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1. Introduction 

Nearly 72 years ago, Wertheimer [1] pointed out the importance of perceptual grouping and 
organization in vision and listed several key factors, such as similarity, proximity, and good 
continuation, which lead to visual grouping. However, even to this day, many of the 
computational issues of perceptual grouping have remained unresolved. Since there are 
many possible partitions of an image into subsets, how do you know which one is right? 
There are two aspects to be considered here. The first is that there may not be a single 
correct answer. The second aspect is that the partitioning is inherently hierarchical. Prior 
literature on the related problems of clustering, grouping and image segmentation is huge. 
Unfortunately, there is not a general method existing to solve the problem.[2] 
Image segmentation is one of the central problems in computer vision and pattern 
recognition. It refers to the process of assigning a label to every pixel in an image such that 
pixels with the same label share certain visual characteristics. The result of image 
segmentation is a set of segments (sets of pixels) that collectively cover the entire image. 
Pixels in the same region are similar with respect to some characteristics or computed 
properties, such as color, intensity, and texture. Adjacent regions are significantly different 
with respect to the same characteristics. The goal of segmentation is to simplify and/or 
change the representation of an image into something that is more meaningful and easier to 
analyze.[3] 
There are many general-purpose approaches available for image segmentation such as 
threshold methods[4], edge-based methods[5], region-based methods[6], and graph-based 
methods[7]. Threshold techniques make decisions based on local pixel information. Edge-
based methods are based on connecting together broken contour lines. It is prone to failure 
in the presence of blurring. A region-based method usually partitions an image into 
connected regions by grouping neighboring pixels of similar intensity levels. Adjacent 
regions are then merged under some characteristics. Graph-based techniques generally 
represent the problem in terms of a graph where each node corresponds to a pixel in the 
image, and an edge connects each pair of vertices. A weight is associated with each edge 
based on some property of the pixels that it connects, such as their image intensities. Hybrid 
techniques using a mix of the methods above are also popular.  
What listed above also exposed two basic questions: 

• What is the precise criterion for a good segmentation? 

• How can such a segmentation be computed efficiently? 
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In contrast to the heuristic nature of the methods above, one would formalize an objective 

criterion for evaluating a given segmentation. This would allow us to formulate the 

segmentation problem as an optimization problem. The objective function that one would 

seek to optimize is the interclass variance that is used in cluster analysis. An optimizer can 

lead to efficient solutions for optimal segmentation. But the objective function is usually not 

a monotone chain, therefore the problem is general NP-hard. Following this way, some 

clustering methods have been applied to solve image segmentation problems. Among them, 

K-means algorithm [8] is the most popular and simplest one. It can partition an image into K 

clusters by using an iterative technique. Although it can be proven that the procedure will 

always terminate, the K-means algorithm does not necessarily find the most optimal 

configuration, corresponding to the minimum global objective function. The algorithm is 

also significantly sensitive to the initial randomly-selected cluster centers. As global 

optimization techniques, evolutionary algorithms (EAs) are likely to be good tools for image 

segmentation task. In the past two decades, EAs have been applied to image segmentation 

with promising results [9-16]. These algorithms exploited the metaphor of natural evolution 

in the context of image segmentation. 

In this chapter, in order to solve the image segmentation problem more efficiently, we 

propose two evolutionary-bsed image segmentation algorithms with different objective 

functions.The first is a novel approach based on memetic algorithm (MISA). Watershed 

segmentation is applied to segment original images into non-overlap small regions before 

performing the portioning process by MISA. MISA adopts a straightforward representation 

method to find the optimal combination of watershed regions under the criteria of interclass 

variance in feature space. After implementing cluster-based crossover and mutation, an 

individual learning procedure moves exocentric regions in current cluster to the one they 

should belong to according to the distance between these regions and cluster centers in 

feature space. In order to evaluate the new algorithm, six texture images, three remote 

sensing images and three natural images are employed in experiments. The experimental 

results show that MISA outperforms its genetic version, the Fuzzy c-means algorithm, and 

K-means algorithm in partitioning most of the test problems, and is an effective approach 

when compared with two state-of-the-art image segmentation algorithms including an 

efficient graph-based algorithm and a spectral clustering ensemble-based algorithm. The 

second is manifold evolutionary clustering (MEC). In MEC, the clustering problem is 

considered from a combinatorial optimization viewpoint. Each individual is a sequence of 

real integer numbers representing the cluster representatives. Each data item is assigned to a 

cluster representative according to a novel manifold distance-based dissimilarity measure 

which can measure the geodesic distance along the manifold. After extracting texture 

features from an image, MEC determines partitioning of the feature vectors using 

evolutionary search. We apply MEC to solve seven benchmark clustering problems of 

artificial data sets, three artificial texture image classification problems and two Synthetic 

Aperture Radar image classification problems. The experimental results show that in terms 

of cluster quality and robustness, MEC outperforms the K-Means algorithm, a modified K-

Means algorithm using the manifold distance-based dissimilarity measure, and a genetic 

algorithm-based clustering technique in partitioning most of the test problems. 

In the following sections, we will give the descriptions for the two algorithms in detail. 

Finally, concluding remarks are presented. 
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2. Natural and remote sensing image segmentation using memetic 
computing 

2.1 Introduction 
This work focuses on image segmentation based on memetic computation. Memetic 
algorithms (MAs) are one of the recent growing areas in evolutionary computation [17]. 
They are now widely considered as population-based metaheuristic search approaches 
which may be regarded as a marriage between an evolutionary or any population-based 
global search and local improvement procedures. Recently, MAs have been well used across 
a wide range of problem domains. A lot of studies have demonstrated that MAs converge to 
high-quality solutions more efficiently than their conventional counterparts in many real-
world applications [17-32]. MAs have also been applied in the image processing field [33-
38]. For example, Fernandez, Garana and Cabello [33] proposed a MA-based method for the 
correction of illumination inhomogeneities in images. Batenburg [34] designed an EA with 
hillclimb operator for finding a binary image that satisfies prescribed horizontal and vertical 
projections. Tirronen, Neri et al. [35] studied the defect detection in paper production by 
means of image-processing techniques based on memetic differential evolution frameworks. 
Gesù, Bosco et al. [36,37] introduced a new memetic approach for the reconstruction of 
binary images. Zhang, Wang and Zhang [38] proposed a novel image watermarking scheme 
using a MA and wavelet transform. 
 In this method, in order to solve the image segmentation problem more efficiently, we 
propose a MA-based approach, Memetic Image Segmentation Algorithm (MISA), and 
compare the new method with its genetic version (MISA without learning), the K-means 
algorithm [8], fuzzy c-means algorithm [39], and two state-of-the-art image segmentation 
algorithms including an efficient graph-based algorithm [7] and a spectral clustering 
ensemble-based algorithm [40] in segmenting artificial texture images, remote sensing 
images and natural images. 
The rest of this section is organized as follows: Section 1.2 describes some related 
background including the technologies used in preprocessing the original image and the 
brief background of MAs. Section 1.3 describes the proposed MA-based image segmentation 
algorithm. In Section 1.4, we summarize and evaluate the experimental results.  

2.2 Related background 
Before performing the portioning process by the proposed MISA, some preprocessing 
should be done on original images, including feature extraction based on the gray-level co-
occurrence matrix (GLCM) [41] and wavelet decomposition [42], and over segmenting object 
images into small regions by watershed segmentation algorithm [6]. In this section, we will 
introduce these techniques briefly. The MAs will also be introduced in this section. 

2.2.1 GLCM based statistic features 
GLCM was frequently used in texture analysis and extraction for images [41,43,44]. Texture 
features are demonstrated by the statistics over the GLCM. Four usually used statistics are 
angular second moment (also called energy), correlation, entropy, and inverse difference 
moment (also called inertia). In this method, the 14 statistics, including the previous four 
suggested by Haralick, Shanmugam and Dinstein [41] are exploited. There are four parameters 
that must be indicated to generate a GLCM, i.e., the interpixel orientation, distance, grey level 

quantization, and window size. Here we set the interpixel orientation to 0°  for convenient 
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calculation. Short interpixel distances typically generate the preferred texture features in image 
analysis, so we set interpixel distance to 1. The role of different values for gray levels and 
windows size with respect to statistics from GLCM has been investigated in many literatures 
[43, 44]. According to their analysis and fine-tuned experiments, in this study, we set the image 

quantization to 16 and the window size to 9 9× . 

2.2.2 Wavelet energy features 

Wavelet transform has the ability to examine a signal at different scales [42]. In this section, 

the undecimated wavelet-based feature vector composed by the energies of the subband 

coefficients is used. Here we implement three-level wavelet decomposition on each square 

local area with size of 16 16× . The features of each pixel can be represented as a 10-

dimension vector 1 1 1 1 2( , , , , ,LL LH HL HH LHe e e e e− − − − −  2 2 3 3 3, , , , )HL HH LH HL HHe e e e e− − − − − , in 

which, for example 1LLe −  denotes the energy of the LL subimage in the first level. Wavelet 

transform generates localized spatial and spectral information simultaneously. The energy 

of the low-pass subimage 1LLe − describes the spectral information. The other features except 

1LLe −  characterize the textural properties. Incorporating all the features will enhance the 

performance.  

2.2.3 Watershed segmentation 
We use watershed segmentation [6] to over segment object image into small regions. Each 
region is almost homogeneous in feature space, while neighboring-regions possess different 
characters. We operate these regions as a basic unit during most of MISA unless it is 
necessary to come back to pixels for precise evaluation. The basic concept of watershed 
segmentation is described as follows. 
In an image, ideal step edges do not often exist since every edge is blurred to some contents. 
A blurred edge can be modeled by a ramp. For a ramp edge, a usual gradient operator will 
generate a slope of the edge. Thus, the ramp edge cannot be separated from noise if the 
slope of the edge is small. Wang proposed a multi-scale gradient operator to solve the above 
problem [45]: 

 ( ) ( )( )1
1

1
( )

n

i i i
i

MG f f B f B B
n

−=
⎡ ⎤= ⊕ − Θ Θ⎣ ⎦∑   (1) 

where ⊕  and Θ  denote dilation and erosion respectively, and iB  is called structural 

element of size (2i −1)×(2i −1), and f is the original image. 
If watershed regions are too large, big ones may contain more than one focused subject in 
image, so that the texture feature in that region may not be homogeneous. If the watershed 
regions are too small, the computational complexity will increase. This is because there will 
be more basic units to operate during most of MISA. In order to control the number of 
watershed regions, we use the watershed segmentation algorithm with markers [6]. In this 
method, a threshold can be adjusted to get an expected number of regions. In this method, 

the number of regions is about 1500 in a 256 256×  image. 

2.2.4 Memetic algorithms 
Evolutionary algorithms perform well for global searching because they are capable of 
quickly finding and exploiting promising regions of search space, but they take a relatively 
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long time to converge to a local optimum. Local improvement procedures quickly find the 
local optimum of a small region of the search space, but are typically poor global searchers. 
Thus, several researchers proposed hybrid algorithms combining excellent global 
exploration characteristics of EAs and efficient refinement capabilities of local search 
algorithms [46,47]. These hybrid algorithms are known as memetic algorithms (MAs).  
MAs assume that combining the features of different methods in a complementary fashion 
may result in more robust and effective optimization tools. They are population-based meta-
heuristic search approaches that have been receiving increasing attention in recent years. 
They are inspired by Darwinian’s principles of natural evolution and Dawkins’ notion of a 
meme defined as the basic unit of cultural transmission. In MAs, a meme is generally 
considered as an individual learning procedure capable of performing local refinements. 
Over the past 15 years, MAs have been a hot topic in the fields of both computer science and 
operational research [17-38]. The typical issues pertinent to MA design [17] include (i) how 
often individual learning should be applied, (ii) on which solutions individual learning 
should be used, (iii) how long individual learning should be run, (iv) what maximum 
computational budget to allocate for individual learning, and (v) what individual learning 
method or meme should be used for a particular problem, sub-problem or individual. 

2.3 The proposed memetic algorithm for image segmentation 
2.3.1 Preprocessing and representation 
Preprocessing is the first step of our method. In this procedure, we use gray-level co-
occurrence matrix and wavelet decomposition for feature extraction of object images. This is 
done for every pixel in the object image. Some algorithms (such as [15]) operate pixels 
directly as basic units, which will lead to high computational cost, especially for large 
images. To reduce the computational complexity, we employ watershed segmentation to 
segment images into non-overlap small regions. MISA operates these regions instead of 
every pixel as the basic unit during most of its evolution unless it is necessary to return back 
to pixels for more precise computation in fitness calculation, learning and crossover 
operations. Fig.1 illustrates the watershed segmentation process. 
 

 

Fig. 1. Illustration of watershed segmentation 

In Fig.1, there is an example of an image of 10 10×  pixels with each small square divided by 

the orange lines representing a pixel. We can see that this image contains 4 regions marked 
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by different colors as red, blue, yellow, and green. The watershed segmentation will 
segment the image into four regions divided by the black boldface lines. Then, these four 
regions are the basic unit that we operate during most of MISA.  
After preprocessing, we get the following data from the object image: (i) feature matrix, 
which stores the features of each pixel and is used in initialization with minimum spanning 
tree, learning and fitness calculation; (ii) coordinate of pixels, which are used in fitness 
calculation; (iii) pixel number of each region, which is used in learning; (iv) dissimilarity 
matrix, which is used in initialization with minimum spanning tree. 
Many EC-based clustering algorithms [48-51] have used an indirect representation approach 

that borrows from the K-Means algorithm - the representation codes are for cluster center 

only, and each data item is subsequently assigned to a cluster representative according to an 

appointed dissimilarity measure. The most popular dissimilarity measure is the Euclidean 

distance. By using Euclidean distance as a measure of dissimilarity, these evolutionary 

clustering methods as well as the K-Means algorithm have good performance on the data set 

with compact super-sphere distribution, but tend to fail on the data set organized in more 

complex and unknown shapes. This indirect representation approach can not overcome the 

main drawback of the K-means algorithm unless a more flexible dissimilarity measure is 

adopted [15]. Furthermore, this indirect representation approach is not suitable for 

individual evolutionary and learning operation. In this study, a straightforward encoding 

method is used here for image segmentation problem. In this coding, every locus represents 

the corresponding region in the image, and the gene on each locus is the cluster label of the 

corresponding region.   

In our method, coding length ( CL ) in MISA is the number of regions obtained from 

watershed segmentation of the object image. The serial labels of locus present the 

corresponding regions in image, that means the i -th locus represents the i -th regions. The 

segmentation of an image is expressed by encoding individual with cluster labels of regions. 
Cluster label of each region is put on its corresponding locus as the gene. Fig. 2 illustrates 
this code structure.  
 

 

Fig. 2. Illustration of coding structure 

Here we exhibit the code of an image which owns 10 regions. The lower numbers denote the 

region labels. They are arranged in order from 1 to 10. The upper numbers are cluster labels 

corresponding to each region. In this individual, regions 1, 2, 4 and 10 belong to cluster 1, 

regions 3, 5 and 6 belong to cluster 2, and regions 7, 8 and 9 belong to cluster 3. This 

straightforward representation method is very convenient for evolutionary and learning 

operation as shown in Section 3.2.  

In order to guide the evolution to a meaningful direction related to optimal segmentation, 
Euclid distances in feature space between every pixel and the centroids of the cluster it 
belongs to are calculated. Then, we sum up all these distances and use the reciprocal of this 
summation as the fitness of MISA. This segmentation fitness is defined in Equation (2). 
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where iRN  is the number of regions in the i-th cluster, jPN  is the number of pixels in the j-

th region, ijkp denotes the k-th pixel in the j-th region of the i-th cluster, and im  is the centroid 

of all pixels of the i-th cluster in feature space. Although we operate watershed regions of 

image during most of the evolution, it is necessary to return to every pixel, so that we can 

get a more precise segmentation evaluation. In Equation (2), 
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FN is the number of features and 
gijkp  and 

gim  denote the g-th feature of the current pixel 

and cluster centroid respectively. Therefore, the aim of MISA is to find an individual with 
maximum fitness. 

2.3.2 Memetic image segmentation algorithm 
The main loop of MISA is as follows.  

Algorithm 1.1. Memetic Image Segmentation Algorithm (MISA) 

Step 1. Preprocessing. Feature extraction based on GLCM and wavelet decomposition, and 
over segmenting object image into non-overlapping small regions by watershed 
segmentation. 

Step 2. Initialization. Giving the termination criterion, setting the initial parameters, 
generating a diverse population.  

Step 3. Crossover and Mutation. A cluster-based crossover operator and random mutation 
operator are implemented in this step. 

Step 4. Learning. A supervised local searching strategy is used to improve some 
individuals with probability. 

Step 5. Evaluation and Selection. Tournament selection with elitism strategy is used after 
fitness calculation. 

Step 6. Termination Test: If termination criterion is satisfied, export the individual with 
the highest fitness and return the corresponding image segmentation result, stop 
the algorithm; otherwise, go to Step 3. 

2.3.2.1 Initialization 

The following parameters have to be set in this step: population size (PS), the proportion of 
initial individuals generated using minimum spanning tree (MSTP), crossover probability 
(CP), mutation probability (MP), learning intensity (LI), and cluster number (CN). The 
termination criterion is to run until the number of generations reaches the maximum value 
(Gmax). 
The initial population is generated by two different methods to get a diverse population. 
Some initial individuals are generated based on minimum spanning tree (MST), and the 
others are generated randomly. The details are as follows: 

MSTP PS×⎡ ⎤⎢ ⎥  individuals are generated based on minimum spanning tree (MST). The idea 

of MST is introduced to find a meaningful distribution of all regions. Dissimilarity matrix 
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from preprocessing is used to build a complete MST by Prim’s algorithm. In dissimilarity 

matrix, the number of the i-th row and the j-th column represents the dissimilarity degree of 

the i-th region to the j-th region. The smaller of the number is, the closer between the i-th 

region and the j-th region. Here the dissimilarity degree between the i-th region ir  and the j-

th region jr  is calculated in Equation (4). 

 ( ) ( )2
1

,
k k

FN

i j i i
k

Dissimilarity r r r r
=

= −∑   (4) 

Here FN  is the number of features and 
ki

r  and 
ki

r  are the value of the k-th feature of ir  

and jr . 
 Based on MST, we break up links selected randomly to produce individuals. The whole 
MST represents one cluster which includes all the regions in the image; and removing n  

links leads to n  more clusters. Breaking up different links will produce different 

distribution among clusters. Fig. 3 and 4 show this procedure with dissimilarity matrix 
given in Table 1. 
 

Region No. 1 2 3 4 5 6 7 8 9 10 

1 Inf 0.7 4.67 0.69 4.73 4.72 4.63 2.56 2.44 2.46 

2 0.7 Inf 4.42 0.58 4.53 4.52 4.33 2.28 2.25 2.21 

3 4.67 4.42 Inf 4.63 0.53 0.67 6.27 4.79 5.29 4.99 

4 0.69 0.58 4.63 Inf 4.75 4.77 4.58 2.5 2.45 2.31 

5 4.73 4.53 0.53 4.75 Inf 0.29 6.17 4.76 5.25 4.98 

6 4.72 4.52 0.67 4.77 0.29 Inf 6.19 4.78 5.26 5.03 

7 4.63 4.33 6.27 4.58 6.17 6.19 Inf 2.16 2.22 2.41 

8 2.56 2.28 4.79 2.5 4.76 4.78 2.16 Inf 0.64 0.52 

9 2.44 2.25 5.29 2.45 5.25 5.26 2.22 0.64 Inf 0.73 

10 2.46 2.21 4.99 2.31 4.98 5.03 2.41 0.52 0.73 Inf 

Table 1. An example of dissimilarity matrix 

 

 
 

Fig. 3. MST generated from dissimilarity matrix   Fig. 4 Clusters generated from breaking up 
links 
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Based on dissimilarity matrix shown in Table 1, we can get a Prim MST starting from region 
3, which is illustrated in Fig. 3. If we break up the links between 2 and 3, 8 and 10, we can 

get a cluster distribution as {1,2,4,10} , {3,5,6} and {7,8,9} , as shown in Fig. 4.  

The rest PS MSTP PS− ×⎡ ⎤⎢ ⎥  individuals are generated randomly, namely, for each locus and 

we put a random cluster label ranges from 1 to CN  as its gene.  

2.3.2.2 Crossover and Mutation 

Based on the meaning of crossover that children should get part of the information from 
parents, we create a novel crossover operator, called cluster-based crossover (CC). In this 
algorithm, the role of crossover is to change the cluster distribution of one parent individual 
by the cluster distribution information of the other parent individual. To make the crossover 
meaningful for segmentation, we try to cross corresponding clusters of two parents, 

individuals A  and B . For example, we divide an image into three clusters, where A  is 

composed of clusters 1α , 2α , 3α  and B is composed of clusters 1β , 2β , 3β . Here 

1 { | cluster 1}x xa aα = ∈ , 2 { | cluster 2}y ya aα = ∈ , 3 { | cluster 3}z za aα = ∈ ,  

1 { | cluster 1}x xb bβ = ∈ , 2 { | cluster 2}y yb bβ = ∈ , 3 { | cluster 3}z zb bβ = ∈ , ( (1, ),x CL∈  (1, ),y CL∈  

(1, ),z CL x y z∈ ≠ ≠ ). First, mean values of every feature of each pixel in each cluster are 

calculated. Then, the modulus values of these mean values for each cluster are sorted from 
small to large. This calculation is similar to Equation (4) in section 3.2.1. For example, if the 

orders of clusters in A  and B are 2 1 3α α α  and 3 2 1β β β  respectively, then, 2α  will be 

crossed with 3β , 1α  with 2β , and 3α  with 1β . This idea is similar to multi-point 

crossover. The number of ‘points’ equals to the number of clusters. For convenient 

operation, we re-label 2 1 3α α α  and 3 2 1β β β  as 1 2 3α α α  and 1 2 3β β β  respectively, without 

removing regions of any cluster. 
Two individuals are chosen from the population randomly, and then the corresponding 
clusters between them are fixed and then crossed as mentioned above. The detailed steps 
are described as follows, where nc  is the number of regions to be “crossed” in current 

cluster and 
ji

α denotes the j-th region in cluster iα  and CN denotes the cluster number. 

Algorithm 1.2. Cluster-based Crossover (CC) 

Crossover: A  cross B  

Step 1. Set 1i =  

Step 2. If i CN≤ , go to Step 3, otherwise, stop 

Step 3. Set nc =  random number from 1 to the size of the i -th cluster in A . 

Step 4. Select nc  regions randomly from the i -th cluster of A , set 1j = . 

Step 5. If 
ji

α  does not exist in iβ , then put i  on the 
ji

a -th gene of B 

Step 6. 1j j= + , if j nc≤  go to Step 5, otherwise, 1i i= + , go to Step 2. 

In CC, A  crosses B and B crosses A , producing two children. Both of them inherit parts 
of the information from the two parents. We illustrate CC in Fig. 5. 
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Fig. 5. An illustration of cluster-based crossover 

Fig. 5 shows that in individual A, the cluster 1 to 3 are {1,3,7,5,10} , {2,4} , and {6,8,9} , 

respectively. In individual B, the cluster distribution is {1,4,5,7} , {2,3,6}  and {8,9,10} . For 

example, we begin by selecting 3 regions in cluster 1 of A, which is {1,3,7}  with light red 

shadow. In individual B, region 1 and 7 are in cluster 1, but region 3 exists in cluster 2, so we 
move region 3 from cluster 2 to cluster 1. In the same way, after all the same procedures are 
applied on the rest clusters, we get the child individual illustrated in Fig.5(c).  
In the mutation phase, we change the cluster distribution randomly as follows, where A 

denotes an individual, jA  is the j-th gene of A. MP denotes mutation probability, CN 

denotes the cluster number, and CL denotes coding length.   

Algorithm 1.3. Mutation 

Step 1. Set 1j =  

Step 2. If j CL≤ , set r = a random number range from 0 to 1, ji A= , go to Step 3; 

Otherwise, stop 

Step 3. If r MP< , set l = a random number range from 1 to CN l i∧ ≠ . 

Step 4. jA l= , 1j j= + , go to Step 2.  
In mutation, if a gene should be mutated due to probability, it will change into another 
cluster number generated randomly. This means the region corresponding to this locus will 
be moved into another cluster. 

2.3.2.3 Individual Learning Method 

Within the computational intelligence community, research on MA has since grown 
significantly and the term has come to be associated with the pairing of meta-heuristics or 
population-based methodologies with a separate lifetime learning process that materializes 
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in various forms of individual learning methods or memes, which are generally regarded as 
lifetime learning procedures capable of generating refinement on given individual(s). [32] In 
MISA, we introduce an individual learning method based on cluster distribution as is 
described in Algorithm 1.4. The basic idea is firstly, identify the most distinct region in each 
cluster. Then, for each of these regions, we find the cluster with the most similar average 

feature values, and assign the region to this cluster. In Algorithm 1.4, iAG is the average 

feature values of the i-th cluster and 
iimAG  is the average feature values of the im -th region 

in the i-th cluster where PS denotes population size, CN denotes the cluster number, LI 
denotes learning intensity, and CL denotes coding length.  

Algorithm 1.4.  Individual Learning 

Step 1. Set 1a=  

Step 2. If a PS≤ , go to Step3, otherwise stop. 

Step 3. For the a-th individual in population, r  is a random number from 0 to 1, if 0.5r > , 

go to Step4, otherwise, 1a a= + , go to Step3.  

Step 4. Set 1c = . 

Step 5. For 1 i CN≤ ≤ , find im =arg max
2ii imAG AG− . 

Step 6. For 1 i CN≤ ≤ , move the im -th region to cluster j = arg min
2ij imAG AG− . If i j= , 

that means the im -th region doesn’t need to be moved.  

Step 7. 1c c= + . If c LI CL≤ ×⎢ ⎥⎣ ⎦ , go to Step 5, otherwise, 1a a= + , go to Step 2.  

For more precise evaluation, we return back to pixels to calculate iAG  instead of using the 

average feature values of each region in cluster i  directly, which is shown in Equation (5). 

As described above, iAG  is a vector that comprises FN features. 

 
1 1

1

ji

i

PNRN

ijk

j k

i RN

j

j

p

AG

PN

= =

=

= ∑∑∑   (5) 

where iRN is the number of regions in the i-th cluster, jPN  is the number of pixels in the j-

th region, ijkp  denotes the feature vector of the k-th pixel in the j-th region of the i-th cluster, 

defined as Equation (6). 

 ( )
1 2
, ,...,

FNijk ijk ijk ijkp p p p=   (6) 

Fig. 6 illustrates an example of the individual learning procedure. 

In Fig. 6, { }1,2,3,4,5 , { }6,7,8,9,10,11 and { }12,13,14,15,16  demonstrate the three clusters 

before learning, we label them as cluster1, cluster2 and cluster3, respectively. After the 

calculation shown in Step 5 and Step 6 of Algorithm 1.4, region 4, 8 and 12 are shown to be 

the most distinct regions of each cluster. And cluster3, cluster1, and cluster2 are the ones 

with most similar features for region 4, 8 and 12 respectively. Therefore, the learning 

processing will remove region 4, 8 and 12 to cluster3, cluster1 and cluster2 respectively. 
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Fig. 6. Illustration of an example of the individual learning procedure 

From the description above, we can see that half of the whole population is selected 

randomly each time to learn. For each individual in learning, LI CL×⎢ ⎥⎣ ⎦  regions are detected. 

LI  should be adjusted properly as if it is too small, the learning’s effect is not enough. 

However, it is also unnecessary to set the LI too big. This is because learning is a local 

searching strategy so when it comes to the local optimum, the following learning will not 

change any cluster, which makes it meaningless and a waste of the computation. 

2.4 Experimental study 
2.4.1 Experimental setup 
In order to validate the performance of MISA, we apply it to twelve image segmentation 

problems including six artificial texture images, three remote sensing images and three 

natural images. The results will be compared with the K-means algorithm (KM) [8], Fuzzy c-

means algorithm (FCM) [39], the genetic image segmentation algorithm (GISA, MISA 

without learning), and two state-of-the-art image segmentation algorithms including an 

efficient graph-based image segmentation algorithm (EGSA) [7] and the spectral clustering 

ensemble algorithm (SCEA) [40]. 

Based on the parameter sensitivity analysis (as described in Section 1.4.5), for MISA, the 

parameters are set as follows: The maximum number of generations is 50, population size is 

30, MST initialization proportion is 0.6, crossover probability is 0.8, mutation probability is 

0.005, and learning intensity is 0.5. For GISA, the parameters are set as follows: The 

maximum number of generations is 200, population size is 30, MST initialization proportion 

is 0.6, crossover probability is 0.8, and mutation probability is 0.005. Under these parameter 

settings, the computational costs of MISA and GISA are about equivalent. For KM and FCM, 

the maximum iterative number is set to 500, and the stop threshold is 10-10. The software of 

EGSA is downloaded directly from the author’s homepage 

(http://people.cs.uchicago.edu/~pff/segment/). SCEA was proposed by us in 2008. We 
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will perform it under the tuned parameters. Here 30 component spectral clustering with 

Nyström method are combined, and 100 regions are sampled in each component spectral 

clustering algorithm. The scaling parameter for each component is randomly selected from 

the interval [3, 12]. 

 
 

    

             Image1                            Image2                             Image3                          Image4 

    

             Image5                              Image6                            Image7                         Image8 

    

            Image9                            Image10                           Image11                       Image12 

Fig. 7. The original images used in this study 

The original images are shown in Fig. 7. Image1 to Image6 are artificial texture images with 

the size of 256 256×  from the Brodatz texture images [52]. Their standard classification 

images are shown in Fig. 8. Image7 to Image9 are remote sensing images. Image7 is a Ku-

band SAR image of the Rio Grande River nearby Albuquerue, New Mexico, USA. Image8 is 

a Ku-band image of the China Lake Airport, California, USA. Image9 is an optical remote 

sensing image of Shelter Island, San Diego. The sizes of these images are all 256 256× , too. 

Image10 to Image12 are natural images. The sizes of them are 256×256, 320×320, and 

330×320, respectively. 

The watershed segmentation results of the twelve test images are shown in Fig. 9. 
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                             Image1                                    Image2                               Image3 

        

                               Image4                               Image5                                  Image6 

Fig. 8. The true partitioning of the artificial texture images 

2.4.2 Results on artificial texture images 
Image1 and Image2 contain two textures, Image3 and Image4 contain three textures and 
Image5 and Image6 contain four textures. Gray level, GLCM and wavelet features are used. 
In these experiments, the true partitioning is known. Thus we can calculate the clustering 
correct ratio directly by contrasting a segmentation result to the corresponding true  
 

Correct Ratio 
(Standard Deviation) Problem 

MISA GISA EGSA SCE FCM KM 

Image1 
0.9844 

(0.0069) 
0.9837 
(0.0021) 

0.9705 
(0) 

0.9842 
(0.0005) 

0.9841 
(0) 

0.9835 
(0) 

Image2 
0.9770 

(0.0012) 
0.9746 
(0.0015) 

0.9341 
(0) 

0.8630 
(0.0158) 

0.9745 
(0) 

0.9719 
(0) 

Image3 
0.9475 
(0.0018) 

0.9442 
(0.0026) 

0.9517 

(0) 
0.8983 
(0.0950) 

0.7863 
(0.2938) 

0.7807 
(0.2883) 

Image4 
0.9539 
(0.0010) 

0.9505 
(0.0418) 

0.9421 
(0) 

0.9614 

(0.0014) 
0.9502 
(0) 

0.9505 
(0.0001) 

Image5 
0.9622 

(0.0008) 
0.9588 
(0.0014) 

0.8326 
(0) 

0.9114 
(0.0783) 

0.7400 
(0.2718) 

0.7711 
(0.2608) 

Image6 
0.9493 

(0.0004) 
0.9485 
(0.0006) 

0.8871 
(0) 

0.9319 
(0.0408) 

0.8243 
(0.2737) 

0.8243 
(0.2642) 

Table 2. Statistic results obtained from MISA, GISA, EGSA, SCEA, FCM and KM on the 
artificial texture images 
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                                Image1                               Image2                             Image3 

     

                                 Image4                             Image5                                Image6 

     

                                Image7                               Image8                            Image9 

     

                              Image10                              Image11                          Image12 

 
 

Fig. 9. The watershed segmentation results of Image 1 to Image 12. 
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partitioning. The average results of clustering correct ratios and standard deviations based on 
30 independent runs are shown in Table 2. Fig. 10 shows the typical results of them obtained 
from the six algorithms. For each test image, the six segmentation images arranged from upper 
left to lower right are typical results of MISA, GISA, EGSA, SCEA, FCM and KM, respectively. 
Table 2 shows that MISA obtains higher correct ratio than GISA, FCM and KM do for all 

these six images, and gets the best correct ratio among all the six algorithms on Image1, 

Image2, Image5 and Image6. EGSA and SCEA get better correct ratios than MISA does on 

Image3 and Image4, respectively. EGSA is not a random algorithm, so all the standard 

deviations of its results are 0. MISA exceeds EGSA greatly on Image5 and Image6 and 

surpasses SCEA apparently on Image2 and Image3 in correct ratios. MISA exceeds KM and 

FCM greatly on Image3, Image5 and Image6 in both the correct ratios and standard 

deviation. Fig. 10 illustrates the above numerical comparisons visually.  

 
 
 
 
 
 
 
 
 

   

MISA                           GISA                             EGSA 

   

                                SCEA                                  FCM                                  KM 

 

 

(a) Segmentation results of Image1 
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                                   MISA                                GISA                               EGSA 

   

                                SCEA                                    FCM                                KM 

(b) Segmentation results of Image2 

 

   

                                     MISA                               GISA                              EGSA 

   

                                   SCEA                                FCM                                  KM 

(c) Segmentation results of Image3 
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                                   MISA                                  GISA                              EGSA 

   

                                   SCEA                                  FCM                                   KM 

(d) Segmentation results of Image4 

 

   

                                 MISA                                   GISA                                EGSA 

   

                                 SCEA                                 FCM                                   KM 

(e) Segmentation results of Image5 
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                                  MISA                                  GISA                             EGSA 

   

                                  SCEA                                  FCM                                    KM 

(f) Segmentation results of Image6 

Fig. 10. Typical results obtained from the compared algorithms on the artificial texture 
images 

2.4.3 Results on remote sensing Images 
Fig. 11 shows the typical results on remote sensing images. For each test image, the six 
segmentation images arranged from upper left to lower right are typical results of MISA, 
GISA, EGSA, SCEA, FCM and KM respectively. Gray level and wavelet features are used. 
For these remote sensing images, there is no true partitioning for reference, thus numerical 
results could not be obtained here. 
For Image7, MISA makes the river bank clearer, and generates more homogeneous lower 
crops part than GISA does. But both MISA and GISA lose the crop line on the upper left 
corner. EGSA lose the crop part in the lower left part and the island in the river, but 
generates a clear bridge. SCEA and FCM might confuse the vegetations with the river. KM 
loses most of the bridge and other detailed information. 
For Image8, MISA gets very clear edges and integrates the building area, leaving some 
speckles in the center which are the trails of thin roads there. In the GISA results, some 
buildings are lost in the background. GISA produces some speckles because 200 generations 
are not enough for it to converge. EGSA and SCEA produce unacceptable results which mix 
up major cluster information. Both FCM and KM generate coarse edges of the main roads 
and lose detailed information of other narrow roads in the center and upper right. 
For Image9, MISA and GISA can distinguish details on the port area but generate some 
speckles on the land area. EGSA doesn’t confuse the land area on the left with water, but 
misses detailed information on the port area. SCEA, FCM and KM have worse results when 
compared with MISA on the port area and compared with EGSA on the land area.  
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                                 MISA                                   GISA                                 EGSA 

     

                                 SCEA                                  FCM                                  KM 

(a) Segmentation results of Image7 

 

     

                                   MISA                                   GISA                               EGSA 

     

                                 SCEA                                  FCM                                    KM 

 
(b) Segmentation results of Image8 
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                               MISA                                    GISA                                EGSA 

   

                                  SCEA                                   FCM                               KM 

(c) Segmentation results of Image9 

 

Fig. 11. Typical results obtained from the compared algorithms on the remote sensing 
images 

2.4.4 Results on natural images 
Fig. 12 shows the typical results on natural images. For each image, the six segmentation 

images arranged from upper left to lower right are typical results of MISA, GISA, EGSA, 

SCEA, FCM and KM respectively. Gray level and wavelet features are used for experiments 

here. 

Image10 is segmented into three clusters; Image11 and Image12 are segmented into two 

clusters. Apparently, MISA produces the best results. GISA also gets better results than FCM 

and KM. EGSA, SCEA, FCM and KM lose a lot of details and even confuse very large parts 

in segmenting Image12. 

2.4.5 Sensitivity in relation to parameters 
Fig.13 shows the convergence curves of MISA and GISA got from experiments on the 

artificial texture Image4, the remote sensing Image9, and the natural Image12. Each 

experiment is repeated 30 times for statistical evaluation, and the points in those figures are 

the average values. We can see that MISA converges within no more than 50 generations on 

all the experiments, while GISA can not converge within 100 generations. 
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                                   MISA                                  GISA                                 EGSA 

     

                                   SCEA                                  FCM                                  KM 

(a) Segmentation results of Image10 

 

     

                                  MISA                                   GISA                               EGSA 

     

                                 SCEA                                    FCM                                  KM 

 
(b) Segmentation results of Image11 
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                                 MISA                                  GISA                                EGSA 

     

                                  SCEA                                FCM                                   KM 

(c) Segmentation results of Image12 

Fig. 12. Typical results obtained from the compared algorithms on the natural images 

Fig. 14 shows the curves which show the influence of learning intensity. We make use of 
correct ratios of the six artificial texture images to exhibit the effect of learning intensity. The 
experiments are repeated 30 times, and we plot their statistical average values. Based on Fig. 
14, we can see that the correct ratio increases as the learning intensity is reinforced before at 
about 0.2. After that，the curves fluctuate but do not increase apparently. This demonstrates 

that learning intensity should be adjusted properly as a small value is not enough for good 
convergency while a big one will lead to wasting of computation. 

3. Image texture classification using a manifold distance based evolutionary 
clustering cethod 

3.1 Introduction 
Image classification or segmentation based on texture features using unsupervised 

approaches has been a challenge topic. Texture is an important property of some images. A 

lot of texture feature extraction methods have been developed over the past three decades. 

These texture features can be categorized into four major categories [53, 54]: statistical, 

geometrical, model-based, and signal processing. Among them, gray-level co-occurrence 

features, first proposed by Haralick, Shanmugam and Dinstein [55], are one of the most 

common features used in literature. In some images, the same object region may vary in 

appearance from image to image as well as within the same image. Thus, the selected 

training samples in a supervised algorithm may not be sufficient to include all the class 

variability throughout the image. Under these conditions, unsupervised classification, i.e. 

clustering, may be more effective. There are a variety of clustering approaches that could be  
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Fig. 13. The convergence curves of MISA and GISA 
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Fig. 14. The influence of learning intensity versus correct ratio 

used to assign class labels to the feature vectors. These approaches can be categorized into 
two groups [56, 57]: hierarchical clustering and partitional clustering, where partitional 
clustering approaches, such as K-Means Algorithm [58], partition the data set into a 
specified number of clusters by minimizing certain criteria. Therefore, they can be treated as 
an optimization problem. As global optimization techniques, Evolutionary Algorithms 
(EAs) are likely to be a good choice for this task. 
EAs, including Genetic Algorithm (GA), Evolutionary Strategy (ES), Evolutionary 
Programming (EP), etc., have been used for clustering tasks commonly in literature [59~62]. 
A variety of EA representations for clustering solutions have been explored, such as the 
straightforward encoding with each gene coding for the cluster membership of the 
corresponding data item, and the locus-based adjacency representation [62]. Many 
researchers [59~61] have chosen to use a more indirect approach that borrows from the K-
Means algorithm: the representation codes for cluster center only, and each data item is 
subsequently assigned to a cluster representative according to an appointed dissimilarity 
measure. The most popular dissimilarity measure is the Euclidean distance. By using 
Euclidean distance as a measure of dissimilarity, these evolutionary clustering methods as 
well as the K-Means algorithm have a good performance on the data set with compact 
super-sphere distributions, but tends to fail in the data set organized in more complex and 
unknown shapes, which indicates that this dissimilarity measure is undesirable when 
clusters have random distributions. As a result, it is necessary to design a more flexible 
dissimilarity measure for clustering. Su and Chou [63] proposed a nonmetric measure based 
on the concept of point symmetry, according to which a symmetry-based version of the K-
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Means algorithm is given. This algorithm assigns data points to a cluster center if they 
present a symmetrical structure with respect to the cluster center. Therefore, it is suitable to 
clustering data sets with clear symmetrical structure. Charalampidis [64] recently developed 
a dissimilarity measure for directional patterns represented by rotation-variant vectors and 
further introduced a circular K-Means algorithm to cluster vectors containing directional 
information. 
In order to solve the texture classification task effectively, in this study, we design a novel 

evolutionary clustering method, named manifold evolutionary clustering (MEC). In MEC, 

we adopt an indirect encoding approach, namely, each individual is a sequence of real 

integer numbers representing the cluster representatives. Each data item is assigned to a 

cluster representative according to a novel dissimilarity measure which can measure the 

geodesic distance along the manifold. After extracting texture features from an image, MEC 

determines a partitioning of the feature vectors using evolutionary search. The effectiveness 

of MEC will be validated by comparing with the K-Means algorithm, a modified K-Means 

algorithm using the manifold distance-based dissimilarity measure [65], and the genetic 

algorithm-based clustering technique proposed by Maulik and Bandyopadhyay [60] in 

solving seven benchmark clustering problems of artificial data sets, three artificial texture 

image classification problems and two Synthetic Aperture Radar (SAR) images classification 

problems. 

The remainder of this section is organized as follows: Section 2.2 describes the novel 

manifold distance-based dissimilarity measure. Section 2.3 describes the evolutionary 

clustering algorithm based on the novel dissimilarity measure. In Section 2.4, we summary 

and evaluate the experimental results.  

3.2 A novel manifold distance-based dissimilarity measure 
A meaningful measure of distance or proximity between pairs of data points plays an 

important role in partitional clustering approaches. Most of the clusters can be identified by 

their location or global characteristics. Through a large mount of observation, we have 

found the following two consistency characteristics of data clustering.  

a. Local consistency refers that data points close in location will have a high affinity. 
b. Global consistency refers that data points locating in the same manifold structure will 

have a high affinity. 
For real-world problems, the distribution of data points takes on a complex manifold 

structure, which results in the classical Euclidian distance metric can only reflect the local 

consistency, but fail to describe the global consistency. We can illustrate this problem by the 

following example. As shown in Fig. 15, we expect that the affinity between point a and 

point e is higher than the affinity between point a and point f. In other words, we are looking 

for a measure of dissimilarity according to which point a is closer to point e than to point f. 

In terms of Euclidian distance metric, however, point a is much closer to point f than to e, 

thus without reflecting the global consistency. Hence for complicated real-world problems, 

simply using Euclidean distance metric as a dissimilarity measure can not fully reflect the 

characteristics of data clustering. 

Here, we want to design a novel dissimilarity measure with the ability of reflecting both the 

local and global consistency. As an example, we can observe from the data distribution in 

Fig. 15 that data points in the same cluster tend to lie in the same manifold. 

www.intechopen.com



Evolutionary-based Image Segmentation Methods   

 

205 

 

   

Fig. 15. An illustration of that the Euclidian distance metric can not reflect the global 
consistency. 

At first, data points are taken as the nodes V  of a weighted undirected graph ( , )G V E= . 

Edges { }ijE W=  reflect the affinity between each pair of data points. We expect to design a 

dissimilarity measure that assigns high affinity to two points if they can be linked by a path 

running along a manifold, and a low affinity if they cannot. This concept of dissimilarity 

measure has been shown in experiments to lead to significant improvement in classification 

accuracy when applied to semi-supervised learning [66, 67]. The aim of using this kind of 

measure is to elongate the paths that cross different manifolds, and simultaneously shorten 

those that not cross. 
To formalize this intuitive notion of dissimilarity, we need first define a so-called manifold 
length of line segment. We have found a property that a distance measure describing the 
global consistency of clustering does not always satisfy the triangle inequality under the 
Euclidean metric. As shown in Fig. 15, to describe the global consistency, it is required that 
the length of the path connected by shorter edges is smaller than that of the direct connected 

path, i.e. ab bc cd de ae+ + + < . In other words, a direct connected path between two points is 

not always the shortest one. 
Enlightened by this property, we define a manifold length of line segment as follows. 

Definition 1. The manifold length of line segment ( , )i jx x  is defined as  

 
( , )

( , ) 1i jdist x x

i jL x x ρ −5   (7) 

where ( ),i jdist x x  is the Euclidean distance between ix  and jx ; 1ρ >  is the flexing factor. 
Obviously, the manifold length of line segment possesses the property mentioned above, 
thus can be utilized to describe the global consistency. In addition, the manifold length 
between two points can be elongated or shortened by adjusting the flexing factor ρ . 

www.intechopen.com



 Image Segmentation 

 

206 

According to the manifold length of line segment, we define a new distance metric, called 
manifold distance metric, which measures the distance between a pair of points by 
searching for the shortest path in the graph. 

Definition 2. Let data points be the nodes of graph ( , )G V E= , and lp V∈  be a path of length 

1l p= −  connecting the nodes 1p  and pp , in which 1( , )k kp p E+ ∈ , 1 k p≤ < . Let ,i jP  

denote the set of all paths connecting data points ix  and jx . The manifold distance between 

ix  and jx  is defined as 

 
,

1

1
1

( , ) min ( , )
i j

p

i j k k
p

k

D x x L p p

−
+∈ =∑P

5 .  (8) 

The manifold distance satisfies the four conditions for a distance metric, i.e. 
( , ) ( , )i j j iD x x D x x= ; ( , ) 0i jD x x ≥ ; ( , ) ( , ) ( , )i j i k k jD x x D x x D x x≤ +  for all , ,i j kx x x ; and 

( , ) 0i jD x x =  if and only if i jx x= . 

As a result, the manifold distance metric can measure the geodesic distance along the 
manifold, which results in any two points in the same manifold being connected by a lot of 
shorter edges within the manifold while any two points in different manifolds are connected 
by a longer edge between manifolds, thus achieving the aim of elongating the distance 
among data points in different manifolds and simultaneously shortening the distance 
among data points in the same manifold.  

3.3 Evolutionary clustering based on the manifold distance 
By using EAs to solving clustering tasks, it is necessary to design the individual 
representation method and the heuristic search operators, and formulate the objective 
function for optimization. 

3.3.1 Representation and operators 
In this study, we consider the clustering problem from a combinatorial optimization 
viewpoint. Each individual is a sequence of real integer numbers representing the sequence 
number of K cluster representatives. The length of a chromosome is K words, where the first 
gene represents the first cluster, the second gene represents the second cluster, and so on. As 
an illustration, let us consider the following example. 
Example 1. Let the size of the data set is 100 and the number of clusters being considered is 
5. Then the individual (6, 19, 91, 38, 64) represents that the 6-th, 19-th, 91-st, 38-th, and 64-th 
points are chosen to represent the five clusters, respectively. 
This representation method does not mention the data dimension. If the size of the data set 
is N and the number of clusters is K, then the search space is NK. 
Crossover is a probabilistic process that exchanges information between two parent 
individuals for generating offspring. In this study, we use the uniform crossover [68] 
because it is unbiased with respect to the ordering of genes and can generate any 
combination of alleles from the two parents [62, 69]. An example of the operation of uniform 
crossover on the encoding employed is shown in example 2. 
Example 2. Let the two parent individuals are (6, 19, 91, 38, 64) and (3, 29, 17, 61, 6), 
randomly generate the mask (1, 0, 0, 1, 0), then the two offspring after crossover are (6, 29, 
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17, 38, 64) and (3, 19, 91, 61, 64). In this case, the first offspring is not (6, 29, 17, 38, 6) because 
the 6 in bold is repeat, we keep it unchanged. 
Each individual undergoes mutation with probability pm as example 3. 
Example 3. Let the size of the data set is 100 and the number of clusters being considered is 

5. Then the individual (6, 19, 91, 38, 64) can mutate to (6, 19+ (100-19) +1random×⎢ ⎥⎣ ⎦ , 91, 38, 

64) or (6, 19- (19-1) +1random×⎢ ⎥⎣ ⎦ , 91, 38, 64) equiprobably when the second gene is chosen to 

mutate, random denotes a uniformly distributed random number in the range [0,1). 

3.3.2 Objective function 
Each data item is assigned to a cluster representative according to its manifold distance to 

the cluster representatives. As an illustration, let us consider the following example. 

Example 4. Let the 6-th, 19-th, 91-st, 38-th, and 64-th points represent the five clusters, 

respectively. For the first point, we compute the manifold distance between it and the 6-th, 

19-th, 91-st, 38-th, and 64-th points, respectively. If the manifold distance between the first 

point and the 38-th point is the minimum one, then the first point is assigned to the cluster 

represented by the 38-th point. All the points are assigned in this way.  

Subsequently, the objective function is computed as follows: 

 ( ) ( , )
k k

k
C C i C

Dev C D i μ
∈ ∈

= ∑ ∑   (9) 

where C  is the set of all clusters, kμ  is the representative of cluster kC , and ( , )kD i μ  is the 

manifold distance between the i-th data item of cluster kC  and kμ . 

3.3.3 Manifold evolutionary clustering algorithm 
In MEC, the processes of fitness computation, roulette wheel selection with elitism [70], 

crossover and mutation are executed for a maximum number of generations Gmax. The best 

individual in the last generation provides the solution to the clustering problem. The main 

loop of MEC is as follows. 
 

Algorithm 2.1. Manifold Evolutionary Clustering (MEC)  

Begin 
1. t=0 
2. randomly initialize population P(t) 
3. assign all points to clusters as the manifold distance and     compute the 

objective function values of P(t) 
4. if t< Gmax  
5.   t=t+1 
6.   select P(t) from P(t-1) using roulette wheel selection with elitism 
7.   crossover P(t) 
8.   mutate P(t) 
9.   go to step 3 
10. end if 
11. output the best and stop 

End 
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The initial population in step 2 is initialized to K randomly generated real integer number in 
[1, N], where N is the size of the data set. This process is repeated for each of the P 
chromosomes in the population, where P is the size of the population. 

3.4 Experimental study 
3.4.1 Experimental setup 
In order to validate the performance of MEC, we first apply MEC to seven benchmark 
clustering problems of artificial data sets. The results will be compared with the K-Means 
algorithm (KM) [58], a modified K-Means algorithm using the manifold distance-based 
dissimilarity measure (DSKM) [65], and the genetic algorithm-based clustering technique 
(GAC) proposed by Maulik and Bandyopadhyay [60]. In all the algorithms, the desired 
number of clusters is set to be known in advance.  
In the second experiment, we will solve three artificial texture image classification problems 
using MEC, GAC, DSKM and KM, respectively. 
In the third experiment, we will solve the classification problems of one X-band SAR image 
and one Ku-band SAR image by using MEC, GAC, DSKM and KM, respectively. 
In the image classification experiments (the second and third experiments), we will use the 
gray-level co-occurrence matrix (GLCM) [55] method to extract texture features from 
images. There are many statistics that can be determined from each GLCM, such as angular 
second moment, contrast, correlation, sum of squares, entropy, and so on. Following [54], in 
this study, we chose three statistics, dissimilarity, entropy and correlation which indicate the 
degree of smoothness of the texture, the homogeneity and the correlation between the gray 
level pair, respectively. There are four parameters that must be indicated in order to 
generate co-occurrence data, namely, interpixel orientation, interpixel distance, the number 

of gray levels and window size. Typically, interpixel orientation is set to o o o o0 , 45 ,  90 ,  135  

since this is easiest to implement. Short interpixel distances have typically achieved the best 
success, so interpixel distance is 1 will be used. This combination of offset and orientation 
has characterized SAR texture well [54]. The role of varying the values of the number of 
gray levels and windows size with respect to GLCM statistics has been presented in many 
references [54, 71]. After their analysis and fine-tune experiments, in this study, we set the 

number of gray levels is 16 and the window size is 13 13× . 

The parameter settings used for MEC and GAC in our experimental study are given in Table 
3. For DSKM and KM, the maximum iterative number is set to 500, and the stop threshold is 
10-10. 
 

Parameter MEC GAC 

Maximum Number of 
generations 

100 100 

population size 50 50 
Crossover probability 0.8 0.8 
Mutation probability 0.1 0.1 

Table 3. Parameter settings for MEC and GAC 

In the first two experiments, the true partitioning is known, we will evaluate the 
performance using two external measures, the Adjusted Rand Index [62, 72, 73] and the 
Clustering Error [65]. 
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The Adjusted Rand Index [72] is a generalization of the Rand Index [74] which takes two 
partitioning as the input and count the number of pair-wise co-assignments of data items 

between the two partitioning. Given a set of N points { }1 2, , , NS p p p= A , suppose 

{ }1 2, , , KU u u u= A  and { }1 2, , , KV v v v= A  represent two different partitions of the points in 

S such that 
1 1

K K

i j

i j

u v S
= =

= =∪ ∪  and ' 'i i j ju u v v∩ = ∩ =∅  for 1 ' , 1 'i i K j j K≤ ≠ ≤ ≤ ≠ ≤ . 

Suppose that U is the known true partition, and V is a clustering result. Let a be the number 
of pairs of points in the same class in U and in the same class in V, b be the number of pairs 
of points in the same class in U but not in the same class in V, c be the number of pairs of 
points in the same class in V but not in the same class in U, and d be the number of pairs of 
points in different classes in both partitions. The quantities a and d can be interpreted as 

agreements, and b and c as disagreements. Then the Rand Index is 
a d

a b c d

+
+ + + . The Rand 

Index lies between 0 and 1, when the two partitions agree perfectly, the Rand Index is 1. A 
problem with the Rand Index is that the expected value of the Rand index of two random 
partitions does not take a constant value (say zero). The Adjusted Rand Index proposed by 
Hubert and Arabie [72] assumes the generalized hypergeometric distribution as the model 
of randomness, i.e. the U and V partitions are picked at random such that the numbers of 

points in the classes are fixed. Let ijn  be the number of points that are in both class iu  and 

class jv . Let in i  and jni  be the number of points in class iu  and class jv  respectively. 

Under the generalized hypergeometric model, it can be shown that: 

 , 22 2 2( ) ( ) ( ) /( )ij ji
n nn n

i j i jE ••⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∑ ∑ ∑i  (10) 

Then the Adjusted Rand Index is given as  

 
2 2 2, 2

1
22 2 2 22

( ) ( )( ) /( )
( , )

[ ( ) ( )] [ ( ) ( )]/( )

jiij

j ji i

nn
i j

n n
i j

n nn n n
i j i j

R U V

••

• •• •

⎡ ⎤⎢ ⎥⎣ ⎦−= + −
∑ ∑∑

∑ ∑ ∑ ∑
i

i
  (11) 

The Adjusted Rand Index return values in the interval [0, 1] and is to be maximized.  

Let the known true partition be { }1 2, , , KU u u u= A  and the clustering result be 

{ }1 2, , , KV v v v= A . { }, 1,2, ,i j K∀ ∈ A , ( , )Confusion i j denotes the number of same data points 

both in the true cluster iu  and in the cluster jv  produced. Then, the Clustering Error is 

defined as 

 
1 1

1
( , ) ( , )

K K

i j
i j

CE U V Confusion i j
N = =≠

= ∑∑ ,  (12) 

where N is the size of data set. Note that there exists a renumbering problem, so the 
Clustering Error is computed for all possible renumbering of V, and the minimum one is 
taken. The Clustering Error also returns values in the interval [0, 1] and is to be minimized. 
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3.4.2 Implementation results on benchmark clustering problems 
We first select seven artificial data sets, named Line-blobs, Long1, Size5, Spiral, Square4, 
Sticks, and Three-circles to study a range of different interesting data properties. The 
distribution of data points in these data sets can be seen in Fig. 16. We perform 30 
independent runs on each problem. The average results of the two metrics, Clustering Error 
and Adjusted Rand Index, are shown in Table 4.  
 

Clustering Error Adjusted Rand Index 
Problem 

MEC GAC DSKM KM MEC GAC DSKM KM 

line-blobs 0 0.263 0.132 0.256 1 0.399 0.866 0.409 

Long1 0 0.445 0 0.486 1 0.011 1 0.012 

Size5 0.010 0.023 0.015 0.024 0.970 0.924 0.955 0.920 

Spiral 0 0.406 0 0.408 1 0.034 1 0.033 

Square4 0.065 0.062 0.073 0.073 0.835 0.937 0.816 0.816 
Sticks 0 0.277 0 0.279 1 0.440 1 0.504 

three-circles 0 0.569 0.055 0.545 1 0.033 0.921 0.044 

Table 4. Results of MEC, GAC, DSKM and KM on artificial data sets where the results in 
bold are the best ones 

From Table 4, we can see clearly that MEC did best on six out of the seven problems, while 
GAC did best only on the Square4 data set. DSKM also obtained the true clustering on three 
problems. KM and GAC only obtained desired clustering for the two spheroid data sets, i.e. 
Size5 and Square4. This is due to that the structure of the other five data sets does not satisfy 
convex distribution. On the other hand, MEC and DSKM can successfully recognize these 
complex clusters, which indicate the manifold distance metric are very suitable to measure 
complicated clustering structure. When comparisons are made between MEC and DSKM, 
MEC obtained the true clustering on the Long1, Spiral, Sticks, Line-blobs and Three-circles 
in all the 30 runs, but DSKM can not do it on the Line-blobs and Three-circles. Further more, 
for the Size5 and Square4 problems, MEC did a little better than DSKM in both the 
Clustering Error and the Adjusted Rand Index. The main drawback of DSKM is that it has to 
recalculate the geometrical center of each cluster as the K-Means algorithm after cluster 
assignment which reducing the ability of reflecting the global consistency. MEC made up 
this drawback by evolutionary searching the cluster representatives from a combinatorial 
optimization viewpoint. In order to show the performance visually, the typical simulation 
results on the eight data sets obtained from MEC are shown in Fig. 16. 

3.4.3 Implementation results on artificial texture image classification 
Image1 is a simple 256 256×  bipartite image (Fig. 17(a)). The original image contains two 
textures, cork and cotton, selected from the Brodatz texture images [75]. Fig. 17(b) represents 
the true partitioning of Image1. Image2 also contains two textures as shown in Fig. 17(c), 
and Fig. 17(d) represents its true partitioning. Image3 is a more complicated texture 
synthesized image with 4 classes, and Fig. 17(e) and (f) represent the original image and the 
true partitioning, respectively. 
We perform 30 independent runs on each problem. The average results of the two metrics, 
Clustering Error and Adjusted Rand Index, are shown in Table 5. Fig. 18 to Fig. 20 are the 
typical implementation results obtained from the four algorithms, MEC, GAC, DSKM and 
KM, in clustering the three texture images, respectively. 
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Fig. 16. The typical implementation results on the artificial data sets obtained from MEC. (a) 
Line- blobs; (b) Long1; (c) Size5; (d) Spiral; (e) Square4; (f) Sticks; (G) Three-circles. 
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Fig. 17. Artificial texture images and their true partitioning. (a) Original Image1; (b) True 
partitioning of Image1; (c) Original Image2; (d) True partitioning of Image2; (e) Original 
Image3; (f) True partitioning of Image3. 
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Clustering Error Adjusted Rand Index 
Problem 

MEC GAC DSKM KM MEC GAC DSKM KM 

Image1 0.0030 0.0069 0.0035 0.0071 0.9462 0.9115 0.9437 0.9113 

Image2 0.0037 0.1594 0.0072 0.2017 0.9376 0.9057 0.9109 0.8869 

Image3 0.1212 0.2554 0.1858 0.2899 0.8638 0.8012 0.8117 0.8094 

Table 5. Results of MEC, GAC, DSKM and KM on artificial texture image classification 
where the results in bold are the best ones 

 

 

Fig. 18. The typical implementation results obtained from (a) MEC, (b) GAC, (c) DSKM and 
(d) KM in clustering Image1. 
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As shown in Table 5, all the average values of Cluster Error obtained from MEC, GAC, 
DSKM and KM in clustering Image1 are less than 1%, so all the four algorithms are easily 
able to segment the Image1. The values of Cluster Error and Adjusted Rand Index and Fig. 
18 also show that the results obtained from MEC and DSKM are much better than the results 
of GAC and KM because both MEC and DSKM assign data items according to the manifold 
distance while GAC and KM assign data items according to Euclidian distance. However, 
the computational cost of the manifold distance is much larger than that of Euclidian 
distance. MEC and DSKM have similar results in clustering Image1. 
 
 

 

Fig. 19. The typical implementation results obtained from (a) MEC, (b) GAC, (c) DSKM and 
(d) KM in clustering Image2. 
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Fig. 20. The typical implementation results obtained from (a) MEC, (b) GAC, (c) DSKM and 
(d) KM in clustering Image3. 

In clustering Image2, the average value of Cluster Error obtained from MEC is much smaller 

than the results obtained from GAC, DSKM and KM, and the average value of Adjusted 

Rand Index of MEC is obviously greater than the results obtained from GAC, DSKM and 

KM. So MEC does best in this problem. Fig. 19 also shows that the MEC result and DSKM 

result are obviously better than the GAC result and KM result, and the MEC result is better 

than the DSKM result. MEC segment the two textures better than DSKM may be due to 

MEC search the two cluster representatives using evolutionary searching but DSKM has to 

recalculate the geometrical center of each cluster after cluster assignment in each iteration 

which reduces the ability of reflecting the global consistency.  
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In clustering the more complicated texture image Image3, all the average values of Cluster 

Error are greater than 12%, so none of the four algorithms can segment the image very well 

based on GLCM features. However, Table 5 and Fig. 20 show that MEC does much better 

than the other three algorithms. 

3.4.4 Implementation results on remote sensing image classification 
The first image, as shown in Fig. 21(a), is an X-band SAR image of a lakeside in Switzerland. 

The size of the image is 140 155×  pixels. We want to classify the image into three clusters, 

namely, the lake, the city, and the mountainous region. The second image, as shown in Fig. 

21(b), is a Ku-band SAR image of the Rio Grande River nearby Albuquerque, New Mexico, 

USA. The size of the image is 256 256×  pixels. We want to classify the image into three 

clusters, namely, the river, the vegetation, and the crop. Fig. 22 and Fig. 23 shows the 

clustering results obtained from the MEC, DSKM, GAC and KM in clustering these two SAR 

image respectively. 

 
 
 
 

 
 
 

Fig. 21. Original SAR images. (a) X-band SAR image; (b) Ku-band SAR image. 

Fig. 22 shows that all methods are readily able to perform the classification of the X-band 

SAR image. Fig. 22(b) and (d) show that many mountainous regions in the bottom left are 

recognized as lake by KM and GAC. Fig.22 (a) and (c) show that MEC can recognize these 

regions and DSKM can obviously reduce these error recognitions. Meanwhile, KM confuses 

many mountainous regions in the top left with city seriously. MEC reduce these errors 

mostly. Generally speaking, the MEC method outputs relatively better partitioning.   
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Fig. 22. Implementation results obtained from (a) MEC, (b) GAC, (c) DSKM and (d) KM in 
clustering the X-band SAR image. 

Fig. 23 shows that the MEC, GAC, DSKM and KM generate different results, and all the 

methods do not perform as well as the first SAR image. Generally speaking, the two 

methods based on the manifold distance generate better partitioning than GAC and KM. 

The dissimilarity measure based on Euclidean distance tends to confuse the crop with river. 

Relatively, MEC and DSKM generate better partitioning of the river region. In 

distinguishing the vegetation and crop, the partitioning of GAC and KM appear more 

discontinuous than the results of MEC and DSKM method. GAC and KM tend to confuse 

the vegetation with crop along the river, delineating the crop more than it should. However, 

MEC and DSKM tend to identify the vegetation in the bottom left as the river, due to the 

nature of the gray-level of the leads in that region. DSKM also tends to confuse the 

vegetation with crop in the region along the river and the bottom left of the image. 

Generally speaking, MEC does better than DSKM, GAC does better than KM, and MEC and 

DSKM do much better than GAC and KM, in partitioning this Ku-band SAR image. 

3.4.5 Robustness and computing time 
In order to compare the robustness of these methods, we follow the criteria used by [76]. In 
detail, the relative performance of the algorithm m on a particular data set is represented by 
the ratio bm of its mean value of Adjusted Rand Index Rm and the highest mean value of 
Adjusted Rand Index among all the compared methods: 
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Fig. 23. Implementation results obtained from (a) MEC, (b) GAC, (c) DSKM and (d) KM in 
clustering the Ku-band SAR image. 

 
max

m
m

k
k

R
b

R
=   (13) 

The best method m* on that data set has bm* =1, and all the other methods have bm≤ 1. The larger 
the value of bm, the better the performance of the method m is in relation to the best performance 
on that data set. Thus the sum of bm over all data sets provides a good measurement of the 
robustness of the method m. A large value of the sum indicates good robustness. 
Fig. 24 shows the distribution of bm of each method over the ten problems. For each method, 
the 10 values of bm are stacked and the sum is given on top of the stack. Fig. 24 reveals that 
MEC has the highest sum value. In fact, the bm values of MEC are equal or very close to 1 on 
all the test problems, which denotes MEC performs very well in different situations. Thus 
MEC is the most robust method among the compared methods. 
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Fig. 24. Robustness of the compared algorithms  

Fig. 25 illustrates the sum of the computing time of the four algorithms in solving the twelve 
problems at an IBM IntelliStation M Pro 6233. From Fig. 25, it can be seen that the 
computing time of MEC is obviously longer than the computing time of GAC and KM. The 
main computational cost of MEC lies in computing the manifold distance between each pair 
of data points. 

 
Fig. 25. Computing time of the compared algorithms. 

4. Concluding remarks 

In the first method, we proposed a novel image segmentation approach based on memetic 
algorithm called MISA. MISA applies the idea of clustering to achieve image segmentation task. 
In preprocessing phase, gray-level co-occurrence matrix and wavelet decomposition are used 
for feature extraction. The watershed segmentation is employed to segment images into non-
overlap small regions. MISA tries to find the optimal combination of the watershed regions 
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under the criteria of interclass variance in feature space by a memetic algorithm. In MISA, after 
implementing cluster-based crossover and mutation, the individual learning procedure moves 
exocentric regions in current cluster to the one they should belong to according to the distance 
between these regions and cluster centers in feature space. Then, tournament selection and 
elitism strategy are used for producing the next generation. If stop criterion is satisfied, the 
segmentation result is outputted directly using the best individual in population. 
In order to evaluate the new algorithm, six artificial texture images, three remote sensing 
images and three natural images are employed in experiments. The EGSA, SCEA, GISA, 
FCM and KM are our compared algorithms. We exhibit typical segmentation results, 
convergence curves for all kinds of images, and numerical results on artificial texture images 
for which the true partitioning is known. Experimental results showed that MISA 
outperformed GISA on most of the tested images. The only difference between GISA and 
MISA lies in the individual learning strategy. Thus the new improvement of MISA could 
benefit from the learning operator. The comparisons between MISA and the compared 
algorithms showed that MISA was an effective image segmentation approach. 
Image segmentation remains a challenging problem. The main contribution of this study is 
to make substantial progress through the introduction of memetic computing methods to 
solving this problem. This study also shows that MAs provide useful computational tools. 
However we only designed one local search technique for image segmentation problem in 
this method. We will try to design more individual learning methods to cooperate together 
as well as higher order learning strategy in our future work. 
In this study, we have attempted to illustrate the power of MA for segmenting the three 
kinds of images, namely texture images, remote sensing images and natural images. In fact, 
it is difficult or impossible to design an always powerful general-purpose algorithm. Thus, 
applying the proposed algorithm for practical applications such as magnetic resonance 
imaging (MRI) image segmentation and synthetic aperture radar (SAR) image segmentation 
with domain-specific knowledge is also planned in our future work. 
In the second method, we proposed the manifold evolutionary clustering using a novel 
representation method and a manifold distance-based dissimilarity measure to solve 
unsupervised image classification based on texture features. The experimental results on 
seven artificial data sets with different manifold structure, three artificial texture images and 
two SAR images showed that the novel manifold evolutionary clustering algorithm 
outperformed the KM, GAC and DSKM in terms of cluster quality and robustness. MEC 
made up the drawbacks of DSKM by evolutionary searching the cluster representatives 
from a combinatorial optimization viewpoint instead of recalculating the center of each 
cluster after cluster assignment.  
The manifold evolutionary clustering algorithm is a trade-off of flexibility in clustering data 
with computational complexity. The main computational cost for the flexibility in detecting 
clusters lies in searching for the shortest path between each pair of data points which makes 
it much slower than GAC and KM. To find a fast or approximate computing method of the 
manifold distance is also our future work. 
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