, such as 
HMGB1; and PAMPs, such as endotoxin) (Andersson et al. 2000; Chen et al. 2009;Krieg 
2002;Wang et al. 1999;Ivanov et al. 2007). In response to various PAMPs or DAMPs, innate 
immune cells release proinflammatory cytokines (such as TNF, IL-1, IFN-Ǆ or HMGB1 to 
mount inflammatory responses. If dysregulated, an uncontrolled inflammation may adversely 
lead to detrimental consequences. To orchestrate the inflammatory response to infection and 
injury, the liver strategically re-prioritizes the synthesis and systemic release of a group of 
proteins collectively termed “acute phase proteins” (APPs). For instance, fetuin-A, also called 
the alpha-2-HS-glycoprotein for the human homologue (Christie et al. 1987), has been 
implicated as an anti-inflammatory protein during injury or infections. In this book chapter, 
we summarize emerging evidence to support fetuin-A as an acute phase protein capable of 
attenuating injury- or infection-elicited inflammatory responses.  

2. Fetuin-A as a negative or positive APP 

Fetuin-A was first isolated by Pederson more than sixty years ago as a major plasma protein 
in the fetus (Pedersen 1944). During fetal development, it is expressed in most organs 
including the liver, kidney, gastrointestinal tract, skin and brain (Terkelsen et al. 1998; 
Kitchener et al. 1997; Dziegielewska et al. 2000; Kitchener et al. 1999). In adults however, 
fetuin-A is produced primarily by the liver, and its synthesis is divergently regulated during 
injury or infection, classifying it as a negative or positive APP. 

2.1 Regulators of hepatic Fetuin-A expression  

Although fetuin-A is constitutively expressed in hepatocytes, its expression is negatively 
regulated by several proinflammatory cytokines. For instance, the fetuin-A expression levels 
in human HepG2 hepatoma cells were reduced by proinflammatory cytokines such as TNF, IL-
1, IL-6, and IFN-Ǆ (Daveau et al. 1988;Li et al. 2011a). IFN-Ǆ, at concentrations as low as 10-50 
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ng/ml, reduced fetuin-A expression levels by as much as 50-70% (Li et al. 2011a). In contrast, 
HMGB1 (1 μg/ml), a late proinflammatory mediator of lethal systemic inflammation (Wang 
et al. 1999; Yang et al. 2004; Wang et al. 2008), elevated fetuin-A expression levels by 2-3 folds 
in HepG2 cells, suggesting that different cytokines divergently regulate hepatic fetuin-A 
expression.    

2.2 Elevation of Fetuin-A Levels during ischemia  

In patients with cerebral ischemic injury (stroke), plasma fetuin-A levels were paradoxically 

elevated (Weikert et al. 2008;Tuttolomondo et al. 2010). The elevation of circulating fetuin-A 

levels correlated with an increase not only in LDL-cholesterol levels (Tuttolomondo et al. 2010) 

but also in risk of cardiovascular disorders (Weikert et al. 2008). Similarly, serum fetuin-A 

levels were increased up to 10-fold in cattle following traumatic injury (Dziegielewska et al. 

1992), suggesting fetuin-A as a positive APP during ischemic or traumatic injury. Notably, 

HMGB1 can be passively leaked from injured cells (Peltz et al. 2009), and functions as an early 

mediator of traumatic or ischemic injury (Zhu et al. 2010; Wu et al. 2007; Liu et al. 2007b; Tsung 

et al. 2005; Tsung et al. 2007; Watanabe et al. 2005). It is thus plausible that HMGB1 participates 

in the up-regulation of hepatic fetuin-A expression during injury.   

In an animal model of focal cerebral ischemia (i.e., permanent middle cerebral artery 
occlusion, MCAo), fetuin-A levels in the ischemic brain tissue were also elevated in a time-
dependent manner, starting between 2-6 h, peaking around 24-48 h, and returning towards 
base-line at 72 h post MCAo (Wang et al. 2010). This time-dependent increase in cerebral 
fetuin-A levels parallels with the transient elevation of the blood-brain barrier (BBB) 
permeability (Belayev et al. 1996), suggesting that circulating fetuin-A can gain entry across 
the BBB into the ischemic brain tissue. This possibility was supported by the observation 
that peripherally (intravenously) administered FITC-labeled fetuin-A was found in the 
ischemic brain region at 24 h after MCAo (Wang et al. 2010).  

2.3 Reduction of circulating Fetuin-A levels during infection  

In animal models of endotoxemia and sepsis (induced by cecal ligation and puncture, CLP),   
circulating fetuin-A levels were decreased in a time-dependent fashion, starting between 2-6 h, 
reaching a nadir (with maximal reduction by 50-60%) around 24-48 h. Afterwards, fetuin-A 
levels started to increase, returning towards basal levels approximately 72 h post endotoxemia 
or sepsis, supporting fetuin-A as a negative APP in animal models of lethal endotoxemia and 
sepsis (Li et al. 2011a).  Interestingly, disruption of expression of early proinflammatory 
cytokines (such as IFN-Ǆ) impaired bacterial endotoxin-mediated down-regulation of fetuin-A 
expression (Li et al. 2011a). It thus appears that early proinflammatory cytokines (such as TNF 
and IFN-Ǆ) function as negative regulators to reduce circulating fetuin-A levels during an early 
stage of endotoxemia or sepsis; whereas late-acting proinflammatory mediators (e.g., HMGB1) 
stimulate fetuin-A expression to restore its circulating levels at a late stage.  
In patients with other inflammatory diseases such as pancreatitis (Kusnierz-Cabala et al. 

2010), chronic kidney diseases (Metry et al. 2008), and rheumatoid arthritis (Sato et al. 2007), 

serum fetuin A levels were also decreased by 20-30%. In these patients, circulating fetuin-A 

levels were not only inversely correlated with levels of inflammatory cytokines (such as IL-

6) (Kusnierz-Cabala et al. 2010), but also associated with increased mortality rates (Metry et 

al. 2008). Collectively, these observations classify fetuin-A as a negative APP during 

infection or other inflammatory illness.  
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3. Biological functions of Fetuin-A 

Despite its abundance, the functions of fetuin-A remain poorly understood. A wide range of 
biological functions have been proposed for fetuin-A based on its structural similarities to 
other proteins or physical interactions with biogenic molecules.  

3.1 Inhibitor of insulin or TGF-β Signalling  

Fetuin-A shares sequence similarity to type II TGF-ǃ receptors (Demetriou et al. 1996) and 
insulin receptor tyrosine kinases (Mathews et al. 1997;Haasemann et al. 1991), and has thus 
been proposed as an inhibitor of the TGF-ǃ or insulin signaling pathways. After binding to 
to TGF-ǃ1, fetuin-A prevents TGF-ǃ1 from binding to its receptors, thereby antagonizing 
TGF-ǃ1-mediated antiproliferative effects (Demetriou et al. 1996). Similarly, fetuin-A can 
also bind to the insulin receptor, and consequently inactivate (rather than activate, as in the 
case for insulin) the receptor tyrosine kinase (Goustin & Abou-Samra 2010). This may partly 
explain why higher fetuin-A levels were associated with insulin resistance in some patients 
with type 2 diabetes (Ix et al. 2008). 

3.2 Inhibition of pathological calcification  

As a glycoprotein, fetuin-A carries two N-linked and three O-linked oligosaccharide chains 

that terminate with sialic acid residues, and can bind cationic Ca2+ ions. Accordingly, fetuin-

A has been proposed as an endogenous inhibitor of pathological mineralization or 

calcification in soft tissues (Jahnen-Dechent et al. 2001;Schinke et al. 1996;Szweras et al. 

2002;Schafer et al. 2003;Ketteler et al. 2003). Specifically, fetuin-A forms protein-mineral 

colloids with calcium and phosphate (Heiss et al. 2003;Wu et al. 2009), thereby preventing 

uncontrolled mineralization that may otherwise occur under pathological conditions 

(Rochette et al. 2009).  

3.3 Inhibition of inflammation  

While investigating the mechanism underlying a cationic molecule spermine-mediated anti-
inflammatory actions, we serendipitously discovered that macrophages lost their 
responsiveness to spermine when cultured under low serum conditions (Wang et al. 1997). 
That is, despite the addition of cytokine-suppressing concentrations of spermine, the 
bacterial lipopolysaccharide (LPS)-induced production of TNF by these serum-starved 
macrophages was uninhibited. Subsequently, we discovered that these serum-starved 
macrophages became deprived of fetuin-A that was required for spermine to inhibit TNF 
production (Wang et al. 1997). The involvement of fetuin-A in spermine-mediated 
immunosuppression was confirmed by adding highly purified fetuin-A or fetuin-specific 
antibodies, which respectively restored or impaired spermine-mediated TNF inhibition 
(Wang et al. 1997).  
It is plausible that fetuin-A functions as an opsonin for cationic spermine, and its availability 

to immune cells may be critical in regulating the innate immune response (Wang & Tracey 

1999). Indeed, levels of fetuin-A in macrophage cultures could be altered by LPS stimulation 

or fetuin-A supplementation (Figure 1A). Intriguingly, the exogenously administered 

fetuin-A was predominantly localized in cytoplasmic punctate structures (Figure 1B), which 

co-localized with vesicles containing an autophagy marker (LC3) - possibly 

autophagosomes or amphisomes - in LPS-stimulated macrophages.   
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When given at higher concentrations (e.g., 3.5 mg/ml), crude fetuin-A (> 98%, Sigma-
Aldrich) abrogated endotoxin-induced release of IL-1 and nitric oxide (Dziegielewska et al. 
1998). Upon purification by gel filtration and ion-exchange chromatography, the highly 
purified intact fetuin-A could effectively inhibit IFN-Ǆ- or LPS-induced release of HMGB1 
(Li et al. 2011a), a newly identified late mediator of lethal endotoxemia and sepsis (Wang et 
al. 2008;Wang et al. 2009).  However, even at the concentrations (e.g., 100 μg/ml) that 
abrogated LPS-induced HMGB1 release, fetuin-A only partly inhibited LPS-induced TNF 
secretion, suggesting fetuin-A as an effective inhibitor of HMGB1 release. 
 

 

Fig. 1. Exogenous fetuin-A was internalized into cytoplasmic vesicles in macrophage 

cultures. A). Supplementation of exogenous fetuin-A prevented endotoxin-induced fetuin-A 
depletion. Murine macrophage-like RAW 264.7 cells were stimulated with LPS (100 ng/ml) 
in the absence or presence of fetuin-A (100 μg/ml) for 2 h, and cellular fetuin-A levels were 
determined by Western blotting. The relative fetuin-A levels, as a ratio to ǃ-actin, were 
expressed as the mean ± SD of three independent experiments. *, p < 0.05 versus control 
(“+LPS”); #, p < 0.01 vs control (“+LPS”). B) Exogenous fetuin-A was internalized into LC3-
containing cytoplasmic vesicles. GFP-LC3-transfected RAW 264.7 cells were stimulated with 
LPS (200 ng/ml) in the presence of fetuin-A (100 μg/ml) overnight, and immunostained 
with fetuin-A-specific antibodies.  

4. Therapeutic potential of Fetuin-A in infection or injury 

4.1 Carrageenan-induced paw edema 

In an animal model of carrageenan-induced inflammation, intraperitoneal administration of 
fetuin-A (5 to 500 mg/kg) dose-dependently attenuated the development of paw edema 
(Ombrellino et al. 2001). The sialic acid moieties of fetuin-A might be required for its anti-
inflammatory activities. When these sialic acid residues were removed by neuraminidase, 
the resultant asialofetuin-A failed to potentiate the anti-inflammatory activities of spermine 
(Wang et al. 1997) and failed to attenuate carrageenan-induced TNF production in vivo 
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(Ombrellino et al. 2001). In contrast, administration of anti-fetuin-A neutralizing antibodies 
in combination with carrageenan led to significantly increased paw edema, indicating that 
fetuin-A plays an important role in counter-regulating inflammatory responses.  

4.2 Cerebral ischemic injury 

Cerebral ischemia is frequently caused by an obstruction of a cerebral artery. Despite 
advances in acute and prophylactic therapies, stroke represents the leading cause of long-
term disability (500,000-700,000 cases per year), and the third most common cause of death 
(with a mortality rate of 20-25%) in the United States.  

4.2.1 Pathogenesis of cerebral ischemic injury 
Cerebral ischemic injury consists of two stages: primary tissue damage in the ischemic core 
and secondary tissue injury in the surrounding penumbra. The primary injury in the 
ischemic core is primarily mediated by tissue ion (Ca2+ and Na+) overload (Taylor & 
Meldrum 1995) and excitotoxicity (Lee et al. 1999); whereas the secondary injury in the 
surrounding penumbra is partly mediated by proinflammatory cytokines (Figure 2, 
Feuerstein et al. 1998).  
 

 

Fig. 2. Cascade of events leading to primary injury in the ischemic core and secondary 
injury in the surrounding penumbra.  
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4.2.1.1 Primary early injury in the core 

Within seconds to minutes after cerebral ischemia, decreased ATP production leads to 
failure of the Na+/K+-ATPase pump, disruption of membrane potentials, influx of sodium 
and calcium, and subsequent release of excitatory amino acids (such as glutamate, Figure 2). 
Engagement of glutamate with the ionotropic N-methyl-D-aspartate receptor (NMDA) leads 
to Ca2+ influx and activation of damaging proteases (e.g., phospholipase A2, nitric oxide 
synthase, endonucleases, and calpain) that compromise the functional and structural 
integrity of neuronal cells within 20-60 minutes (Figure 2). Early-stage therapeutics that 
block ion (Na+ and Ca2+) channels (Taylor & Meldrum 1995) and glutamate receptors 
(Meldrum 1990) fail in clinical trials, partly because of the impracticalities of administering 
such drugs at a time when those mechanisms are already activated. These failures have 
prompted the search for downstream targets that also mediate ischemic injury.  

4.2.1.2 Secondary late injury in the penumbral zone 

Outside of the ischemic core where cells are destined to die lies a penumbral zone where 
brain cell death continues slowly for hours and even days after the onset of ischemia (Figure 
2). This progressive expansion of cell death in the penumbra (i.e., secondary injury) is 
mediated by ischemia-elicited inflammatory responses. Within a few hours, microglia and 
neurons become activated to produce TNF and other cytokines (Kato et al. 1996;Botchkina et 
al. 1997). Subsequently, polymorphonuclear cells infiltrate into the ischemic brain tissue 
within 12-48 hours (Akopov et al. 1996), followed by an influx of monocytes and 
macrophages over a period of one to several days. Together, these centrally- and 
peripherally-derived cells orchestrate a potentially injurious inflammatory response by 
overproducing various proinflammatory cytokines (Figure 2).    
Many pro-inflammatory cytokines (e.g., TNF and IL-1) contribute to cerebral ischemic injury 
(Buttini et al. 1996;Zaremba & Losy 2001), because inhibition of their production (Meistrell et 
al. 1997;Bertorelli et al. 1998) or activity (Barone et al. 1997;Yang et al. 1999) confers protective 
effects. In addition, an ubiquitous nuclear protein, HMGB1, can be passively released from 
the ischemic core, and spilled into the surrounding periphery (Qiu et al. 2008). In the 
penumbra, it amplifies a potentially injurious inflammatory response by inducing various 
cytokines, chemokines, tissue factor and adhesion molecules (Andersson et al. 2000;Lv et al. 
2009;Fiuza et al. 2003;Treutiger et al. 2003) (Figure 2). Indeed, HMGB1-specific neutralizing 
antibodies and antagonists (e.g., the A box) have been proven protective (Liu et al. 
2007a;Muhammad et al. 2008), supporting a pathogenic role for HMGB1 in ischemic injury.  

4.2.2 Divergent roles of spermine in cerebral ischemic injury 

Another abundant molecule, spermine, can also be passively released by injured cells 
(Paschen 1992). At higher (millimolar) concentrations, spermine could be neuroprotective by 
binding and blocking the NMDA receptor (Araneda et al. 1999;Ferchmin et al. 2000). In 
addition, it counter-regulates expression of inflammatory cytokines (Zhang et al. 2000;Zhang 
et al. 1997;Zhang et al. 1999;Zhu et al. 2009) and scavenges free radicals (Ha et al. 
1998;Adibhatla et al. 2002). However, spermine can be enzymatically converted by 
polyamine oxidases into cytotoxic metabolites (e.g., 3-aminopropanal) (Ivanova et al. 1998), 
which readily spreads and mediates direct cytotoxicities (Ivanova et al. 1998). At low 
(micromolar) concentrations, spermine activates the NMDA receptor (Zubrow et al. 
2000;Ferchmin et al. 2000;Williams 1997), thereby augmenting glutamate-mediated 
neurotoxicity by overactivating Ca2+ fluxes and disturbances of the calcium homeostasis.  
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During cerebral ischemia, brain spermine levels are decreased (Paschen et al. 1992), owing 
largely to an accompanying increase in the enzymatic activity of brain polyamine oxidase 
(Ivanova et al. 1998). The loss of spermine consequently tilts the balance towards 
neurotoxicity through activating the NMDA receptor, and increasing susceptibility to 
oxidative stress as well as excessive inflammatory response.  
 

 

Fig. 3. Divergent roles of spermine in cerebral ischemic injury.  
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expression of proinflammatory cytokines (e.g., TNF) in the penumbra (Wang et al. 2010) 
(Figure 4), suggesting that fetuin-A confers protection partly by attenuating early 
inflammatory responses.    
 

 

Fig. 4. Protective roles of fetuin-A in cerebral ischemic injury and sepsis. 
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functions as a late mediator of endotoxemia and sepsis (Wang et al. 1999;Yang et al. 
2004;Wang et al. 2008;Wang et al. 2009). In murine models of endotoxemia and sepsis, 
HMGB1 is first detectable in the circulation eight hours after the onset of diseases, 
subsequently increasing to plateau levels from 16 to 32 hours (Wang et al. 1999;Yang et al. 
2004) (Figure 4). This late appearance of circulating HMGB1 parallels with the onset of 
animal lethality from endotoxemia or sepsis, and distinguishes itself from TNF and other 
early proinflammatory cytokines (Wang et al. 2001). Therefore, agents capable of selectively 
attenuating systemic HMGB1 accumulation at a late stage may hold potential in the 
treatment of lethal sepsis.   

4.3.2 Dual roles of spermine in experimental sepsis 

In light of the anti-inflammatory activities of spermine in vitro (Zhang et al. 1997;Zhu et al. 
2009), we evaluated the effects of spermine on animal survival in animal models of sepsis. 
Intraperitoneal administration of spermine (1.0 -10 mg/kg, twice daily, for three days) did 
not protect mice against lethal endotoxemia, but confers a dose-dependent protection 
against lethal sepsis. This protection was associated with a significant attenuation of 
systemic accumulation of HMGB1 and other cytokines (e.g., IL-6, KC, MCP-1, MIP-2, TIMP-
1, sTNFRI and sTNFRII) (Zhu et al. 2009).  At a higher dose (100 mg/kg), however, spermine 
decreased animal survival rate from 58% to 38% at 48 h post CLP, and further decreasing it 
to 0% at 72 h post CLP. It is possible that spermine is enzymatically converted by polyamine 
oxidases into cytotoxic metabolites (e.g., 3-aminopropanal), thereby exerting these 
potentially toxic effects when given at higher doses.  

4.3.3 Protective role of Fetuin-A in sepsis 

To understand the role of fetuin-A in systemic inflammatory diseases, we determined the 
influence of fetuin-A disruption on endotoxemic and septic lethality. Although fetuin-A-
deficient C57BL/6J mice were not more susceptible to cerebral ischemic insult than sex- and 
body-matched (male, 27-29 g) wild-type C57BL/6J mice (Wang et al. 2010), they were more 
susceptible to lethal endotoxemic or septic insult (Li et al. 2011a). It suggests that 
endogenous fetuin-A occupies an integral role in host defense against lethal systemic 
inflammation.  
The protective role of fetuin-A was further supported by the observations that 
supplementation with exogenous fetuin-A (20-100 mg/kg) provided a dose-dependent 
protection against lethal endotoxemia (Li et al. 2011a). In an animal model of sepsis, delayed 
administration of fetuin-A (20 - 100 mg/kg), beginning 24 h after the onset of sepsis and 
followed by an additional dose at 48 h post CLP, dose-dependently and significantly 
increased long-term animal survival rates from 45% to 90% (Li et al. 2011a).  

4.3.4 Protective mechanisms 

Supplementation of fetuin-A was associated with significant reduction of circulating 

HMGB1 levels, suggesting that fetuin-A confers protection by inhibiting late-acting 

proinflammatory mediators (Li et al. 2011a). The mechanisms underlying fetuin-A-mediated 

suppression of HMGB1 release may be complex. At the concentrations (100 μg/ml) that 

fetuin-A attenuated LPS-induced HMGB1 release in macrophage cultures, fetuin-A 

stimulated autophagy and impaired LPS-induced elevation of cytoplasmic and nuclear 

HMGB1 levels (Li et al. 2011a). It is presently unknown whether fetuin-A reduces 
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cytoplasmic HMGB1 levels by stimulating its degradation in an autophagy-dependent 

fashion, as what has been shown for other HMGB1 inhibitors such as EGCG, the major 

catechin of Green tea (Camellia sinensis) (Li et al. 2011b).  

Accumulating evidence has suggested the possibility that fetuin-A functions as a negative 
regulator of HMGB1 release during lethal systemic inflammation (Figure 4). First, the time-
dependent decrease of circulating fetuin-A levels was accompanied by parallel but opposite 
changes – a time-dependent increase - of circulating HMGB1 levels in animal models of 
endotoxemia (Wang et al. 1999) or sepsis (Yang et al. 2004). Second, disruption of fetuin-A 
expression led to elevation of serum HMGB1 levels in endotoxemia and sepsis (Li et al. 
2011a). Lastly, supplementation of fetuin-A resulted in significant reduction of circulating 
HMGB1 levels during endotoxemia and sepsis (Li et al. 2011a).  
Nevertheless, the current study can not exclude other alternative mechanisms by which 
fetuin-A confers these protective effects. For instance, fetuin-A may be capable of binding 
bacteria (Chmiela et al. 1997;Dubreuil et al. 2002), thereby affecting macrophage-mediated 
pathogen elimination. Furthermore, fetuin-A may facilitate macrophages-mediated 
ingestion and elimination of apoptotic neutrophils (Lord 2003;Jersmann et al. 2003), thereby 
preventing secondary necrosis and passive leakage of injurious molecules (e.g., proteases, 
reactive oxygen species, and HMGB1) (Bell et al. 2006). 

5. Conclusions 

A liver-derived acute phase protein, fetuin-A, appears to be distinctly regulated by different 
proinflammatory mediators. A previously under-appreciated protective role for fetuin-A in 
injury and infection has been suggested by recent studies. Fetuin-A is capable of crossing 
the blood-brain barrier, inhibiting early inflammatory response in animal models of cerebral 
ischemia, thereby conferring a short-term neuroprotection against ischemic injury.   
Disruption of fetuin-A expression renders mice significantly more susceptible to lethal 
endotoxemia or sepsis; whereas repetitive administration of fetuin-A confers a dose-
dependent and long-lasting protection in animal models of lethal endotoxemia and sepsis. 
Thus, fetuin-A occupies protective roles against injury- or infection-elicited inflammation.  
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