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1. Introduction

In eighties wavelets came up as the time-frequency revolution in signal processing. In 1989
Mallat proposed the fast Discrete Wavelet Transform (DWT) algorithm to decompose a signal
using a set of quadrature mirror decomposition filters, and which have respective band-pass
and low-pass properties specific to each mother wavelet (Mallat, 1999). Since this period
Wavelets have been applied in a variety of fields including fluid dynamics, engineering,
finance geophysics, study of musical tones, image compressionand de-noising just to name
few. In addition, it has been extensively used in medicine because of the irregularities inherent
to biological signals.

In the discrete wavelet analysis the information stored in the wavelets coefficient is not
repeated, it allows the complete regeneration of the original signal without redundancy.
This property has motivated much of the effort for development of wavelet-based signal
compression algorithms, particularly for ECG signals compression techniques are important
to enlarge storage capacity an improve methods of ECG data transmission. DWT
removes redundancy in the signal and provides a high compression ratio and high quality
reconstruction of ECG signal.

The bioelectric signals contain noise originated by devices or interference of the network
that hardly can be eliminated by conventional analogous filters. DWT is a technique to
filtrate signals with low distortion to eliminate noise. This process can be applied to different
physiology signals, where signals with additive noise are decomposed using the DWT
and a threshold is applied to each of the detail coefficient levels. All coefficients with an
absolute value greater than the threshold are thought to be part of information and those
below the threshold are presumably derived from noise. The noise coefficients can be set
to zero and a noise-free signal can then be reconstructed and used for signal detection.
Recently, several wavelet-based methods have been used for unsupervised de-noising and
detection of data with low signal-to-noise ratio. In particular, DWT has been applied in the
quantification of human sympathetic nerve signal activity to discriminate action potentials.
Wavelet decomposition effectively filters the nerve signal into several frequency sub-bands
while preserving its temporal structure. Each sub-band of wavelet processing decorrelates
successive noise-related values and compares progressively more dilated versions of a general
spike shape to each point in the signal. This process can make easier the detection of action
potentials by separating the signal and noise using their distinct time-frequency signatures.
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Discrete Wavelet analysis corresponds to windowing in a new coordinate system, in which
space and frequency are simultaneously localized; this property can be helpful in pattern
extraction. Wavelets as an alternative tool to analyze non-stationary signal have been applied
to ECG delination, to detect accurately the different waves forming the entire cardiac cycle,
especially in areas of limited perfomance of of current techniques like QT and ST intervals, P
and T-wave recognition, and to clasify ECG waves in different cardiopatologies, identifying
ECG waveforms from different arrhythmias, or discriminating between normal and anormal
cardiac pattern. In addition, DWT is able to detect specific detailed time-frequency
components of ECG signal, for instance, the registers which are sensitive to transient ischemia
and eventual restoration of electrohysiological funtion of the myocardial tissue. Moreover,
methods for analysing heart rate variability using wavelet transform can be used to detect
transient changes without losing frequency information. Several authors have successfully
demonstrated the utility of the DWT in time-varying spectral analysis of heart-rate variability
during dynamic cardiovascular stimulation.

2. Discrete Wavelet Transform

DWT is a fast algorithm for machine computation, like the Fast Fourier Transform (FFT), it
is linear operation that operates on a data vector, transforming it into a numerically different
vector of the same length. Also like the FFT, the DWT is invertible and orthonormal. In the
FFT, the basis functions are sines and cosines. In the DWT, they are hierarchical set of “wavelet
functions” that satisfy certain mathematical criteria (Daubechies, 1992; Mallat, 1989b) and are
all translations and scalings of each other.

There is an even faster family of algorithms based on a completely different idea, namely
that of multiresolution analysis, or MRA (Mallat, 1989a), then the whole construction may
be transcripted into a pair of quadrature mirror filters, defined from the underlying wavelet
function, and both are applied to the signal and down-sampled by a factor of two. This process
splits the signal into two component, each of half the original length, with one containing
the low-frequency or “smooth” information and the other the high-frequency or “difference”
information. The process is performed again on the smooth component, breaking it up into
“low-low” and “high-low” components and it is repeated several times.

DWT achieves a multiresolution decomposition of x,, on | octaves labelled by j = 1,...,].
It is precisely this requirement for a multresolution-hence hierarchical- structure that makes
fast computation possible. The requirement for a multiresolution computation can be stated
as follows: Given some signal, at scale j, one decomposes it in a sum or details, at scale j + 1
(the true wavelet coefficients), plus some residual, representing the signal at resolution j + 1
(twice as coarse). A further analysis at coarser scales involves only the residual.

Consider two filter impulse responses g(#) (corresponding to some low-pass interpolating
filter-the scaling function) and h(n) (corresponding to some a high-pass filter-the discrete
wavelet) (eq. 1 and 2). The downsampled outputs of first low-pass and high-pass filters
provide the approximation, and the detail, respectively. The first approximation is further
decomposed and this process is continued until all wavelet coefficients are determined.

]+1 Zh )gln — 2Kk] 1)
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The wavelets and scaling sequences are obtained iteratively as i.e., one goes from one octave
j to the next (j + 1) by applying the interpolation operator

f(n) = ;f(")g(" —2k) ©)

Which should be thought of as the discrete equivalent to the dilation f(t) — 2~ 1/2f(t/2).

Consider, for example, the computation of wavelet coefficients c ik for a fixed j, the coefficient
is the result of filtering the input signal by /;(n) and decimating the output by the suppression
of one every 2/th sample. Now the z-transform of filter hj(n) can be easily deduced from

equation 1, which reads Hj1(z) = Hj(zz)G(z) in z-transform notation. We obtain:

Hjsi(2) = G(2)G(2%) ... G2 HH() @
and similarly for g;(n),

Gjs1(2) = G(2)G(z%)... G(z¥) ®)

The computations of a DWT are easily reorganized in form of binary tree, where the
decomposition may also be truncated at any level of the process before an average signal
of length of one sample is reached. In any event, the dyadic DWT consists of the set of detail
signals generated at each level of the transform, together with the average signal generated at
the highest level (shortest length signals) of the transform.
A remarkable feature of many useful wavelet transforms, is that they obey a perfect
reconstruction theorem. That is the dyadic DWT may be inverted to recover the original
signal exactly. The inversion process is carried out first by upsampling (or expanding) the
highest level detail and average signals. Upsampling is carried out by inserting zeros between
samples of the signal to be upsampled. Then, the upsampled average and detail signals are
run through synthesis filters and added together. The sum signal is the average signal for
the next lowest level of the wavelet transform. This process is carried out at each lower level
until the original signal is recovered at the lowest level as the zero level average signal (Kaiser,
1994; Mallat, 1998; Strang & Nguyen, 1997).
The computed wavelet coefficients provide a compact representation that shows the energy
distribution of the signal in time and frequency. We assume that the signals are stationary
within each short segment in time. Thus within the segment, the variance of the wavelet
transform wx(t) and the wavelet function ¢(t) can be considered as a value unrated to ¢,
written as,

E[xp(t)? = E[(x+ )2 ()] = o3 ©)
And in the frequency domain,
A= [ siwlp)Pde )

Furthermore, the spectral components of interest may be located anywhere in the frequency
axis, even in the neighborhood of the cross-point between two adjacent frequency bands.
At this location, the spectral component is assigned with a small gain signalling, and low
detection sensitivity. This problem can be approached by considering the cross-correlation
between wx;(t) and wx;1(t), Rwxj, wxj1 = E[wx;(t + 1)wxj,1(t)] and the autocorrelation
of the signal.

www.intechopen.com



6 Discrete Wavelet Transforms - Biomedical Applications

3. Discrete Wavelet Transform in biomedical research

Wavelet Transform has been proposed as an alternative way to analyze the non-stationary
biomedical signals, which expands the signal onto the basis functions. The wavelet method
act as a mathematical microscope in which we can observe different parts of the signal by just
adjusting the focus.

A conventional application of wavelet methods to processing of a medical waveform uses
a wavelet transform based on the application of a single wavelet, rather than a basis set
constructed from a family of mathematically related wavelets. Again, the choice of a wavelet
with appropriate morphological characteristics relative to the physiological signal under
consideration is crucial to the success of the application. In the following sections will be
introduced different uses of DWT in cardiology research, with interesting applications such
as de-noising and compression of medical signals, electrocardiogram (ECG) segmentation and
feature extraction, analysis of heart rhythm variability, and the analysis of different cardiac
arrhythmias.

4. Signal compression

The compressibility of a sampled signal is the radio of the total area of time-frequency plane
(N, for a signal sampled at N) divides by the total area of the information cells. It is possible
to automatically analyze signals by expanding them in the best basis, then drawing the
corresponding time-frequency plane representation.

The DWT is both “complete” and has “zero redundancy”, which means that all the signal
information is contained in the resulting transform and none is duplicated between transform
coefficients. By converting the signal into its DWT coefficients and then removing all except
those containing the most pertinent signal information, the resulting transform is much
smaller in size, which provides a good way of compressing a signal. Performing an “inverse
transform” on the remaining components recreates a signal that very nearly matches the
original. This is the basis of compression algorithms that can be applied to biomedical images
and signals, such as in the development of effective ECG data compression. Increasing use of
computerized ECG processing systems requires effective ECG data compression techniques
which aim to enlarge storage capacity and improve methods of ECG data transmission over
internet lines. Moreover ECG signals are collected both over long periods of time and at
high resolution. This creates substantial volumes of data for storage and transmission. The
fundamental reason that ECG compression is regarded as a difficult problem is that the
ECG waveform contains clinically significant information on a wide variety of time scales.
Data compression seeks to reduce the number of bits of information required to store or
transmit digitized ECG signals without significant loss of signal quality. Moreover, some ECG
compression algorithms have been used only for strictly limited diagnostic objectives, as in
Holter monitors. Another objective is to develop a high-fidelity compression algorithm that
would not impair later physician diagnoses.

An early paper suggested the wavelet transform as a method for compressing both ECG and
heart rate variability data sets (Crowe et al., 1992). Thakor et al. compared two methods
of data reduction on a dyadic scale for normal and abnormal cardiac rhythms, detailing
the errors associated with increasing data reduction ratios (Thakor et al., 1993). Using
DWT and Daubechies D10 wavelets, Chen et al. compressed ECG data sets resulting in
compression ratios up to 22.9:1 while retaining clinically acceptable signal quality, with an
adaptive quantization strategy which allows a predetermined desired signal quality to be
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achieved (Chen & Itoh, 1998). Miaou et al. (Miaou & Larn, 2000) also propose a quality driven
compression methodology based on Daubechies wavelets and later on biorthogonal wavelets
(Miaou & Lin, 2002), this algorithm adopts the set partitioning of hierarchical tree (SPIHT)
coding strategy.

5. Wavelet Transform based filtering “De-noising”

The noise present in the signal can be removed by applying the wavelet shrinkage de-noising
method while preserving the signal characteristics, regardless of its frequency content.
Wavelets have the added advantage that the resulting expansions are orthogonal or energy
preserving, allowing to compare an adapted expansion to signals in order to minimize
the cost of representation. Such adapted decompositions perform compression and
analysis simultaneously. It is possible to design an idealized graphical presentation of the
time-frequency information obtained by such a best adapted wavelet analysis, and for such
presentation is possible to recognize and extract transient features. The small components
in the analysis may be treated as noise and discarded, where an iterative algorithm always
produces the best decomposition, at the cost of many more iterations plus more work for
each iteration. Mallat’s stopping criterion is to test the amplitude ratio of successive extracted
amplitudes; this is a method of recognizing residuums which have the statistics of random
noise.

Consider the standard univariate regression: y; = f(x;) + €;, where i = 1,...,n, and €; are
independent N (0, (72) random variables; and f is the “true” function. We can reformulate
the problem in terms of wavelet coefficients: @y = wj + €j, , where j is the level (j =

0,..,j — 1), and k, the displacement (k = 0,..,2)). It is often reasonable to assume that
only a few large coefficients contain information about the underlying function, while small
coefficients can be attributed to noise. Shrinkage consists in attenuating or eliminating the
smaller wavelet coefficients and reconstructing the profile using mainly the most significant
wavelet coefficients and all the scaling coefficients. Several shrinkage approaches have been
proposed. For example, the “hard” threshold approach selects coefficients using a keep or
kill policy, nevertheless using “soft” thresholding, if the magnitude of the wavelet coefficient
is greater than (less than, respectively) the threshold, the coefficient is shrunk toward zero
by an amount that depends on how large the magnitude of the coefficient is (set to zero,
respectively). Donoho and Johnstone proposed the “universal” threshold, A = o/2logn, and
showed that it performs very well in both hard and soft thresholding. Thresholds can also
be chosen based on the data using a hypothesis testing procedure (Alshamali & Al-Fahoum,
2003; Donoho & Johnstone, 1994). Data-adaptive thresholds might become very important in
analyzing molecular biological data because hypothesis testing procedures can be used to test
the appropriateness of various thresholds to the data under different biological assumptions
(Lio, 2003). Finally, it is worth mentioning that several authors have proposed Bayesian
thresholds and have reported interesting results (Abramovich et al., 2009).

This evolution in electrocardiographic start with the algorithms for noise reduction in ECG
signals using the dyadic wavelet transform with wavelet-based and wavelet packet-based
thresholding methods for removing noise from the ECG (Kishimoto et al., 1995; Tikkanen,
1999).

More recently, Nikolaev et al have suppressed electromyogram (EMG) noise in the ECG using
amethod incorporating wavelet transform domain Wiener filtering (Nikolaev et al., 2001), this
method resulted in an improvement in signal-to-noise ratio of more than 10 dB.
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In addition, the non-invasive blood pressure artifact removal algorithm makes use of DWT.
The system used in most patient monitors measures the small fluctuations in pressure in a
blood pressure cuff (applied to one of the patient’s limbs) to obtain a determination of the
patient’s systolic and diastolic pressure. Usually the mean arterial pressure and pulse rate
are obtained as well. These pressure fluctuations are usually termed “oscillometric pulses”
(Geddes & Badylak, 1991). The wavelet-based artifact elimination algorithm is based on
the observation that the dyadic DWT puts the physiologic oscillometric waveform in a very
different region of the transform plane than the signal components attributable to artifact. The
modified DWT may then be inverted to yield a reconstruction of the oscillometric signal with
artifact substantially reduced. The reconstructed oscillometric signal may then be used as an
input to a pressure determination algorithm in the usual way for the measurement of desired
patient pressure values.

6. ECG signal parameter extraction

The ECG registers a measure of the electrical activity associated with the heart. The ECG is
measured at the body surface and results from electrical changes associated with activation
first of the two small heart chambers, the atria, and then of the two larger heart chambers,
the ventricles. The contraction of the atria manifests itself as the P wave in the ECG
and contraction of the ventricles produces the feature known as the QRS complex. The
subsequent return of the ventricular mass to a rest state repolarization produces the T wave.
Repolarization of the atria is, however, hidden within the dominant QRS complex. Analysis
of the local morphology of the ECG signal and its time varying properties has produced a
variety of clinical diagnostic tools.

To use ECG signals as identity verification, a real-time detection of the ECG characteristics
is needed. With the real-time extraction of ECG characteristics, we could verify different
individual. The basic objects of the analysis are a P-wave, a QRS-complex, a T-wave, a P-Q
interval, a S-T segment, and a Q-T interval (see Fig. 1).
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Fig. 1. Normal ECG delineation

Producing an algorithm for the detection of the P wave, QRS complex and T wave in an ECG
is a difficult problem due to the time varying morphology of the signal subject to physiological
conditions, moreover the localization of wave onsets and ends is much more difficult, as
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the signal amplitude is low at the wave boundaries and the noise level can be higher than
the signal itself. A number of wavelet-based techniques have been proposed to detect these
features. Senhadji et al (1995) compared the ability of three different wavelets transforms
(Daubechies, spline and Morlet) to recognize and describe isolated cardiac beats (Senhadji &
Wendling, 2002). Sahambi et al. employed a first-order derivative of the Gaussian function as
the wavelet for the characterization of ECG waveforms (Sahambi et al., 1997a;b). Moreover,
wavelet-based QRS detection methods have been suggested by a variety of groups including
Li et al (1995) who proposed a method based on finding the modulus maxima larger than a
threshold obtained from the pre-processing of preselected initial beats, this threshold can be
updated during the analysis to obtain a better performance (Li et al., 1995).

Kadambe et al. have described an algorithm which finds the local maxima of two consecutive
dyadic wavelet scales, and compared them in order to classify local maxima produced by R
waves and by noise. Kadambe et al. report a sensitivity of 96.84% and a positive predictive
value of 95.20% when tested on a limited data set (four 30 min tapes acquired from the
American Heart Association (AHA) database) (Kadambe et al., 1999). Other work has been
undertaken by Park et al (1998) using a wavelet adaptive filter to minimize the distortion
of the ST-segment due to baseline wanderings. In a subsequent paper by Park et al (2001),
a wavelet interpolation filter (WAF) is described for the removal of motion artefacts in the
ST-segment of stress ECGs (Park et al., 2001). Furthermore, Martinez et al (2004) also utilize
the algorithm of Li et al applying a dyadic wavelet transform to a robust ECG delineation
system which identifies the peaks, onsets and offsets of the QRS complexes, and P and T
waves. The QRS detector obtains a sensitivity and a positive predictivity of 99.8% in a very
well-known MIT-BIH Arrhythmia Database (Martinez et al., 2004).

7. Heart rate variability

Rather than consider the local morphology of the whole ECG signal, many researchers have
focused on the longer term temporal variability of the heartbeat, the analysis of which allows
an assessment of autonomous nervous system activity. The analysis of heart rate variability
(HRV) requires the sequence of timing intervals between beats, taken between each R point
on the QRS complex. This RR interval can be plotted against time to give the RR time
series. In normal practice, however, ectopic beats are removed from the RR series leaving
only normal sinus beats: the NN time series. It is this modified time series that is used
in the analysis of HRV. The minute fluctuations present in the NN intervals are used for
assessing the influence of the autonomic nervous system components on the heart rate. Long
range correlations and power law scaling have been found through the analysis of heartbeat
dynamics. The heart rate and rhythm is largely under the control of the autonomic nervous
system. Traditional spectral analysis of HRV has been reported to aid the understanding
of the modulatory effects of neural mechanisms on the sinus node. There are three main
spectral components in a traditional spectral calculation, they are generally classed as: very
low frequency (VLF) ranging from 0.003 to 0.04 Hz, low frequency (LF) ranging from 0.04
to 0.15 Hz and high frequency (HF) ranging from 0.15 to 0.4 Hz components. In addition,
sometimes an ultra low frequency (ULF) is defined as spectral components with frequencies
less than 0.003 Hz. The relative contribution of vagal and sympathetic modulation of the
heart rate is attributed to the distribution of spectral power in these bands. The most common
of the techniques rely on the accurate determination of the temporal location of the R wave
based on signal matched filters or time-frequency decomposition methods. Over recent years,
a number of groups have attempted to use wavelet-based methods to gain additional insight
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into the mechanisms controlling heart rate variability. The wavelet transform is partitioned
into the HF, LF and VLF regions whereby temporal-spectral characteristics of the surface may
then be investigated. Thurner et al have employed both Daubechies D10 and Haar wavelets
in the analysis of human heartbeat intervals. They found that, at distinct wavelet scales,
corresponding to the interval 16-32 heartbeats, the scale-dependent standard deviations of
the wavelet coefficients could differentiate between normal patients and those with heart
failure. Significantly, they report 100% accuracy for a standard 27 patient data set (Thurner
etal., 1998). Further development of the technique is detailed in subsequent papers (Heniford
et al., 1998; Seidensticker et al., 1998; Wiklund et al., 2011). Ivanov et al investigated the ECG
signals acquired from subjects with sleep apnea, by sampling at an a scale equivalent to 8
heartbeats, they performed a local smoothing of the high-frequency variations in the signal
in order to probe patterns of duration in the interval 30-60 s. The authors used the data to
characterize the nonstationary heartbeat behaviour and elucidate phase interactions (Ivanov
etal., 1996). Furthermore, this type of analysis has been applied to study myocardial ischemia,
where a method for analysing HRV signals using wavelet transform was applied to obtain
a time-scale representation for VLF, LF and HF bands using the orthogonal multiresolution
pyramidal algorithm. Comparing a normality zone against the ischaemic episode, it was
found a statistical significant increase in the LF and HF bands in the ischaemic episode,
this index can be useful for the assessment of dynamic changes and patterns of HRV during
myocardial ischaemia (Gamero et al., 2002).

8. Cardiac arrhythmias

A number of wavelet-based techniques have been proposed for the identification,
classification and analysis of arrhythmic ECG signals. In 1997, Govindan described an
algorithm for classifying bipolar electrograms from the right atrium of sheep into four groups:
normal sinus rhythm, atrial flutter, paroxysmal atrial fibrillation and chronic atrial fibrillation.
In this method, it was used a Daubechies D6 wavelet to preprocess the ECG data prior
to classification using an artificial neural network. They found paroxysmal AF the most
difficult to classify with a 77% =+ 9% average success rate and normal sinus rhythm the easiest,
achieving 94% =+ 8% (Govindan et al., 1997). Using a raised cosine wavelet transform, Khadra
et al undertoke a preliminary investigation of three arrhythmias: ventricular fibrillation (VF),
ventricular tachycardia (VT) and atrial fibrillation (AF) Khadra et al. (1997), they developed
an algorithm based on the scale-dependent energy content of the wavelet decomposition
to classify the arrhythmias, distinguishing them from each other and normal sinus rhythm.
Zhang et al proposed a novel arrhythmia detection method, based on a wavelet network, for
use in implantable defibrillators, their system, originally developed as a model to identify
relationships between concurrent epicardial cell action potentials and bipolar electrogram,
detects the bifurcation point in the ECG where normal sinus rhythm degenerates into a
pathological arrhythmia (ventricular fibrillation) (Zhang et al., 1999). Al-Fahoum and Howitt
proposed a radial basis neural network for the automatic detection and classification of
arrhythmias which employs preprocessing of the ECG using the Daubechies D4 wavelet
transform, they reported 97.5% correct classification of arrhythmia from a dataset of 159
arrhythmia files from three different sources, with 100% correct classification for both
ventricular fibrillation and ventricular tachycardia (al Fahoum & Howitt, 1999). Moreover, it
has been already shown its potential for the detection of ventricular late potentials (Dickhaus
et al., 1994; Khadrea et al., 1993; Meste et al., 1994).
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Morlet et al presented a Morlet wavelet-based method for the discrimination of patients prone
to the onset of ventricular tachycardias (VTs), they found that the detection of strings of local
maxima of the wavelet transform vector at or after 98 ms after the QRS onset point was
a reasonable criterion for VT risk stratification in post-infarction patients. They reported
achieving 85% specificity at 90% sensitivity for their patient group (Morlet et al., 1993).
Englund et al studied the predictive value of wavelet decomposition of the signal averaged
ECG in identifying patients with hypertrophic cardiomyopathy at increased risk of malignant
ventricular arrhythmias or sudden death (Englund et al., 1998), wavelet analysis used in
their study was undertaken subsequent to signal averaging of the beats. Thus intermittent
local or transient aspects of the ECG can be lost to its interrogation. A later study by
this group evaluated a number of wavelet decomposition parameters for their potential for
risk stratification of patients with idiopathic dilated cardiomyopathy (Yi et al., 2000). They
found that wavelet analysis was superior to time domain analysis for identifying patients at
increased risk of clinical deterioration.

In addition, different wavelet analysis have been applied to Atrial fibrillation (AF). It is
the most frequently found sustained cardiac arrhythmia in clinical practice. It is the most
common cause of embolic stroke, and is associated with a doubling of overall mortality
and morbidity from cardiovascular disease (Benjamin et al., 1998; Kannel et al., 1982). AF
is characterized by an abnormal excitation of the atria, where the normal and regular atrial
activation is substituted by several coexisting wavefronts that continuously depolarize the
atrial cells (Allessie et al., 1995; Fuster et al., 2006). As a result, atrial activation is chaotic and
disorganized, and consequently the atria are not able to be contracted in a regular rhythm.
On the surface electrocardiogram (ECG), P waves are no longer visible, being replaced by
rapid oscillations or fibrillatory waves that vary in size, shape, and timing (Allessie et al.,
1995; Bollmann et al., 1999). The ventricular response depends on the electrophysiological
properties of the atrioventricular node, what results in an irregular and rapid ventricular
rhythm. Fig. 2 represents an example of normal sinus rhythm and AF episodes.
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Fig. 2. Examples of normal sinus rhythm and AF episodes.
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Duverney et al have developed a combined wavelet transform-fractal analysis method for
the automatic detection of AF from heart rate intervals (Roche et al., 2002). After training
their method on healthy sinus rhythm and chronic AF ECGs, they achieved 96.1% sensitivity
and 92.6% specificity for discriminating AF episodes in paroxysmal AF. A technique for the
explanation of AF from within an ECG signal using a modulus maxima de-noising technique
(Addison et al., 2000), where the modulus maxima lines, at this scale with a high proportion
of the total energy within this scale are selected, are followed across scales and subtracted to
leave a residual signal associated with both system noise and, more importantly, atrial activity.
This time-frequency partitioning of the signal results in two components: one (1) containing
combined low and high frequency components that correspond to large scale features in the
signal, and a second (2) containing the remaining high frequency components that correspond
to small scale AF features and noise. In practice, most applications are concerned with signal
de-noising and hence the retention of component (1).

Furthermore, a study was conducted to analyze ECG signals from patients with persistent
AF in order to extract reliable parameters to predict early AF recurrence after successful
electrical cardioversion. The technique employed for ECG analysis was based on the wavelet
transform, which have been successfully employed to solve other ECG problems. DWT
analysis with biorthogonal family was applied, and the energy from different scales of detail
coefficients of the descomposition was evaluated, the wavelet coefficients output at each
subband may provide important information of the ECG signal, and they could be used
in combination with appropriate statistical analysis tools in order to predict the risk of AF
recurrence after successful electrical cardioversion. From this analysis, standard deviations
of the coefficients in each subband were obtained, but its significance was lower than the
cited parameter. The calculus of the ratio of the energy between different scales of the
decomposition resulted statistically significant, however its capacity of prediction resulted
lower than the continuous wavelet transform analysis, and the higher differences were
obtained in the variable energy (eq. 6) in relation to some detail coefficients and the ratio
between some scales of the decomposition (Cervigén et al., 2007). In addition, the effect of
anaesthetic agents in restoration rhythm procedures during AF has not been investigated.
It was evaluated the effects of a widely used anaesthetic agent (propofol) in the fibrillation
patterns. Intra-atrial recordings belong patients diagnosed with AF were analyzed “before”
(baseline) and “during” anaesthetic infusion. The goal of this study is to characterize the
variation in atrial properties along the atria in both states. The wavelet variance of a time
series on a scale by scale basis along the DWT decomposition, hence has considerable appeal
when physical phenomena are analyzed in terms of variations operating over a range of
different scales. As mother wavelet was used the haar wavelet and discrete wavelet transform
partitioned the variance of a signal over 7 scales. The proposed methodology provide an
additional approach to the understanding of the role of the anaesthetic, showing a decrease in
the variance inter-scales during the anaesthetic infusion in the right atrium, with the opposite
effect in the left atrium (i.e. a increase in the organization degree) (Cervigén et al., 2008).

9. Conclusions

Signal processing of the ECG has been already demonstrated its effectiveness to solve some
clinical problems. In that sense, wavelet transform has emerged over recent years as a
key time-frequency analysis and coding tool for the ECG. Indeed, its ability to localize
simultaneously local spectral and temporal information within a signal. In addition, the
fact that the wavelet transform exhibits different window sizes depending on the frequency
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band —broad at low frequencies and narrow at high frequencies— leads to an optimal
time-frequency resolution in all frequency ranges. The coefficients output by the wavelet
transform at each subband may provide important information of the ECG signal, and
they could be used in combination with appropriate statistical analysis tools in order to
predict different arrhythmias. It has been already shown its potential for feature extraction
and discrimination between normal and abnormal cardiac patterns, detection of ventricular
late potentials, characterization of beat-to-beat fluctuations in the heart rate under diverse
physiological conditions, study of cardias arrhytmias, such as he risk of AF recurrence after
successful electrical cardioversion etc.

In addition, its discrete form, the DWT provide the basis of powerful methodologies for
partitioning pertinent signal components which serve as a basis for potent compression
strategies.

The DWT has interesting mathematics and fits in with standard signal filtering and encoding
methodologies. It produces few coefficients, where it is possible to recover the original signal,
during the inverse transform process, without any loosing of energy. However, it exhibits
non-stationarity and coarse time-frequency resolution.

DWT analysis of different signals has made possible the identification of pertinent features
within the transform difficult, if not practically impossible. The non-stationarity of the DWT
can also cause problems in terms of repeatability and robustness of the analysis, unless it
particularly lends itself to an ensemble averaged method.

In conclusion, wavelet transform can be a helpful instrument to know more about the
mechanisms of biological structure, it has been shown that inside biomedical signals, such as
ECG signal contains hidden information that a tool such as wavelet transform could extract.
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