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1. Introduction

Many systems in nature and of practical interest can be modeled as large collections

of interacting subsystems. Such systems are referred as "Multi Agent Systems" (briefly

MASs) and some examples include electrical power distribution networks (P. Kundur,

1994), communication (F. Paganini, 2001), and collections of vehicles traveling in formation

(J.K. Hedrick et al., 1990). Several practical issues concern the design of decentralized

controllers and the stability analysis of MASs in the presence of uncertainties in the subsystem

interconnection topology (i.e. due in practical applications to failures of transmission lines).

The analysis and control of collections of interconnected systems have been widely studied

in the literature. Early work on stability analysis and decentralized control of large-scale

interconnected systems is found in (D. Limebeer & Y.S. Hung, 1983; A. Michel & R. Miller,

1977; P.J. Moylan & D.J. Hill, 1978; Siljak, 1978; J.C. Willems, 1976). Some of the more widely

notable stability criteria are based on the passivity conditions (M. Vidyasagar, 1977) and on

the well-known notion of connective stability introduced in (Siljak, 1978).

More recently, MASs have appeared broadly in several applications including formation

flight, sensor networks, swarms, collective behavior of flocks (Savkin, 2004; C.C. Cheaha et al.,

2009; W. Ren, 2009) motivating the recent significative attention of the scientific community to

distributed control and consensus problems (i.e. (R.O. Saber & R. Murray, 2004; Z. Lin et al.,

2004; V. Blondel et al., 2005; J. N. Tsitsiklis et al., 1986)). One common feature of the consensus

algorithm is to allow every agent automatically converge to a common consensus state using

only local information received from its neighboring agents. "Consensusability" of MASs is a

fundamental problem concerning with the existence conditions of the consensus state and

it is of great importance in both theoretical and practical features of cooperative protocol

(i.e. flocking, rendezvous problem, robot coordination). Results about consensuability of

MASs are related to first and second order systems and are based on the assumption of

jointly-connected interaction graphs (i.e. in (R.O. Saber & R. Murray, 2004; J. N. Tsitsiklis

et al., 1986)). Extension to more general linear MASs whose agents are described by

LTI (Linear Time Invariant) systems can be found in (Tuna, 2008) where the closed-loop

MASs were shown to be asymptotic consensus stable if the topology had a spanning

tree. In (L. Scardovi & R. Sepulchre, 2009) it is investigated the synchronization of a

Consensuability Conditions of Multi Agent 

Systems with Varying Interconnection Topology 
and Different Kinds of Node Dynamics 

18

www.intechopen.com



network of identical linear state-space models under a possibly time-varying and directed

interconnection structure. Many investigations are carried out when the dynamic structure is

fixed and the communication topology is time varying (i.e. in (R.O. Saber & R. Murray, 2004;

W. Ren & R. W. Beard, 2005; Ya Zhanga & Yu-Ping Tian, 2009)). One of main appealing field
of research is the investigation of the MASs consensusability under both the dynamic agent

structure and communication topology variations. In particular, it is worth analyzing the joint

impact of the agent dynamic and the communication topology on the MASs consensusability.

The aim of the chapter is to give consensusability conditions of LTI MASs as function of the

agent dynamic structure, communication topology and coupling strength parameters. The

theoretical results are derived by transferring the consensusability problem into the robust

stability analysis of LTI-MASs. Differently from the existing works, here the consensuability

conditions are given in terms of the adjacency matrix rather than Laplacian matrix. Moreover,

it is shown that the interplay among consensusability, node dynamic and topology must be

taken into account for MASs stabilization: specifically, consensuability of MASs is assessed

for all topologies, dynamic and coupling strength satisfying a pre-specified bound. From

the practical point of view the consensuability conditions can be used for both the analysis

and planning of MASs protocols to guarantee robust stability for a wide range of possible

interconnection topologies, coupling strength and node dynamics. Also, the number of

subsystems affecting the overall system stability is taken into account as it is analyzed the

robustness of multi agent systems if the number of subsystems changes. Finally, simulation

examples are given to illustrate the theoretical analysis.

2. Problem statement

We consider a network composed of linear systems interconnected by a specific topological

structure. The dynamical system at each node is of m-th order and described by the matrices

(A, B, C). Let G(V, E, U) be a directed weighted graph (digraph) with the set of nodes V = 1..n,

set of edges E ⊆ n × n, and the associated weighted adjacency matrix U = {uij} with uij > 0

if there is a directed edge of weight uij from vertex j (node parent) into vertex i (node child).

The linear systems are interconnected by a directed weighted graph G(V, E, U). Each node

dynamical is described by:

ẋi(t) = Axi(t) + Bvi(t)

yi(t) = Cxi(t) (1)

with vi(t) is the input to the i-th node of the form

vi(t) =
n

∑
j=1

uijyj(t). (2)

In this way, each node dynamic is influenced by the sum of its neighbors’ outputs. This yields

to the MAS network equation:

ẋi(t) = Axi(t) +
n

∑
j=1

uijBCxj(t) (3)

with 1 ≤ i ≤ n, and its compact form:

ẋ(t) = Agx(t) (4)
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with Ag = (In ⊗ A) + (U ⊗ BC), with ⊗ denotes the matrix Kronecker product. Notice that

the above equation can be associated to the main model used in the literature for describing

the synchronization phenomena, energy distribution, tanks network (e.g. in (R. Cogill & S.

Lall, 2004)). Moreover the system at each node can be MIMO or SISO type, and the matrix
product BC takes into account the coupling strength and the coupling interaction among the

state system variables. Observing the MAS model (3) we point out as the overall network

dynamic is affected by the node system dynamic matrix A, the coupling matrix BC, and by

the adjacency matrix U of the topological structure.

Consider a network with n agents whose topology information exchange is described by

a graph G(V, E, U) and let xi the state of agent-node i-th, consensus corresponds to the

network condition such that the state of the agents as a whole asymptotically converges to an

equilibrium state with identical elements (i.e. xi = xj for all (i, j) ∈ n × n). The common value

x̄ is named consensus value. Consensusability of MASs is a fundamental problem concerning

with the conditions for assessing network consensus equilibrium. Under the assumption

of the existence of a network equilibrium, then consensuability deals with the research of

analytical conditions such that the network equilibrium corresponds to a consensus state.

In this way, without loss of generality, the consensuability problem can be reduced to the

problem of assessing stabilization conditions of the MAS network (3) with respect to the 0

equilibrium point (i.e. xi = xj = 0 for all (i, j) ∈ n × n).

Hence, we are interested in solving the following problem:

Problem Given a multi agent network described by (3), to determinate the MAS

consensuability conditions as function of node dynamic, topology and coupling strength.

Specifically, consensuability of MASs is assessed for all topologies, dynamic and coupling

strength satisfying a pre-specified bound.

In the follows we will present analytical conditions for solving the above Problem.

3. Conditions for MASs consensuability

Before of presenting the MASs consensuability conditions of (3), we have to recast the

eigenvalues set σ(Ag) of MAS network dynamic matrix Ag.

Lemma 1 Let σ(U)={µi} the eigenvalues set of the adjacency matrix U, σ(Ag) the eigenvalues

set of the MAS dynamical matrix Ag, then results: σ(Ag) =
⋃

i σ(A + µiBC) for all 1 ≤ i ≤ n.

Proof Let J the Jordan canonical form of U, then it exists a similarity matrix S so that J =
S−1US. Hence S ⊗ In is a similarity matrix for the matrices Im ⊗ A + U ⊗ BC and Im ⊗ A +
J ⊗ BC. From the Kronecker product (Horn R.A. & Johnson C.R., 1995) results:

(S ⊗ In)−1(Im ⊗ A + U ⊗ BC)(S ⊗ In) =

(S−1 ⊗ In)(Im ⊗ A + U ⊗ BC)(S ⊗ In) =

(Im ⊗ A) + (S−1US ⊗ BC) = (Im ⊗ A) + (J ⊗ BC)

with J being an upper triangular matrix with Im ⊗ A + J ⊗ BC as upper triangular block

matrix. Hence the eigenvalues of the matrix Im ⊗ A + J ⊗ BC are the union of the eigenvalues

of the block matrix on the diagonal.
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From the above Lemma 1, the eigenvalues of the MAS dynamic matrix Ag are explicitly

function of those of the matrix A + µiBC, for all i. So we can decouple the effects of topology

structure (by µi), the coupling strength BC and node dynamic A on the overall stability of the

MAS. This can be used for giving stability MAS condition as function of topology structure,
node dynamic and coupling strength as shown by the following Theorem 1:

Theorem 1 Let the MAS composed of n identical MIMO system of order m-th and

interconnected by the digraph G = (V, E, U) with adjacency matrix U, with eigenvalues

µ1 ≤ µ2 ≤ . . . µn. If the node dynamic matrix A = {aij} and the coupling matrix BC = {cij}
fulfill the conditions:

aii + µkcii ≤ 0 (5)

|aii + µkcii| ≥ ∑
j �=i

|aij + µkcij|

∀i = 1, 2, ..., m and ∀k = 1, 2, ...., n, then the MAS (3) is stable.

Proof If the conditions (5) hold, then all eigenvalues of the matrix

A + µkBC =

⎛

⎜

⎜

⎜

⎝

a11 + µkc11 a12 + µkc12 . . . a1m + µkc1n
a21 + µkc21 a22 + µkc22 . . . a2m + µkc2m

...
...

...
. . .

am1 + µkcm1 am2 + µkcm2 . . . amm + µkcmm

⎞

⎟

⎟

⎟

⎠

,

∀k = 1, 2, . . . , n, are located in a convex set in the left complex half plane as result by the

application of the Gershgorin’s circle theorem (Horn R.A. & Johnson C.R., 1995). Hence, by

Lemma 1, the MAS is stable.

The previous Theorem 1 easily yields to the following corollaries.

Corollary 1 Let the MAS composed of n identical MIMO system of order 2 and

interconnected by the digraph G = (V, E, U), with adjacency matrix U with eigenvalues

µ1 ≤ µ2 ≤ . . . µn. If the node dynamic matrix A = {aij} and the coupling matrix BC = {cij}
with cij ≥ 0, i, j = 1, 2, fulfill the conditions:

aij ≥ −cijµ1

aii ≤ −aij − (cii + cij) · µn
(6)

or

aii ≤ −ciiµn
aij ≤ −cijµn

aii ≤ aij + (cij − cii) · µ1,

(7)

i, j = 1, 2, then the MAS (3) is stable.
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Because the adjacency matrix U of a graph has both positive and negative eigenvalues, the

conditions (6) and (7) implicitly imply the assumption that the single system at the node is

stable. In this way, as expected, we derive that it is not possible to stabilize a network of

instable systems by acting only on the topological structure. Given a specified node dynamic,
coupling strength and bound on the adjacency matrix U, by conditions (6) and (7) we

can assess MAS stability. Moreover, the MAS robustness with respect to varying switching

topology can be dealt by considering the span of the eigenvalue of the admissible structure

topologies. As we will show in the follows, it is possible easily to evaluate the eigenvalues of

Ag, given the eigenvalues of U in some simple and representative cases of interest.

Corollary 2 Let the MAS composed of n identical MIMO system of order 1 and

interconnected by the digraph G = (V, E, U), with adjacency matrix U with eigenvalues

µ1 ≤ µ2 ≤ . . . µn. If the node dynamic matrix A = a and the coupling matrix BC = c fulfill

the conditions:

a ≤ −c · µn if c ≥ 0 (8)

a ≤ −c · µ1 if c < 0, (9)

then the MAS (3) is stable.

The Corollary 2 reduces the analytical result of Theorem 1 to the case of the consensus of

integrator (R.O. Saber & R. Murray, 2004) with coupling gain c. Smaller c, higher is the degree

of robustness of the network to the slower node dynamic. In the opposite, higher c reduces the

stability margin of the MAS. Finally, for a fixed dynamic at the node, the maximum admissible

coupling strength c depends on the maximum and minimum eigenvalues of the adjacency

matrix:

c ≤ −
a

µn
if c ≥ 0 (10)

c ≥ −
a

µ1
if c < 0. (11)

Corollary 3 Let the MAS of n identical MIMO system of the m-th order, interconnected by the

digraph G = (V, E, U), with adjacency matrix U with eigenvalues µ1 ≤ µ2 ≤ . . . µn. If the

node dynamic matrix A = {aij} and the coupling matrix BC = {cij} are both upper or lower

triangular matrix and fulfill the conditions:

aii ≤ −cii · µn if cii ≥ 0 (12)

aii ≤ −cii · µ1 if cii < 0, (13)

then the MAS (3) is stable.
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(a) (b)

(c)

Fig. 1. Procedure of redirectioning of links in a regular network (a) with increasing probability p. As p
increases the network moves from regular (a) to random (c), becoming small world (b) for a critical value

of p. n=20, k=4

Notice that if BC = c · In, (10) and (11) become:

c ≤ −
min

i
|aii|

µn
If cii ≥ 0 (14)

c > −
min

i
|aii|

µ1
If cii < 0 (15)

and hence the stability of MAS is explicitly given as function of the network slowest node

dynamic.

Now we would like to point out the case of undirected topology with symmetric adjacency

matrix U. If we assume A and BC being symmetric, then Ag is symmetric with real eigenvalue.

Moreover from the field value property (Horn R.A. & Johnson C.R., 1995), let σ(A) = {αj} and

σ(BC) = {νj} the eigenvalues set of A and BC, then the eigenvalues of A + µiBC are in the

interval [minj{αj} + µi minj{νj}, maxj{αj} + µi maxj{νj}], for every 1 ≤ i ≤ n , 1 ≤ j ≤ m.

In this way, there is a bound need to be satisfied by the topology structure, node dynamic and

coupling matrix for MAS stabilization.
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In the literature, the MAS consensuability results have been given in terms of Laplacian

matrix properties. Here, differently, we have given bounds as function of the adjacency

matrix features. Anyway we can use the results on the Laplacian eigenvalue for recasting

the bounds given on the adjacency matrix. To this aim, defined the degree di of i-th node of
an undirected graph as ∑j uij, the Laplacian matrix is defined as L = D − U with D is the

diagonal matrix with the degree of node i-th in position i-th. Clearly L is a zero row sums

matrix with non-positive off-diagonal elements. It has at least one zero eigenvalue and all

nonzero eigenvalues have nonnegative real parts. So U = D − L and being the minimum and

maximum Laplacian eigenvalues respectively bounded by 0 and the highest node degree, we

have:

Lemma 2 Let U the adjacency matrix of undirected and connected graph G = (V, E, U), with

eigenvalues µ1 ≤ µ2 ≤ . . . ≤ µn, then results:

µ1(U) ≥ min
i

di − min(max
k,j

{dk + dj : (k, j) ∈ E(G)}, n) (16)

µn(U) ≤ max
i

di (17)

Proof Easily follows from the Laplacian eigenvalues bound and the field value property

(Horn R.A. & Johnson C.R., 1995).

4. Simulation validation

In the follows we will present a variety of simulations to validate the above theoretical results

under different kinds of node dynamic and network topology variations. Specifically the MAS

topology variations have been carried out by using the well known Watts-Strogats procedure

described in (Watts & S. H. Strogatz, 1998). In particular, starting from the regular network

topology (p = 0), by increasing the probability p of rewiring the links, it is possible smoothly

to change its topology into a random one (p = 1), with small world typically occurring at

some intermediate value. In so doing neither the number of nodes nor the overall number of

edges is changed. In Fig. 1 it shown the results in the case of MAS of 20 nodes with each one

having k = 4 neighbors.

Among the simulation results we focus our attention on the maximum and minimum

eigenvalues of the matrixes U (i.e. µn and µ1) and Ag (i.e. λM and λm) and their bounds

computed by using the results of the previous section. In particular, by Lemma 2, we convey

the bounds on U eigenvalues in bounds on Ag eigenvalues suitable for the case of time varying

topology structure. We assume in the simulations the matrices A and BC to be symmetric. In
this way, if U eigenvalues are in [v1, v2], let σ(A) = {αi}, σ(BC) = {νi}, the eigenvalues of Ag
will be in the interval [min

i
αi + min

j
{v1νj , v2νj}, max

i
αi + max

j
{v1νj, v2νj}] for i, j = 1, 2, . . . , n.

Notice that, known the interval of variation [v1, v2] of the eigenvalues set of U under switching

topologies, we can recast the conditions (8), (9), (12), (13), (6), (7) and to use it for design

purpose. Specifically, given the interval [v1, v2] associated to the topology possible variations,

we derive conditions on A or BC for MAS consensuability.

We consider a graph of n = 400 and k = 4. In the evolving network simulations, we started

with k = 4 and bounded it to the order of O(log(n)) for setting a sparse graph. In Tab 1 are

drawn the node dynamic and coupling matrices considered in the first set of simulations.
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Fig. 2. Case 1. Dashed line: bound on the eigenvalue; continuous line: eigenvalues, (a) Maximum

eigenvalue of Ag , (b) Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum

eigenvalue of U
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Fig. 3. Case 1: State dynamic evolution in the time
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Fig. 4. Case 2. Dashed line: bound on the eigenvalue; continuous line: eigenvalue: (a) Maximum

eigenvalue of Ag , (b) Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum

eigenvalue of U

A B C

Case 1: -4.1 1 1

Case 2: -12 1 1

Case 3: -6 1 1

Case 4: -6 2 1

Table 1. Node system matrices (A,B,C)
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Fig. 5. Case 3. Dashed line: bound on the eigenvalue; continuous line: eigenvalue: (a) Maximum
eigenvalue of Ag , (b) Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum
eigenvalue of U

0 2 4 6 8 10
0

2

4

6

8

10

t

x
(t

)

Fig. 6. Case 3: state dynamic evolution in the time
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Fig. 7. Case 4. Dashed line: bound on the eigenvalues; continuous line: eigenvalues: (a) Maximum
eigenvalue of Ag , (b) Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum
eigenvalue of U

In the case 1 (Fig 2), we note as although we start from a stable MAS network, the topology

variation leads the network instability condition (namely λM becomes positive). In Fig. 3 it is

shown the time state evolution of the firsts 10 nodes, under the switching frequency of 1 Hz.

We note as the MAS converges to the consensus state till it is stable, then goes in instability
condition.

In the case 2, we consider a node dynamic faster than the maximum network degree dM of

all evolving network topologies from compete to random graph. Notice that although this

assures MAS consensuability as drawn in Fig. 4, it can be much conservative.

In the case 3 (Fig 5), we consider a slower node dynamic than the cases 2. The MAS is robust

stable under topology variations. In Fig. 6 the state dynamic evolution is convergent and the

settling time is about 4.6/|λM(Ag)|.
Then we have varied the value for BC by doubling the B matrix value leaving unchanged the

node dynamic matrix. As appears in Fig. 7, the MAS goes in instability condition pointing out
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Fig. 8. Case 5. Dashed line: bound on the eigenvalue; continuous line: eigenvalue: (a) Maximum
eigenvalue of Ag , (b) Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum
eigenvalue of U

that also the coupling strength can affect the stability (as stated by the conditions (8), (9)) and

that this effect can be amplified by the network topological variations.

A B C

Case 5:

[

−6 3

3 −12

] [

1

0

]

[

1 0
]

Case 6:

[

−3 3

3 −6

] [

1

0

]

[

1 0
]

Case 7:

[

−3 3

3 −6

] [

0.25

0

]

[

1 0
]

Table 2. Node system matrices (A,B,C).
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Fig. 9. Case 6. Dashed line: bound on the eigenvalue; continuous line: eigenvalue: (a) Maximum
eigenvalue of Ag , (b) Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum
eigenvalue of U

On the other side, a reduction on BC increases the MAS stability margin. So we can tune

the BC value in order to guarantee stability or desired robust stability MAS margin under a

specified node dynamic and topology network variations. Indeed if BC has eigenvalues above

1, its effect is to amplify the eigenvalues of U and we need a faster node dynamic for assessing
MAS stability. If BC has eigenvalues less of 1, its effect is of attenuation and the node dynamic

can be slower without affecting the network stability.

Now we consider SISO system of second order at the node as shown in Tab.2. In this case the

matrix BC has one zero eigenvalue being the rows linearly dependent.

In the case 5 the eigenvalues of A are α1 = −4.76 and α2 = −13.23, the eigenvalues of the

coupling matrix BC are ν1 = 1 and ν2 = 0. In this case the node dynamic is sufficiently fast for

guaranteeing MAS consensuability (Fig. 8). In the case 6, we reduce the node dynamic matrix

A to α1 = −1.15 e α2 = −7.85. Fig. 9 shows instability condition for the MAS network. We
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Fig. 10. Case 7. Dashed line: bound on the eigenvalue; continuous line: eigenvalue. (a) Maximum
eigenvalue of Ag , (b) Maximum eigenvalue U, (c) Minimum eigenvalue of Ag , (d) Minimum eigenvalue
of U

can lead the MAS in stability condition by designing the coupling matrix BC as appear by the

case 7 and the associate Fig. 10.

4.1 Robustness to node fault

Now we deal with the case of node fault. We can state the following Theorem.

Theorem 2 Let A and BC symmetric matrix and G(V, E, U) an undirected graph. If the MAS

system described by Ag is stable, it is stable also in the presence of node faults. Moreover the

MAS dynamic becomes faster after the node fault.

Proof Being the graph undirected and A and BC symmetric then Ag is symmetric. Let Ãg the

MAS dynamic matrix associated to the network after a node fault. Ãg is obtained from Ag by

eliminating the rows and columns corresponding to the nodes went down. So Ãg is a minor of

Ag and for the interlacing theorem (Horn R.A. & Johnson C.R., 1995) it has eigenvalues inside
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Fig. 11. Eigenvalues in the case l = 1. Dashed line: eigenvalue in the case of complete topology with
n = 100; continuous line: eigenvalue in the case of node fault: (a) Maximum eigenvalue of Ag, (b)
Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum eigenvalue of U

the real interval with extremes the minimum and maximum Ag eigenvalues. Hence if Ag is

stable, Ãg is stable too. Moreover, the maximum eigenvalue of Ãg is less than one of Ag. So

the slowest dynamic of the system ẋ(t) = Ãgx(t) is faster than the system ẋ(t) = Agx(t).

In the follows we will show the eigenvalues of MAS dynamic in the presence of node fault.

We consider MAS network with n = 100. We compare for each evolving network topology

at each time simulation step, the maximum and minimum eigenvalues of Ag than those ones

resulting with the fault of randomly chosen l nodes. Figures 11 and 12 show the eigenvalues

of system dynamic for the cases l = 1 and l = 50.

Notice that as the eigenvalues of U and Ag of fault network are inside the real interval

containing the eigenvalues of U and Ag of the complete graph. In Fig. 13 are shown the time

evolutions of state of the complete and faulted graphs. Notice that the fault network is faster

than the initial network as stated by the analysis of the spectra of Ag and Ãg.
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Fig. 12. Eigenvalues in the case of l = 50. Dashed line: eigenvalue in the case of complete topology with
n = 100; continuous line: eigenvalue in the case of node fault: (a) Maximum eigenvalue of Ag, (b)
Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum eigenvalue of U

5. Conclusions

In this book chapter we have investigated the consensuability of the MASs under both the

dynamic agent structure and communication topology variations. Specifically, it has given

consensusability conditions of linear MASs as function of the agent dynamic structure,

communication topology and coupling strength parameters. The theoretical results are given

by transferring the consensusability problem to the stability analysis of LTI-MASs. Moreover,

it is shown that the interplay among consensusability, node dynamic and topology must

be taken into account for MASs stabilization: consensuability of MASs is assessed for

all topologies, dynamic and coupling strength satisfying a pre-specified bound. From the

practical point of view the consensuability conditions can be used for both the analysis

and planning of MASs protocols to guarantee robust stability for a wide range of possible

interconnection topologies, coupling strength and node dynamics. Also, the consensuability
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Fig. 13. Time evolution of the state variables for l=50: top Figure: complete graph. Bottom Figure: graph
with fault.

of MAS in the presence of node faults has been analyzed. Simulation scenarios are given to

validate the theoretical results.
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