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1. Introduction

The problem of action selection can be identified in ethology as the behavior switching
problem. Here, a behavioral repertoire is chosen and then one behavioral module has to be
selected until completion or its execution proves ineffective. In behavior based robotics this
approach has been widely employed [Arkin (1998)], where an action selection mechanism
(ASM) is used to arbitrate between several behavioral modules. The ASM helps in finding an
immediate response to the basic question of intelligent systems of what to do next based on
its previous sensory perception. However, it is important to notice that the right decision has
to be made at the right time [Maes (1990)]. Therefore, some researchers in robotics consider
important to develop a model able to decide the right time for making the right decision
when solving a particular task. On the other hand, some other researchers are interested
in providing a complete solution for the task to be solved. For example Nolfi proposes the
evolution of a can-collection task using different motor neurons, and providing some sort of
selector, but integrating the solution as a general behavior [Nolfi (1997)]. Potential problems
related to the artificial separation of behavioral modules and to the process fusion of the
behaviors support the development of general behavior. Also pointed out by the work of [Seth
(1998). However, the works of [Kyong Joong & Sung Bae (2001); Yamauchi & Beer (1994)] offer
an incremental solution for combining different architectures for solving an entire task. Here,
the full integration of evolution with a central action selection model is the main interest.
In this work, the behavioral modules are developed as separate components that can be
integrated by the use of a selector. These modules can be implemented as neural networks,
programming routines, or a mixture of both. The neural controllers may be optimized by
the use of artificial evolution. An important feature of action selection is the emergence
of opportunistic behavior [Brooks (1989)] that is not coded in the behavioral modules. We
have based our current implementation on a model of central action selection that uses
sensor fusion (CASSF) to build a uniform perception of the world in the form of perceptual
variables [Montes González, Marín Hernández & Ríos Figueroa (2006)]. However, in this
implementation we added the use of two simulated motivations which correspond to fear
and hunger. Also, the model is able to switch behaviors in normal and lesioned conditions
(not explored in this paper). At this point we have decided to use staged evolution of
behavior and then coevolution to adjust the weights of the neural controller for the selection
mechanism. Hence, the evolutionary robotics approach was used in the design of three
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2 Biomimetic

exploration behavioral patterns: one for finding walls, another to locate corners, and other for
locating cylinders. Then, due to its sequential nature the design of the collection and deposit
behavioral patterns was implemented as algorithmic routines.
The optimization of action selection and behavioral modules present differences with a
standard hand-coded implementation. For instance, in a previous work hand-coded selection
produced regular patterns of behavior [Montes González, Santos Reyes & Ríos Figueroa
(2006)]. Non-regular patterns of behavior were produced using coevolution to optimize both
behavior and selection [Montes González (2007)]. However, instability in the system was
avoided by the execution of selection in a non-motivated environment. Here, we show how
motivated behavior can be optimized by the use artificial evolution.

2. Action selection and evolutionary robotics

The action selection problem is related to granting control of available actuators to behavioral
modules while the stimuli that activated them is valid or wears out. In the vertebrate brain,
at specific loci, specialized centers of selection can be identified. One of them is the basal
ganglia, and recent works support the idea of these nuclei playing an important role in action
selection [Prescott et al. (2006)]. The basal ganglia act as a relay station in the planning and the
execution of movements (behavior); hence gathering information from the cortex and motor
cortex. The basal ganglia are able to mediate cognitive and muscular processes. Not only
serves the basal ganglia as an important center of action selection also in cooperation with the
cerebellum and the sensory cerebrum; all of them are able to veto muscular contraction by
denying the motor areas sufficient activation. In turn, these individual motor elements form
more complex patterns, which can be thought as essential elements in the development of
intelligence [Bares & Rektor (2001)]. The development of intrinsic basal ganglia circuitry with
evolvable behavioral modules has already been explored in [Montes González (2007)].
The use of artificial evolution in robotics requires an implementation based on Evolutionary
Algorithms. Outstanding representatives of the Evolutionary Algorithms are Genetic
Algorithms (GAs), Evolution Strategies, Genetic and Evolutionary Programming and
Coevolution [Bäck (1996); Santos & Duro (2005)]. However, in this study the use of GAs
[Holland (1975)] and Coevolution [Ebner (2006)] were preferred. In the existing literature
examples of evolutionary algorithms are provided for the modeling of elementary behavior
controllers [Floreano & Mondana (1996); Seth (1998); Yamauchi & Beer (1994)]. The use of
neural networks with genetic algorithms is a common approach for providing a solution to
the modeling of robot behavior [Nolfi & Floreano (2000)]. The use of this approach requires the
right choice of a topology and the neural weights to control the robot. Evolutionary Robotics
(ER) employs several iterations to refine random individuals that are neural controllers for
modelling autonomous robot tasks that are solved in semi-controlled environments. In
turn, individuals form a changing population that survives across generations according
to their adaptability (fitness) to solve a particular task. Therefore a population of these
controllers forms the elementary building blocks [Goldberg (1989)] that will serve as the
necessary leverage to increment the overall fitness population. Parameter interactions in the
implementation of a robot controller epistatically increment the chances to find near-optimal
solutions. Most of the times a single objective evaluation function is employed in ER due to
the fact that the resultant robot behavior comes from a dynamic system made with the robot
and its environment [Doncieux & Mouret (2010)]. However, in evolutionary computation is
possible to simultaneously optimize several objectives without aggregating them as a single
monolithic fitness function [Deb (2001)]. Recent research relies on the concept of domination
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The Coevolution of Behavior and Motivated Action Selection 3

and generates the so-called Pareto front to bootstrapping a light-seeking robot behavior
[Mouret & Doncieux (2009)].
In this paper we use a single objective function to shape a global behavior to be achieved. As
a consequence the use of GAs is sufficient to model complex robot behavior that provides
a solid approach for starting to work on ER. In this approach is important to notice that
tuning the obstacle avoidance behavior, which is shaped and nearly optimized by the use
of the GA, ultimately depends on the right choice of the fitness function [Reynolds (1994)].
Furthermore, evolution not only optimizes specific features of individual neural controllers;
also pairs or groups of individuals can be evolved together. The evolution of one individual
can be affected by the change of other related individuals in the group [Lapchin & Guillemaud
(2005)]. The latter approach has been identified, as its biological counterpart, as coevolution
that can be cooperative or competitive. A cooperative strategy can be developed to achieve a
common task (e.g. pushing objects, solving a common task), whereas in a competitive strategy
individuals have to struggle to assimilate some scarce resources (e.g. prey and predator,
securing of food stashes). In biology diffuse coevolution has been referred to species evolving
in response to a number of other species, which in turn are also evolving in response to a set
of species [Ridley (2003)].
Cooperative individuals not only require a society interaction, but the existence of an internal
mechanism (e.g. among other CASSF and the computational model of the basal ganglia) that
is able to mediate between various sensory processes. Therefore, individuals need to build up
unified internal perceptions based on their available sensory capabilities in order to produce
specialized behavior. As a consequence sensory processes need to be augmented when
possible. The work of [Montes González et al. (2008)] shows how non-standard avoidance can
be achieved by extending infrared sensory information through an evolutionary refinement.

3. The development of behavior using evolution

The optimization of behavior was carried out using an incremental approach following the
evolutionary robotics methodology [Nolfi & Floreano (2000); Santos & Duro (2005)]. Initially
modules were evolved in the Webots robot simulator [Cyberbotics (2011)], and later on the
modules were further evolved in the real Khepera robot [Mondana et al. (1993)]. The Khepera
has been equipped with a ring of eight infrared sensors distributed around the body of the
robot and two DC motors that control the movement of the wheels. A foraging task was
set in a square walled arena where the robot has to collect simulated "food" in the form
of wooden cylinders. Thus, we employ the gripper turret attachment for the Khepera (see
Figure 1), this small arm has two degrees of freedom with encoders for determining the arm
position and two sensors in the gripper claw for detecting the presence and the resistivity
of a collected item. Behavior can be identified as belonging to two different kinds, some
related to travelling the arena and the other related to handling objects with the gripper.
Hence, exploration behavior implemented as neural behavior corresponds to cylinder-seek
which locates and positions the robot body in front of a cylinder in order to collect an object;
wall-seek travels the arena searching for the closest wall, and then corner-seek runs parallel to
a wall until the robot finds a corner. In order to complete the behavioral repertoire collection
and release of cylinders is carried out by cylinder-pickup that moves the robot backwards to
safely lower the robot arm and then pick up a cylinder; finally cylinder-deposit lowers the robot
arm, opens the gripper and returns the arm to an upper position.
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4 Biomimetic

Fig. 1. The robot is shown in a walled arena where has to collect wooden cylinders. Thus the
robot has been fitted with a gripper turret attached to the Khepera robot.

3.1 Neural behavior

In our experiments we use the infrared sensors of the Khepera robot to transverse the arena.
Thus, we chose to implement exploration behavior as neural controllers. At an initial stage we
individually evolve the next behavioral modules wall-seek, corner-seek and cylinder-seek. These
modules use a fully connected feedforward multilayer-perceptron neural network with no
recurrent connections. The topology of the neural network is six neurons in the input layer,
five neurons in the hidden layer, and two in the output layer. The sigmoid transfer function
is used at the hidden and the output neurons. The infrared output from the Khepera, ranging
from 0 to 1023 from the six frontmost sensors forms the input to the neural neural network.
Then, the output of the neural network is scaled to the ±20 values required for driving the DC
motors at full speed. Next, a genetic algorithm with selection, crossover and mutation operators
was applied to the neural network and the desired behavior for each individual module was
shaped using different fitness functions (Eqs. 1, 2 and 3).
The weights of each neural network are directly encoded into a vector w of 40 elements, the
weights were initialized with random values ranging from -1 < wi < 1 for all elements. Thus,
a single vector representation is used to define each of the individuals in the population. The
initial population, G0, consists of n=100 neural controllers. Selection is made using elitism to
replicate the two best individuals from one generation to the next. Next, a tournament allows
random parents to be chosen from (n/2)-1 competitions. The most fitted parents are bred in
pairs with a random crossover point generated with a probability of 0.5. Each individual in
the new population is then affected with a mutation probability of 0.01. The fitness is scored
by running each individual in the simulator for about 30 seconds. The initial location and
orientation of the individuals are randomized across trials.
The behavior for locating a wall (wall-seek) can be seen as a form of obstacle-avoidance due to
the fact that the arena has to be explored avoiding cylinders. Then, the behavior is completed
when the robot is in front of a wall. The fitness formula for this behavioral module was

fc1 =
4000

∑
i=0

abs(lsi) ∗ (1 −
√

dsi) ∗ (1 − max_iri) (1)
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The Coevolution of Behavior and Motivated Action Selection 5

where for iteration i: ls is the linear speed in both wheels (the absolute value of the sum of
the left and right speeds), ds is the differential speed on both wheels (a measurement of the
angular speed), and max_ir is the highest infrared normalized-value. A formula such as this
favors the evolution of fast individuals that run in a straight line while avoiding obstacles.
The behavioral module for running parallel to a wall makes the robot move in a straight line
aside a located wall; though any obstacles blocking a straight path to the nearest corner have
to be first avoided. The module is stopped when a corner is detected. The fitness formula
employed for the behavior corner_seek was

fc2 = fc1 ∗ (tgh)2 (2)

This formula employs a thigmotaxis factor (tgh), which accounts for the tendency to remain
next to walls and is calculated as the fraction of the test period for which an individual is
close to any of the walls in the arena. This formula therefore evolves individuals that avoid
obstacles while traveling parallel to the arena walls.
The cylinder-seek behavior explores the arena avoiding walls until it locates a cylinder set in
the middle of the arena. If a cylinder is located (detected by the two frontmost pair of infrared
sensors), then the robot stops to let the gripping-behavior handle cylinder collection. The
formula for a behavioral module such as this was

fc3 = fc1 + K1 ∗ cnear + K2 ∗ cfront (3)

In this formula avoidance is displayed for travelling the arena. The constants K1 and K2, with
K1 < K2, are employed for rewarding the robot when a cylinder is detected around the ring of
infrared sensors assuming that a cylinder is near (cnear). However, the robot is most rewarded
when aligns its frontal part with a nearby cylinder (cfront).

3.2 Fixed sequences of behavior

The previous behavioral modules can be considered as timed sequences of action triggered
by an initial sensory stimulus. However, behavior related to handling the gripper should be
modeled as a sequence of particular actions executed always in the same order and with the
same duration. Thus, behavior modeled in this way can be thought as fixed action patterns
[Mcfarland (1993)]. For instance, cylinder-pickup requires the gripper claw to be opened, and
then the robot move backwards to create free space in front of the body, the gripper closed,
and the arm moved back into the upright position. Cylinder-deposit requires a fixed sequence
of lowering the arm, opening the gripper, and then raising the arm. Therefore, these two
behavioral modules were implemented as algorithmic routines following the aforementioned
action sequences.

4. Central action selection

In writing different models have been proposed to design systems, which are able to exhibit a
variety of behavior and to arbitrate between them [e.g. Arkin (1998); Brooks (1986); Maes
(1989)]. Nevertheless, these models based on explicit design do not seem to be scalable
enough for developing systems capable of displaying a large variety of behavioral patterns
that cope with task/environmental variations. In previous research we have proved that a
computational model of the intrinsic circuitry of the vertebrate basal ganglia [Prescott et al.
(1999)] produces action selection when embedded in a robot control system [Montes González
et al. (2000); Prescott et al. (2006)]. The motivated robot basal ganglia model has been set in a
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similar environment to the one described using hand-coded [Prescott et al. (2006)] and evolved
behavioral patterns [Montes González (2007)]. The importance of the basal ganglia in natural
action selection becomes evident when we observe that these nuclei are an archaic feature
common to all vertebrate animals [Prescott et al. (1999)]. However, we have also worked in
an alternative selection model named CASSF [Montes González & Marín Hernández (2004)]
that shares common features with the robot basal ganglia model. Both are centralized and
both produce motor selection based on building perceptual information from raw sensory
input. One of the main features of CASSF (Central Action Model with Sensor Fusion) is
that is modular and able to cope with the variations of a dynamic environment. However,
in this study we have extended CASSF to include internal motivations for the calculation of
motor selection (Figure 2). In addition, CASSF is an effective action selection mechanism
[Montes González, Santos Reyes & Ríos Figueroa (2006)] that is centralized and presents
sufficient persistence to complete a task. The implementation of tasks such as foraging can
be carried out in CASSF by determining a set of behavioral patterns that can be integrated in
time to complete such a task. The adjustment of selection parameters and behavior has been
optimized by coevolution in CASSF as described in [Montes González (2007)].
The foraging activity for our behavioral setup has been modeled loosely based on
observations of hungry rats placed in a box containing a central small dish of food. These
animals, even when deprived from food for twenty four hours, will be fearful and exhibit
preference of staying next to walls and corners. Later on, they will go across the arena to
collect food from the dish that is then consumed in a corner. The urgency to be selected
(salience) of each of the behavioral modules is tuned to provide appropriate behavioral
selections that simulate the avoidance-related and food-acquisition-related behavior observed
in these animals. Therefore, the salience for each module depends on the values of a number
of extrinsic and intrinsic variables. Extrinsic values are calculated as bi-polar perceptual
variables calculated from robot raw sensory information. These perceptual variables are
labeled as wall_detector, gripper_sensor, cylinder_detector and corner_detector. Additionally, these
perceptual variables are also sent to each of the behavioral modules. The information of the
sensors is updated at every step of the simulation and the perceptual variables are recalculated
depending on the presence (+1) or absence (-1) of the relevant target feature (e.g. a cylinder, a
wall, a corner, or an object in the gripper).
Intrinsic variables are produced by motivational modules and are functions of recent
experience and internal state. In our experiments these roughly model “fear” (initially high
and reduced when exploring the arena) and “hunger” (increases with time and reduced
when “food” is deposited outside the arena). Therefore, the value for each of the simulated
motivations is a single scalar value in the range (0-1) that can be either increased or decreased
over time. Hunger is also reduced by a fixed amount when a cylinder is deposited in a corner
of the arena. On the other hand, behavioral modules are also able to generate an intrinsic
variable (a “busy signal”) that facilitates its own selection during critical phases of activity.
The value of the busy signal is a binary value that is on when a critical period of activity has
been reached. As a result the salience is calculated from the relevant information for each
behavioral module composed by perceptual variables (bi-polar), its own busy-signal (binary)
and extrinsic motivations (scalar values). These signals constitute the input vector for the
selection network and activation is computed at every step of the main loop. Thus, CASSF
runs within a main loop in which sensor readings are updated and motor commands are sent.
At each time-step, salience is calculated and the competition between behavioral components
is resolved in a winner-takes-all manner.
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Fig. 2. In the CASFF model, perceptual variables (ei) form the input to the decision neural
network. The output of the selected behavior with the highest salience (si) is gated to the
motors of the Khepera. The busy-status signal (c1) from behavior B1 to the output neuron O1

should be taken into account. The behavioral repertoire (B1 - Bn) is extended by preserving
similar connections for each of the additional behavioral modules. Motivations (mi) are
added as inputs (Ii) to the decision network.

The calculation of salience is carried out using a decision neural network with an input layer
and an output layer both with five neurons (Figure 2). The output of the neurons make
use of the identity function to preserve the original calculation of the salience. The raw
sensory information from the Khepera is fed into the neural network in the form of perceptual
variables. Next, the input neurons distribute the variables to the output neurons. The behavior
that is selected sends a busy signal to the output neurons when its salience is above the
salience of the other behaviors. A selected behavior sends a copy of this busy signal to the
five output neurons. In turn the five behavioral modules can be selected, thus each of the
five modules add five more inputs to the output neurons. Additionally, two more inputs are
added from the two simulated motivations. Hence, salience output is calculated from the five
salience signals of the behavioral modules plus four perceptual variables plus two simulated
motivations.
In this paper artificial coevolution is employed to adjust the weights of the decision network.
The exploration behavioral modules were evolved as an initial stage in the evolution. A
second stage consisted in evolving both the decision network weights and the behavioral
networks. The decision network weights depend on the input of the context vector (ei) which
is formed by the perceptual variables. In turn, the variables wall_detector (ew), gripper_sensor
(eg), cylinder_detector (ec), and corner_detector (er) are encoded from readings of different
sensors. These perceptual variables form the context vector, which is constructed as follows
(e = [ew, eg, ec, er], ew, eg, ec, er ∈ {1, -1}). Then, five different behavioral modules return a
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current busy-status (ci) indicating that ongoing activities should not be interrupted. The
current busy-status vector is c = [cs, cp, cw, ck, cd], cs, cp, cw, ck, cd ∈ {1, 0}, for cylinder-seek,
cylinder-pickup, wall-seek, corner-seek, and cylinder-deposit respectively. The motivational
vector is composed by m = [mf, mh], −1 < mi,< 1. The salience (si) or urgency is calculated
from the input of the decision network Ii which in turn modifies the output Oi of the
behavioral modules by allowing the most salient to win the competition. Thus, selection
is evolved for five behavioral modules with a context vector composed of eleven elements
making a selection vector chs of 55 weights with initial random values of chs, -Kw < chs < Kw

with Kw = 0.75. Therefore, the full chromosome to be coevolved is formed as an array of 55
weights of the decision network plus 40 weights of cylinder-seek plus 40 weights of wall-seek
plus 40 weights of corner-seek giving a total of 175 weights.
Evolution was carried out as previously described in section 3.1. The fitness formula for the
evolution of the weights of the decision network was

fc4 = (K1 ∗ avfactor) + (K2 ∗ cwfactor) + (K3 ∗ pkfactor) + (K4 ∗ dpfactor) (4)

The evolution of the weights of the selection network was nearly optimized using in the
fitness formula fc4 the constants K1, K2, K3 and K4 with K1 < K2 < K3 < K4 for the
selection of those individuals that move in a traight line while avoiding obstacles (avfactor),
also those individuals that locate corners and walls in the arena (cwfactor). Moreover, the
fitness formula also rewards cylinder-collection inside the arena (pkfactor), and their release
near the outside walls (dpfactor). The average fitness of a population, for over 100 generations,
and its maximum individual fitness are shown in Figure 3.

Fig. 3. Fitness is plotted across 100 generations. For each generation the highest fitness of one
individual was obtained from the averaged fitness of five trials under similar conditions. The
maximum fitness of all individuals was averaged as a measure of the population fitness.
Individuals are more rewarded if they avoid obstacles, collect cylinders, and deposit
cylinders close to corners. The evolution is stopped after fitness stabilizes over a value
around 4500.

496 On Biomimetics

www.intechopen.com
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5. Experiments and results

The foraging task was set in an arena with four cylinders as simulated food (see Figure 4).
The use of selection with evolved parameters is shown in Figure 5. On the other hand, the
coevolution of behavior and selection parameters is presented in Figure 6. It is important
to notice that coevolution tends to optimize behavior and their selection in time and in the
physical environment. Therefore, it is possible to observe that in attempt to maximize fitness;
evolution may disrupt the order of selection as anticipated by the human designer. The latter,
has been pointed out in [Montes González, Santos Reyes & Ríos Figueroa (2006)] where five
behavioral modules were setup for coevolution. The presence of redundant behavior leads to
an evolutionary race, because interference from other behavior may affect the development
and selection of a particular behavior. A regular behavioral pattern may be easily observed if
we were using hand-coded selection whereas for evolved and coevolved selection the use
of corner-seek is avoided in order to optimize timed selection. The selection of behavior
patterns is also summarized as elementary statistics in tables 1 and 2 for evolved selection and
coevolved selection/behavior. In this paper a behavior is considered as the joint product of the
robot and its internal status, environment, and observer. Hence, a regular grasping-depositing
pattern in the foraging task should be the result of the selection of the behavioral modules:
cylinder-seek, cylinder-pickup, wall-seek, corner-seek, and cylinder-deposit in that order.
Collection patterns can be disrupted if for example the cylinder slips from the gripper or a
corner is immediately found. Another cause for a change in a regular pattern occurs after
long search periods when a cylinder is not promptly located. The use of motivations is also
another cause for the interruption in the collection of a cylinder. For instance travelling for
long time increases the value of hunger up to its maximum value, which makes locating a
cylinder erratic and increasing periods of exploration. Finally, the fitness of the agent solving
the foraging task is an additional factor that alters the order in the selection of behavior.
In Figure 7 we present a comparison of evolved-selection and coevolved-selection/behavior.
In this comparison we notice that even though individuals present different fitness values,
they are able to complete the task of collecting from one to four cylinders. Fitness is
increased after long search periods, and those individuals able to complete the same task with
lower fitness are because they have to travel less to locate cylinders. Consequently, “lucky”
collectors, by chance, travel less earning fewer rewards; whereas “unlucky” collectors travel
more earning additional rewards. As a result, in the same figure we observe an improvement
on the fitness and the collection of cylinders of coevolved selection in comparison to evolved
selection and behavior.

6. Discussion and future work

For our discussion it is important to remember that there is evidence of central selection in
the vertebrate brain [Prescott et al. (1999)], particularly at the basal ganglia buried under the
cortex. It is important to notice that these structures receive information from several different
regions of the cerebral cortex. We have based the development of motivated CASSF on that
of the robot basal ganglia [Prescott et al. (2002)]. Therefore, we have implemented an action
selection model that makes use of artificial evolution for optimizing both neural behavior
and the decision network (ruling out the evolution of sequential behavior). In our selection
model we have build an intrinsic perception of the world based on raw sensory information
to provide pre-processed information to the decision network in order to produce a unified
perception of the “extrinsic” world. Additionally, we have let intrinsic variables such as
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Fig. 4. The selection of behavioral modules and their related motivations are shown in the
image. The robot simulator window and the window for the gripper and infrared sensors are
also displayed. In the motivations window, the blue line corresponds to “fear” and the green
line represents “hunger”. Final behavior is then transferred to the real robot for further
optimization.

simulated fear and hunger to affect the results of selection. Therefore, selection arbitrates
among competing behavioral modules to allow the execution of behavior in response to a
specific configuration of the world and the internal status of the animal robot.

Table 1. Evolved selection (Figure 5) is summarized in this table. Labels in the table are as
follows: Freq shows the frequency in the selection of a module; Latency represents the time
when the module was initially selected; the total duration of the module is indicated by
Totdur and its percentage by TotDur%;Mean, Standard Deviation (StdDev) and Standard Error
(StdErr) are some simple statistics; MinDur represents the minimal time the module was
selected and MaxDur the maximal time for the selection of the module. Here we observe that
cylinder deposit was activated only four times corresponding to the collection-release of the
four cylinders set in the arena.

Evolutionary robotics employs a quasi-optimal approach to develop autonomous controllers
for different kinds of robots and groups of individuals which can be evolved together.
Following this approach a change in the evolution of one individual can be affected by the
change of other related individuals in the group. The latter approach has been identified, as its
biological counterpart, as coevolution that can be cooperative or competitive. A cooperative
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Fig. 5. Ethogram for a run of typical evolved selection; modules are numbered as 1-cylinder-
seek, 2-cylinder-pickup, 3-wall-seek, 4-corner-seek, 5-cylinder-deposit and 6-no action
selected. We notice that although cylinder-pickup was activated thirteen times, only four
cylinders were collected. The latter is due to motivations causing variations in the internal
variables thus affecting salience calculation causing the robot to rapidly select and deselect
cylinder-pickup several times before actually grasping a cylinder. This individual presents a
semi-regular grasping-depositing pattern (behavioral pattern selection of 1-2-3-5).

strategy can be developed to achieve a common task (e.g. pushing objects, solving a common
task), whereas in a competitive strategy individuals have to struggle to assimilate some scarce
resources (e.g. prey and predator, securing of food stashes). In biology diffuse coevolution
has been referred to species evolving in response to a number of other species, which in turn
are also evolving in response to a set of species. Consequently, the identification of collective
intelligence is more evident when coevolving cooperative groups.

Table 2. Elementary statistics for evolved selection; we notice several activations of
cylinder-pickup. However, only four cylinders were collected and released outside the arena
(notice that cylinder-seek is selected only four times). A proper release of a grasped cylinder
corresponds in the image to a decay in the fear motivation (around seconds 8, 29, 64 and 76
in Figure 6). Additionally, evolution avoids the use of corner-seek and that is the reason for
its latency to be shown as the total elapsed time even though selection never occurred.

The development of collective behavior in simulation can be achieved by simple scalable
control systems as a form of decentralized control. Therefore, the work of [Kube & Zhang
(1993)] exhibited group behavior without the use of explicit communication. A more recent
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Fig. 6. A typical run for coevolved selection; the behavioral modules are numbered as
1-cylinder-seek, 2-cylinder-pickup, 3-wall-seek, 4-corner-seek, 5-cylinder-deposit and 6-no
action selected. A standard grasping-depositing pattern (1-2-3-4-5) is also not observed here.
Because of opportunism presented in the collection of cylinders, artificial evolution
optimizes the use of corner-seek that is never selected. Instead wall-seek is employed, after
collection, for taking the cylinder to the nearest wall where the cylinder is released. It is
important to notice that cylinder collection is a bit more erratic but in the end the value of
fitness is greater compared to evolved selection. As a result, a semi-regular behavioral
pattern selection of 1-2-3-5 is observed in the graph.

approach by Marocco et al. [Marocco & Nolfi (2007)] set a collective task where a group of
four robots developed the ability to reach two different target areas and to group in pairs at
each different location. Elementary communication skills were evolved alongside the abilities
to reach target areas. In this way, coordination is achieved through stigmergy; nevertheless
more elaborated communication can be implemented [Mitri & Vogt (2006)]. In general, the
individual ability to communicate may be one of the requirements for the development of
collective intelligence. The evolutionary approach has been sufficient to solve problems were
cooperation and communication skills are necessary for solving a particular task; in contrast
communication arises as a deceptive feature within a competitive scenario. In this scenario a
common setting is that of the prey and the predator where both individuals are competing for
scoring points either for escaping or capturing each other. The experiment can be expanded
to add more preys and predators.
The presence of collective intelligence is found in different areas ranging from biology,
sociology, and business to computer science. However, a common definition looks
for the identification of certain “intelligence” derived from the efforts of joined entities.
The aforementioned entities range from bacteria, animals, human to computer processes.
Moreover, the same definition can be applied, in a broad sense, to action selection and
evolutionary robotics. The emergence of collective intelligence based on the behavior-based
approach requires stepping out from the modeling of selfish solitary individuals to social
organisms. Therefore, we need to group our robots and expose them to numerous interactions
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to assure complex performances at the level of the group. Here, we have identified some
common elements in collective robotics: cooperation, intelligence, communication skills, and
the integration of sensory information with action selection. All of those accomplished with
the use of the evolutionary robotics approach. As a consequence, we believe that we may
contribute to the development of robotic collective intelligence by way of social experiments
using the artificial evolutionary method.

(a)

(b)

Fig. 7. A comparison of one hundred individuals with evolved and coevolved selection is
presented. In average an evolved individual collects 3.0 cylinders whereas an evolved
individual collects 3.6 cylinders. Moreover, in average evolved selection scores 57% of the
highest fitness; in contrast, coevolved-selection scores 69% of the highest evolved fitness. In
(a) we notice the first twelve individuals failing to collect cylinders with fifty-seven
individuals collecting four cylinders. Whereas in (b) eighty-two individuals accomplish the
task of collecting four cylinders and only two individuals not collecting any at all.
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7. Conclusion

The evolution of central action selection with neural behavior was carried out in this study.
Later on, the selection mechanism and neural behavior were coevolved and then compared
to evolved selection. The experiments presented in this paper provide an insight of the effects
of evolution when optimizing behavior that needs to be coupled within a regular pattern.
For example, a disruption of regular selection occurs in an attempt to increase their fitness
value as shown in Figures 5 and 6. On the other hand, the use of coevolution constrains
candidate solutions to those that maximize the proposed fitness function. Consequently,
the maximum fitness is reached when individuals pick up all cylinders in the arena and
motivations not affect the localisation of cylinders having to travel less for their collection
(Figure 7). Additionally, in order to extend our model we expect to include a component
of simulated “dopamine”, similar to the one reported in Montes et al. [Montes González
et al. (2000)], to regulate behavior through motor commands sent to the Khepera robot. Next,
we pretend to analyze motivated behavior at normal dopamine levels to see the elicitation of
movement (normal selection) and abnormal selection as the result of inducing different levels
of simulated dopamine. Furthermore, we expect to develop a prey-predator setup where the
prey employs evolvable action selection and the predator a pure evolvable approach both
optimized by means of coevolution to study any potential improvements in selection under
such a competitive scheme. Also, we may extend our model in a social sense evolving groups
of robots. Finally, our approach aims to reduce the number of decisions made by the human
designer when evolving both selection and behavior.
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