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1. Introduction 

Microstrip antennas are customary components in modern communications systems, since 
they are low-profile, low-weight, low-cost, and well suited for integration with microwave 
circuits. Antennas printed on planar surfaces or conformed onto cylindrical bodies have 
been discussed in many publications, being the subject of a variety of analytical and 
numerical methods developed for their investigation (Josefsson & Persson, 2006; Garg et al., 
2001; Wong, 1999). However, such is not the case of spherical microstrip antennas and 
arrays composed of these radiators. Even commercial electromagnetic software, like HFSS® 
and CST®, do not provide a tool to assist the design of spherical antennas and arrays, i.e., 
electromagnetic simulators do not have an estimator tool for establishing the initial 
dimensions of a spherical microstrip antenna for further numerical analysis, as available for 
planar geometries. Moreover, this software is time-consuming when utilized to simulate 
spherical radiators, hence it is desirable that the antenna geometry to be analyzed is not too 
far off from the final optimized one, otherwise the project cost will likely be affected. 
Nonetheless, spherical microstrip antenna arrays have a great practical interest because they 
can direct a beam in an arbitrary direction throughout the space, i.e., without limiting the 
scan angles, differently from the planar antenna behaviour. This characteristic makes them 
feasible for use in communication satellites and telemetry (Sipus et al., 2006), for example. 
Rigorous analysis of spherical microstrip antennas and their respective arrays has been 
conducted through the Method of Moments (MoM) (Tam et al., 1995; Wong, 1999; Sipus et 
al., 2006). But the MoM involves highly complex and time-consuming calculations. On the 
other hand, whenever the objective is the analysis of spherical thin radiators, the cavity 
model (Lima et al., 1991) can be applied, instead of the MoM. However, for both MoM and 
cavity model, the behaviour of the antenna input impedance and radiated electric field is 
described by the associated Legendre functions, hence efficient numerical routines for their 
evaluation are required, otherwise the scope of the antennas analyzed is restricted. 
In order to overcome the drawbacks described above, a Mathematica®-based CAD software 
capable of performing the analysis and synthesis of spherical-annular and -circular thin 
microstrip antennas and their respective arrays with high computational efficiency is 
presented in this chapter. It is worth mentioning that the theoretical model utilized in the 
CAD can be extended to other canonical spherical patch geometries such as rectangular or 
triangular ones. The Mathematica® package, an integrated scientifical computing software 
with a vast collection of built-in functions, was chosen mainly due to its powerful 
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algorithms for calculating cylindrical and spherical harmonics functions what makes it 
suitable for the analysis of conformed antennas. Mathematica® permits the analysis and 
synthesis of various spherical microstrip radiators, thus avoiding the use of the normalized 
Legendre functions that are sometimes employed to overcome numerical difficulties (Sipus 
et al., 2006). Furthermore, it is important to point out that the developed CAD does not 
require a powerful computer to run on, working well and quickly in a regular classroom PC, 
since its code does not utilize complex numerical techniques, like MoM or finite element 
method (FEM). In Section 2, the theoretical model implemented in the developed CAD to 
evaluate the antenna input impedance, quality factor, radiation pattern and directivity is 
discussed. Furthermore, comparisons between the CAD results and the HFSS® full wave 
solver data are presented in order to validate the accuracy of the utilized technique. 
An effective procedure, based on the global coordinate system technique (Sengupta, 1968), 
to determine the radiation patterns of thin spherical meridian and circumferential arrays is 
utilized in the special-purpose CAD, as addressed in Section 3. The array radiation patterns 
so obtained with the CAD are also compared to those from the HFSS® software. Section 4 is 
devoted to present an alternative strategy for fabricating a low-cost spherical-circular 
microstrip antenna along with the respective experimental results supporting the proposed 
antenna fabrication approach. 

2. Analysis and synthesis of spherical thin microstrip antennas 

The geometry of a probe-fed spherical-annular microstrip antenna embedded in free space 

(electric permittivity ε0 and magnetic permeability μ0) is shown in Fig. 1. It is composed of a 

metallic sphere of radius a, called ground sphere, covered by a dielectric layer (ε and μ0) of 
thickness h = b – a. 
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Fig. 1. Geometry of a probe-fed spherical-annular microstrip antenna. 

A symmetrical annular metallic patch, defined by the angles θ1 and θ2 (θ2 > θ1 > 0), is fed by 

a coaxial probe positioned at (θp , φp). The radiators treated in this chapter are electrically 

thin, i.e., h << λ (λ is the wavelength in the dielectric layer), so the cavity model (Lo et al., 
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1979) is well suited for the analysis of such antennas. Based on this model it is possible to 
develop expressions for computing the antenna input impedance and for estimating the 
electric surface current density on the patch without employing any complex numerical 
method such as the MoM. 
Before starting the input impedance calculation, the expression for computing the resonant 
frequencies of the modes established in a lossless equivalent cavity is determined. In the 
case of electrically thin radiators, the electric field within the cavity can be considered to 
have a radial component only, which is r-independent. Therefore, applying Maxwell’s 
equations to the dielectric layer region, and disregarding the feeder presence, the following 
equation for the r-component of the electric field is obtained 

 
2

2
2 2 2 2

1 1
sin 0

sin sin
r r

r

E E
k E

a a

∂ ∂∂ ⎛ ⎞θ + + =⎜ ⎟∂θ ∂θθ θ ∂φ⎝ ⎠ , (1) 

where k2 = ω2μ0ε and ω denotes the angular frequency. Consequently, only TMr modes can 
be established in the equivalent cavity.  
Solving the wave equation (1) via the method of separation of variables (Balanis, 1989), 
results in the electric field 

 ( , ) [ P (cos ) Q (cos )][ cos( ) sin( )]θ φ = θ + θ φ + φ` `
m m

rE A B C m D m , (2) 

where P (.)`
m  and Q (.)`

m  are the associated Legendre functions of ℓ-th degree and m-th order 

of the first and the second kinds, respectively, ℓ(ℓ +1) = k2a2 and A, B, C and D are constants 

dependent on the boundary conditions. 
Enforcing the boundary conditions related to the equivalent cavity of annular geometry and 
taking into account that it is symmetrical in relation to the z-axis, the electric field (2) 
reduces to 

 ( , ) R (cos )cos( )θ φ = θ φ` `
m

r mE E m , (3) 

where 

 1 1 1R (cos ) sin [P (cos )Q (cos ) Q (cos )P (cos )]m m m m m
c c c

′ ′θ = θ θ θ − θ θ` ` ` ` ` , (4) 

m = 0, 1, 2,… and the index ℓ must satisfy the transcendental equation 

 1 2 1 2P (cos )Q (cos ) Q (cos )P (cos ) 0m m m m
c c c c

′ ′ ′ ′θ θ − θ θ =` ` ` ` , (5) 

with the angles θ1c and θ2c (θ2c > θ1c) indicating the equivalent cavity borders in the θ 

direction, i.e., θ1c ≤ θ ≤ θ2c, 0 ≤ φ < 2π, Eℓm are the coefficients of the natural  modes and the 

prime denotes a derivative. Hence, once the indexes ℓ and m are determined it is possible to 

evaluate the TMℓm mode resonant frequency from the following expression 

 
0

( 1)

2
mf

a

+= π μ ε`
` `

. (6) 

Before solving the transcendental equation (5) it is necessary to determine the equivalent 

cavity dimensions θ1c and θ2c, which correspond to the actual patch dimensions with the 
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addition of the fringe field extension. However, differently from planar microstrip antennas, 
the literature does not currently present expressions for estimating the dimensions of 
spherical equivalent cavities based on the physical antenna dimensions and the dielectric 
substrate characteristics. Therefore, in this chapter, the expressions used for estimating the 
equivalent cavity dimensions of a planar-annular microstrip antenna are extended to the 
spherical-annular case (Kishk, 1993), i.e., the spherical-annular equivalent cavity arc lengths 
were considered equal to the respective linear dimensions of the planar-annular equivalent 
cavity. The proposed expressions are given below; equations (7.a) and (7.b), 

 1
1 1

1

2 F( )
1c

r

h

b

θθ = θ − π θ ε , (7.a) 

 2
2 2

2

2 F( )
1c

r

h

b

θθ = θ + π θ ε , (7.b) 

where F( ) n( / 2 ) 1.41 1.77 (0.268 1.65) /r rb h h bθ = θ + ε + + ε + θ`  and εr is the relative electric 

permittivity of the dielectric substrate. 

2.1 Input impedance 
The input impedance of the spherical-annular microstrip antenna illustrated in Fig. 1 fed by a 
coaxial probe can be evaluated following the procedure proposed in (Richards et al., 1981), i.e., 
the coaxial probe is modelled by a strip of current whose electric current density is given by, 

 ( ) 2

1
ˆ, ( ) ( )

sin
pf

p

J J r
a

θ φ = φ δ θ − θθ
f

, (8) 

where δ(.) indicates the Dirac’s delta function and 

 
  

 

0 , if / 2 / 2
( )

0, otherwise

p pJ
J

φ − Δφ ≤ φ ≤ φ + Δφ⎧⎪φ = ⎨⎪⎩  (9) 

with Δφ denoting the strip angular length relative to the φ−direction. In our analysis, also 
following the procedure established in (Richards et al., 1981) for planar microstrip antennas, 
the strip arc length has been assumed to be five times the coaxial probe diameter d, 
expressed as 

 5 / sin pd aΔφ = θ . (10) 

It is important to point out that the electric current density (8) is an r-independent function 
since the antenna under analysis is electrically thin. Thus, to take into account the current 
strip, the wave equation (1) for the electric field is modified to 

 ( )2
2

02 2 2 2

1 1
ˆsin ,

sin sin
r r

r f

E E
k E j J r

a a

∂ ∂∂ ⎛ ⎞θ + + = ωμ θ φ ⋅⎜ ⎟∂θ ∂θθ θ ∂φ⎝ ⎠
f

. (11) 

Expanding the r-component of the electric field into its eigenmodes (3), the solution for 
equation (11) is given by 
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where 

  

 

2, if 0

1, otherwisem

m =⎧ξ = ⎨⎩ , 

( 1) /mk a= +` ` `  and sinc(x)=sin(x)/x. 

Since the procedure just described has been developed for ideal cavities, equation (12) is 
purely imaginary. So, for incorporating the radiated power and the dielectric and metallic 

losses into the cavity model, the concept of effective loss tangent, tan δeff, (Richards et al., 
1979) is employed. Based on this approach, the wave number k is replaced by an effective 
wave number 

 1 taneff effk k j= − δ . (13) 

Once the electric field inside the equivalent cavity has been determined, the antenna input 
voltage Vin can be computed from the expression, 

 in rV E h= − , (14) 

where rE  denotes the average value of ( , )prE θ φ  over the strip of current. Consequently, the 

input impedance Zin of the spherical-annular microstrip antenna is given by 
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An alternative representation for frequencies close to the TMLM resonant mode but 
sufficiently apart from the other modes can be obtained by rewriting the antenna input 
impedance as 
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where 
1cos

2 2 2 2 2
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[R (cos )] sinc ( / 2)cos ( ) / [R ( )] .
c

c

m m
p p mm h m m a d

2

θ
ν= θ

α = θ Δφ φ π εξ ν ν∫` ` `  

The expression (16) corresponds to the equivalent circuit shown in Fig. 2, i.e., a parallel RLC 

circuit with a series inductance Lp. In this case, the series inductance represents the probe 

effect and its value is that of the double sum in (16). However, as this is a slowly convergent 

series, the developed CAD utilizes, alternatively, the equation due to (Damiano & Papiernik, 

1994) for calculating the probe reactance Xp , given by 

 060 n( /2 )pX j k h kd= − ` , (17) 
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where 0 0 0k = ω μ ε  and provided 0 0.2k d << . 
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Fig. 2. Simplified equivalent circuit for thin microstrip antennas. 

The previous expressions developed for computing the resonant frequencies and the input 
impedance of spherical-annular microstrip antennas can also be used for analysing 

wraparound radiators. However, in the limit case when θ1 → 0, i.e., the antenna patch 
corresponding to a circular one (Fig. 3), the associated Legendre function of the second kind 

becomes unbounded for θ → 0, so it is no longer part of the function that describes the 
electromagnetic field within the equivalent cavity. So, to obtain the expressions for 
spherical-circular microstrip antennas it is enough to eliminate the Legendre function of the 
second kind from the previously developed solution for spherical-annular antennas. These 
expressions are presented in Table 1. In Section 2.3 examples are given for spherical-annular 
and -circular microstrip antennas. 
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Table 1. Spherical-circular microstrip antenna expressions. 

z

a

Metallic 
sphere

Dielectric 
layer

Probe 
position

h

Circular 
patch

2θ

b

x

y

pθ

z

a

Metallic 
sphere

Dielectric 
layer

Probe 
position

h

Circular 
patch

2θ

b

x

y

pθ

 
Fig. 3. Geometry of a probe-fed spherical-circular microstrip antenna. 
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2.2 Radiated far electric field 
In the developed CAD, the electric surface current method (Tam & Luk, 1991) is used to 
determine the far electric field radiated by the thin spherical-annular and -circular 
microstrip antennas. This method is very convenient in the case of spherical-annular and -
circular patches since both are electrically symmetrical. As a result, no numerical integration 
is required for the calculation of the spectral current density and the radiated power. 
Moreover, differently from planar and cylindrical geometries, where truncation of the 
ground layer and diffraction at the edges of the conducting surfaces affect the radiation 
patterns, thin spherical microstrip patches of canonical geometries can be efficiently 
analyzed by combining the cavity model with the electric surface current method. 
The procedure proposed here starts from observing that the geometry shown in Fig 1 (or in 
Fig. 3) can be treated as a three-layer structure, made out of ground, dielectric substrate and 
free space. Consequently, its spectral dyadic Green’s function, necessary for calculating the 
far electric field via the electric surface current method, can be easily evaluated using an 
equivalent circuital model (Giang et al., 2005). As it is based on the (ABCD) matrix 
(transmission matrix) concept, Mathematica®’s symbolic capability can be used for 
calculating the matrices involved. The technique for establishing the structure’s equivalent 
circuital model and, consequently, its spectral dyadic Green’s function is presented next. 
The fields within the dielectric layer can be written as the sum of TEr and TMr modes with 
the aid of the vector auxiliary potential approach (Balanis, 1989). In this case, the expressions 
for the transversal components of the electromagnetic field are given by 
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| |
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where the coefficients m
nA , m

nB , m
nC  and m

nD  are dependent on the boundary conditions at the 

interfaces r = a and r = b, and τ( )Ĥ (.)n  is the Schelkunoff spherical Hankel function of n-th order 

and τ-th kind (τ = 1 or 2). The fields (18) to (21) can be rewritten in a more adequate form as 
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and the argument (r,θ,φ) was omitted in (22) and (23) only for simplifying the notation. The 

vectors 
f

( , )r nE  and 
f

( , )r nH  are the transversal electric and magnetic fields in the spectral 

domain, respectively. In this chapter, the pair of vector-Legendre transforms (Sipus et al., 

2006) is defined as follows, 
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where ( , ) 2 ( 1)( | |)!/(2 1)( | |)!S n m n n n m n n m= + + + −  and ( , )r n
f
X , the vector-Legendre 

transform of ( , , )X r θ φf
, has only the θ and/or φ components. 

From evaluating the expressions (25) and (26) at the lower (r = a) and upper (r = b) interfaces 
it is possible to establish the following relation 
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f f# #
f f# #
E E

H H
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and the matrices V# , Z# , Y#  and B#  can be found in (Ferreira, 2009). 

Based on equation (29), the two-port network illustrated in Fig. 4, representing the dielectric 
layer, can be defined. The related transmission (ABCD) matrix is given in (30). 
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Fig. 4. Transmission (ABCD) network. 
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In a similar way, the following relation between the free-space spectral electric 0

f
E  and 

magnetic  0

f
H  transversal field components can be determined, 

 0 0 0( , ) ( , ),b n Y b n= ⋅f f#H E  (31) 

where 
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and η0 denotes the free space intrinsic impedance. Consequently, free space can be 

represented by the admittance load 0Y#  in the circuital model. It is worth mentioning that the 

matrices V# , Z# , Y# , B#  and 0Y#  can be evaluated in a straightforward manner utilizing the 

Mathematica®’s symbolic capability. 

As the ground layer is considered a perfect electric conductor, it is well represented by a 

short circuit that corresponds to null electric field ( 0g =f
E ).  On the other hand, the spectral 

electric surface current density s

f
J  located on the metallic patch is modelled by an ideal 

current source. The circuital representations for both short circuit and ideal current source 

are given in Fig. 5. 

Finally, by properly combining the circuit elements, the three-layer structure model is the 

equivalent circuit illustrated in Fig. 6, whose resolution produces the transversal dyadic 

Green’s function G#  in the spectral domain. Notice that the Green’s function, calculated 

according to this approach, is evaluated at the dielectric substrate – free space interface 

(r = b). 
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Fig. 5. Short circuit (a) and ideal current source (b) circuital representations. 
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Fig. 6. Circuital representation for the spherical three-layer structure. 

It is important to point out that the Mathematica®’s symbolic capability is also helpful for the 
circuit resolution and allows writing the related functions in a compact form, as shown: 

 0( , ) ,sb n G= ⋅f f#E J  (33) 

where 

 
0

( , )
0
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G G b n

G
θθ
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−⎡ ⎤= = ⎢ ⎥⎣ ⎦

# # , (34) 
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0 0
(2) (2)

0 0
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r n n n n

q k b
G

j p k b q k b
θθ
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Ĥ ( )

ˆ ˆH ( ) H ( )

n n

r n n n n

j s k b
G

r k b s k b
φφ

η= ′ε + , (36) 

with 

 (2) (1) (1) (2)ˆ ˆ ˆ ˆH ( )H ( ) H ( )H ( ),n n n n np kb ka kb ka′ ′= −  (37.a) 

 (2) (1) (1) (2)ˆ ˆ ˆ ˆH ( )H ( ) H ( )H ( ),n n n n nq ka kb ka kb′ ′ ′ ′= −  (37.b) 

 (2) (1) (1) (2)ˆ ˆ ˆ ˆH ( )H ( ) H ( )H ( ),n n n n nr ka kb ka kb′ ′= −  (37.c) 

 (2) (1) (1) (2)ˆ ˆ ˆ ˆH ( )H ( ) H ( )H ( )n n n n ns kb ka kb ka= −  (37.d) 

and 
T

s s sφ θ⎡ ⎤= −⎣ ⎦
f
J J J  whose superscript T indicates the transpose operator. 
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Writing the free-space spectral electric field (r > b) as a function of the field evaluated at the 
dielectric substrate – free space interface (r = b) and taking the asymptotic expression (r → ∞) 
for the Schelkunoff spherical Hankel function of second kind and n-th order (Olver, 1972), 
the spectral far electric field is derived as 

 
0

0( , ) ,
jk r

n
s

e
r n j bA G

r

−≅ ⋅ ⋅f f# #E J  (38) 

where 

(2) 1
0

(2) 1
0

ˆ[H ( )] 0
.

ˆ0 [H ( )]

n

n

k b
A

j k b

−
−

⎡ ′ ⎤⎢ ⎥= ⎢ ⎥⎣ ⎦
#  

So, applying (28) to the spectral field (38), the spatial far electric field radiated from the 
spherical microstrip antenna is determined, 

 
0

| |

( , , ) .
jk r

jmn
s

m n m

E e
j bL n m A G e

E r

+∞ +∞ −θ φ
φ =−∞ =

⎡ ⎤ = θ ⋅ ⋅ ⋅⎢ ⎥⎣ ⎦ ∑ ∑ f# ## J  (39) 

Notice that the present development did not take into account the patch geometry, since the 
electric surface current density has not been specified yet. Hence, expression (39) can be 
applied to any arbitrary patch geometry conformed onto the structure of Fig. 1, and not only 
to the annular or circular ones. However, as this chapter’s purpose is to develop a 
computationally efficient CAD for the analysis of thin spherical-annular and -circular 
microstrip antennas, instead of employing a complex numerical method, such as the MoM, 
for determining the electric surface current densities on the patches, the cavity model was 
enough for their accurate estimation. Following this approach for the case of the spherical-
annular patch operating in the TMLM mode, the expressions below are obtained 

 
0

R (cos )cos( ),MLM
s L

E d
J j M

a d
θ = − θ φωμ θ  (40.a) 

 
0

R (cos )sin( ).
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s L

ME
J j M

a
φ = θ φωμ θ  (40.b) 

So, after the vector-Legendre transform, the spectral components of the surface current 
density can be evaluated in closed form as, 

 

2
1 1 1
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 2 2 1 1
0

[P (cos )R (cos ) P (cos )R (cos )],
2 ( , )

M M M MLM
s n c L c n c L c

mE

aS n M
φ = θ θ − θ θωμJ  (41.b) 

if m = M or m = – M. Otherwise, 0s =f
J . Consequently the expression for the far electric field 

radiated by this radiator is also determined in closed form. 
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In a similar way, expressions for the spatial and spectral electric surface current densities are 
derived for the spherical-circular microstrip antenna (Fig. 3) operating in the TMLM mode 
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 2 2
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2 ( , )
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s n c L c

mE

aS n M
φ = θ θωμJ  (43.b) 

if m = M or m = – M. Otherwise, 0s =f
J . 

Once the far electric field radiated by spherical antennas is known, an expression for its 
average radiated power can be established. Starting from equation (44) (Balanis, 2005), 

 

2

* 2
0

0
0 0

1
sin ,

2
P E E r d d

π π

φ= θ=
= ⋅ θ θ φη ∫ ∫ f f

 (44) 

where E
f

 denotes the far electric field determined by (39) and the superscript * indicates the 

complex conjugate operator. After the double integration, the following expression can be 

obtained 

 

2 2
2

0 (2)(2)
0 0| | 0
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ss

nm n m n

GGb
P S n m

k bk b

+∞ +∞ φ φφθ θθ
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⎡ ⎤π ⎢ ⎥= +⎢ ⎥′η ⎢ ⎥⎣ ⎦∑ ∑ JJ
 (45) 

In order to calculate the directivity of thin spherical-annular and -circular microstrip 
antennas, the developed CAD employs (45), since its evaluation requires no numerical 
integrations, which, as previously mentioned, is an advantage. In addition, equation (45) is 
employed in the CAD for computing the quality factor associated to the radiated power, 

from which the effective loss tangent tan δeff and, consequently, the antenna input 
impedance (15) are estimated. 

2.3 CAD results 
Before presenting some CAD results and comparing them with HFSS® output data, a brief 
overview of the CAD structure will be given. The current version of the CAD contains two 
independent sections: the synthesis and the analysis modules that can be accessed from their 
respective tabs. By selecting the Synthesis option, the design interface (Fig. 7) is presented. 
The inputs required for the synthesis procedure to start are the desired frequency, the 

ground sphere radius a and the substrate parameters, such as relative permittivity εr, loss 

tangent tan δ and thickness h. As results, the CAD returns the patch physical dimensions (θ1 

and θ2 for the annular patch and only θ2 for the circular one) and the probe position θp 
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considering the antenna fed by a 50-ohm SMA connector at φp = 0°. The Analysis module 
evaluates the electromagnetic characteristics of a synthesized antenna. The inputs required 
for the analysis procedure to start are the metallic sphere radius a, the substrate parameters, 
the patch angular dimensions and the probe position. As outputs, the antenna input 
impedance (rectangular plot), quality factor, radiation patterns (polar plots) and directivity 
are calculated. Notice that the window illustrated in Fig. 7 is relative to the spherical-circular 
microstrip antenna; another similar one was developed for the spherical-annular radiator. 
 

 

Fig. 7. The Synthesis module interface. 

The CAD algorithm was implemented in Mathematica® mainly due to the efficient numerical 
routines for the computation of the associated Legendre functions. Besides, Mathematica® 
has a vast collection of built-in functions that permit implementing the respective code in a 
short number of lines, plus its many graphical resources. 
In order to solve the transcendental equation and to calculate the equivalent cavity resonant 
frequencies in a fast and accurate way, the CAD utilizes a set of interpolation polynomials 
specially developed to provide seed values for the Mathematica®’s numerical routine that 
searches the transcendental equation root in a given operation mode. The interpolation 
polynomials were calculated based on graphical analysis, so the CAD can determine the 
resonant frequency of a specific mode without any further graphical inspection. For 
example, the interpolation polynomial associated to the TM11 mode of a spherical-circular 
cavity which is employed by the CAD is: 

 
2 2 3 3 4

11 2 2 2 2 2

6 5 7 6 8 7 10 8
2 2 2 2

( ) 54.46 11.06 1.13 6.21 10 1.67 10

     5.36 10 8.71 10 2.07 10 1.53 10 ,

c c c c c

c c c c

− −
− − − −

θ = − θ + θ − × θ + × θ
− × θ − × θ + × θ − × θ

`
 (46) 

where θ2c is given in degrees. 
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To illustrate the CAD synthesis procedure, a spherical-circular antenna conformed onto a 

typical microwave laminate (εr = 2.5, loss tangent = 0.0022 and h = 0.762 mm) fed by a 50-ohm 
SMA coaxial connector of 0.65-mm radius, was designed to operate at 2.1 GHz. The radius of 

the metallic sphere is a =100 mm. After entering these parameters, the CAD outputs θ2 = 14.92 

degrees and θp = 4.47 degrees, in a few minutes of computational time, even running on a 
regular classroom desktop computer. The input data and the results are automatically saved 
for use in the analysis module. In Fig. 8, the comparison is shown between the radiation 
patterns, at the operating frequency, obtained from the developed CAD and from the HFSS® 
package for the spherical-circular microstrip antenna so designed. It is seen that the radiation 
patterns exhibit excellent agreement, thus validating our procedure to calculate the radiated 
far electric field based on the combination of the cavity model with the electric surface current 
method. It is important to point out that HFSS® employs the FEM (finite element method) for 
solving high frequency structures, so it takes considerable time to determine the structure 
solution. In addition, it does not provide an estimator tool to establish the initial geometry of 
the spherical radiator as the developed CAD does. 
Results for the real and imaginary parts of the antenna input impedance are presented in 
Fig. 9; once again, the curves are very similar. 
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Eφ radiation pattern: yz plane. 

Fig. 8. Comparison between the radiation patterns. 

The half power quality factor Q and the antenna directivity D shown in Table 2 are also in 
very good agreement. 
 

 CAD HFSS® Deviation 

Q 78.8 80.8 2.5% 

D (dB) 6.6 6.9 0.3 dB 

Table 2. Quality factor and directivity. 

As another illustrative example, a spherical-annular antenna fed by a 50-ohm SMA coaxial 
connector of 0.65-mm radius and conformed onto the same typical microwave laminate 
used before was designed to operate at 1.364 GHz in the TM10 mode. In this case, 

θ1 = 10.0 degrees, θ2 = 30.0 degrees, θp = 13.21 degrees and the ground sphere has a radius 
a = 200 mm. The radiation pattern in the E-plane, at 1.364 GHz, and the input impedance 
curve evaluated in the CAD and HFSS® are presented in Figs. 10 and 11, respectively. It is 
clear from these figures that, once again, the results are very similar. 
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Fig. 9. Spherical-circular microstrip antenna input impedance. 
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Fig. 10. Eθ radiation pattern: E-plane. 
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Fig. 11. Spherical-annular antenna input impedance (TM10 mode). 
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3. Radiation patterns of spherical arrays 

As aforementioned, a great advantage of using spherical arrays is the possibility of 360° 
coverage in any radial direction. So, they have potential application in tracking, telemetry 
and command services for low-earth and medium-earth orbit satellites (Sipus et al., 2008). 
Rigorous analysis of spherical microstrip antenna arrays has been carried out using the 
MoM (Sipus et al., 2006). However, the MoM involves highly-complex and time-consuming 
calculations even considering the far-field evaluation alone. On the other hand, when 
spherical-annular or –circular patches of thin radiators are positioned symmetrically in 
relation to the z-axis, they can be effectively analyzed through the electric surface current 
method in association with the cavity model, as shown in Section 2. In case of spherical 
arrays, not all array elements can be positioned symmetrically with respect to the z-axis. 
Hence, in this chapter, the global coordinate system technique (Sengupta et al., 1968) is 
employed to evaluate the far electric field radiated by each one of the array elements. 
To illustrate the proposed technique, let’s analyze the spherical-circular microstrip antenna 
shown in Fig. 12, which represents a generic spherical array element whose centre is located 

at (αn , βn). 
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Fig. 12. Geometry of a spherical-circular array element. 

Starting from the expressions for the far electric field components Eθ ’ (.) and Eφ ’ (.) of a patch 
that is symmetrically positioned around the z’-axis, as calculated in Section 2.2, and using 
the global coordinate system, the following expressions for the radiated far electric field 

components in the reference (r,θ,φ) coordinate system are obtained 

 rot n nE A E B E′ ′θ θ φ′ ′ ′ ′θ φ = θ φ − θ φ( , ) ( , ) ( , ),  (47) 

 rot n nE B E A E′ ′φ θ φ′ ′ ′ ′θ φ = θ φ + θ φ( , ) ( , ) ( , ),  (48) 

where 

 n n n nA ′= − θ α φ − β + θ α θ[ cos sin cos( ) sin cos ]/sin ,  (49) 

 n n nB ′= α φ − β θ[sin sin( )]/sin ,  (50) 

with 
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 cos sin sin cos( ) cos cosn n n′θ = α θ φ − β + α θ , (51) 

and 

 
cos sin cos( ) sin cos

cot .
sin sin( )

n n n

n

α θ φ − β − α θ′φ = θ φ − β  (52) 

To verify this approach, a spherical-circular single-element antenna, such as the one 

illustrated in Fig. 12, whose centre is positioned at (αn = 30°, βn = 0°), was designed in our 

CAD to operate at 3.1 GHz (TM11 mode). The spherical-circular patch, fed at (θpn = 27.1°, 

φpn = 0°) by a 50-ohm SMA coaxial connector of 0.65-mm radius, is conformed onto a 

microwave laminate with εr = 2.5, loss tangent = 0.0022 and h = 0.762 mm. The radius of the 
metallic sphere is a =100 mm. The designed antenna was also simulated in HFSS® package 
for comparison purposes. Fig. 13 shows the results obtained from the CAD for the radiation 
patterns in xz- and yz-planes compared to those simulated in HFSS®. As observed, they 
exhibit excellent agreement. 
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Erotφ radiation pattern: yz plane. 

Fig. 13. Radiation patterns of the designed rotated element. 

After validating the adopted procedure for calculating the radiation pattern of a generic 

spherical array element, the array analysis can be carried out. Since for spherical arrays 

there is no diffraction at the edges of the conducting surfaces and considering that coupling 

among the array elements can be neglected for radiation pattern purposes, the components 

of the far electric field radiated by an spherical array can be calculated by superposing the 

fields radiated by each element individually. Following this approach, the components of 

the far electric field radiated by a spherical array of N elements can be evaluated from  

 

1

( , ) ( , ) ( , ),

N

R n n

n

E A E B E′ ′θ θ φ
=

′ ′ ′ ′θ φ = θ φ − θ φ∑  (53) 

 

1

( , ) ( , ) ( , ).

N

R n n

n

E B E A E′ ′φ θ φ
=

′ ′ ′ ′θ φ = θ φ + θ φ∑  (54) 
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To illustrate the proposed procedure, an array consisting of two spherical-circular elements, 

as shown in Fig. 14, was designed to operate at 3.1 GHz (TM11 mode, εr = 2.5, tan δ = 0.0022, 

h = 0.762 mm and a = 100 mm). The antennas are fed by identical currents, β1 = 0° and 

β2 = 180°. The patch spacing α was chosen to be 15° and 90°, one at time, in order to analyze 

the developed approach for a wide range of α. Figs. 15 and 16 show the radiation patterns in 
the xz- and yz-planes evaluated both with the CAD and HFSS®. As seen, they are in excellent 

agreement, even in the case when the patches are closer together (α = 15°), thus validating 
the adopted technique. In the next sections, two spherical arrays configurations are 
discussed: the meridian-spherical and circumferential-spherical arrays whose radiation 
patterns will be evaluated following this approach. 

3.1 Meridian-spherical arrays 
The geometry of the spherical-circular meridian array, i.e. one whose patches are all centred 

along a constant-φ plane, is shown in Fig. 17. In this particular configuration, the array is 

positioned along the φ = β plane and the patch centres are located at αi, where i = 1, 2, …, N. 
Note the maximum number of elements N is a function of the sphere radius, the dielectric 
permittivity and the operating frequency, in a way to avoid the superposition of patches. 
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Fig. 14. Two-element array: cut in xz-plane. 
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ERθ radiation pattern: xz plane. 
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ERφ radiation pattern: yz plane. 

Fig. 15. Two-element array radiation patterns: α = 15º. 
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ERθ radiation pattern: xz plane. 
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ERφ radiation pattern: yz plane. 

Fig. 16. Two-element array radiation patterns: α = 90º. 
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Fig. 17. Meridian-spherical array. 
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Fig. 18. Five-element array: cut in xz plane. 

As an example of a spherical-circular meridian array, consider the five-element array shown 

in Fig. 18. This array was also designed to operate at 3.1 GHz (TM11 mode, εr = 2.5, 

tan δ = 0.0022, h = 0.762 mm and a = 100 mm) and its elements are fed by identical currents. 

The uniform patch spacing α was chosen to be 27.5°. Results for the corresponding radiation 
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patterns, evaluated with both our CAD and HFSS® are illustrated in Fig. 19. Once again, the 
radiation patterns are in very good agreement, thus demonstrating that the coupling 
between the array elements can be neglected in the calculation of the far electric field the 
array radiates. 
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ERφ radiation pattern: yz plane. 

Fig. 19. Five-element array radiation patterns. 

3.2 Circumferential-spherical arrays 
A circumferential-spherical array of N-element is shown in Fig. 20. In this case, the patches 

are centred along a θ-constant cone and the maximum number of elements N is a function of 

θ, the sphere radius a, the dielectric permittivity and the operating frequency, in a way to 
avoid the superposition of patches. 
To illustrate the analysis technique, let’s consider the four-element array presented in 

Fig. 21. This array was also designed to operate at 3.1 GHz (TM11 mode, εr = 2.5, 

tan δ = 0.0022, h = 0.762 mm and a = 100 mm) and its elements are fed by identical currents, 

but α = 35º. Results for the radiation patterns in the xz- and yz-planes evaluated with both 
the CAD and HFSS® are shown in Fig. 22. As seen from these results, the radiation patterns 
are in excellent agreement, thus supporting the validation of the superposition procedure 
presented in this chapter for the calculation of the far electric field radiated by spherical 
microstrip antenna arrays. 
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Fig. 20. Circumferential-spherical array.  
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Fig. 21. Four-element circumferential array. 

 

-30

-20

-10

0

0°

30°

60°

90°

120°

150°

180°

210°

240°

270°

300°

330°

-30

-20

-10

0

 CAD

 HFSS
[dB]

ERθ radiation pattern: yz plane. 
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ERφ radiation pattern: xz plane. 

Fig. 22. Four-element array radiation patterns. 

Although the examples given in this section involve spherical arrays whose patches are 
circular, the proposed technique can be applied in the same manner to spherical arrays 
whose patches are annular. 

4. Prototype design and experimental results 

The theoretical model developed in the previous sections considers the dielectric substrate 

and the patch are both conformed onto the metallic ground sphere. Although the fabrication 

of spherical-microstrip antennas starting from planar radiators is a very challenging task 

(Piper & Bialkowski, 2004), the procedure can be eased if the geometry is slightly modified, 

i.e., if a facet is cut on the metallic spherical layer for mounting a planar antenna. An 

example of such modified geometry is illustrated in Fig. 23 where a planar circular patch is 

mounted onto the facet. The same adaptation could be made for other patch geometries, as 

the annular or rectangular, for instance. But, for this modified geometry, an essential 

question is posed: how well can its electromagnetic behavior be predicted from the 

theoretical model previously developed? 

When the dimensions of the planar patch are much smaller than the metallic sphere radius, 
the electrical characteristics of the hybrid geometry tend to those of an equivalent antenna 
whose patch and dielectric substrate are conformed onto the ground sphere. So, the 
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electromagnetic behavior of the modified geometry under this condition can in a first step 
be predicted using the special-purpose CAD. To validate this statement, a spherical-circular 

patch conformed onto a typical microwave laminate (εr = 2.55, tan δ = 0.0022, h = 0.762 mm) 
fed by a 0.65-mm radius, 50-ohm SMA coaxial connector, was designed to operate at 
3.1 GHz (TM11 mode). The available ground sphere has a radius of 98 mm. Using the 

Synthesis module of the developed CAD the following dimensions result: θ2 = 10.11 degrees 

and θp = 2.91 degrees. 
To generate the initial geometry of the faceted antenna, the arc lengths of the spherical-
circular antenna were used to establish the dimensions of the planar circular patch. The 
dimensions so obtained are depicted in Table 3, where rF denotes the radius of the metallic 
patch, rp the probe position (relative to the patch centre) and rd the planar substrate layer 
radius. Notice that rd was chosen to be equal to the patch radius extended by four times the 
dielectric substrate thickness, in order not to affect the fringe fields. 
 

 

pr

dr
Fr

a

pr

dr
Fr

a

 

Fig. 23. Faceted antenna geometry. 

 

rF 17.43 

rp 5.02 

rd 20.47 

Table 3. Initial dimensions in mm. 

With the dimensions presented in Table 3, the faceted antenna was analyzed in the HFSS® 
software and the results for input impedance and radiation patterns compared to those 
evaluated with our CAD are shown in Figs. 24 and 25, respectively. It is worth mentioning 
that the radiation patterns were calculated in the frequencies where the antenna input 
resistance assumes its maximum value, i.e., 3.002 GHz for faceted antenna and 3.1 GHz for 
the corresponding conformed antenna. As seen in Figs. 24 and 25, the shapes of the curves 
so obtained are in good agreement despite a small frequency shift. Therefore, in the 
optimization of the modified geometry dimensions, the operating frequency will be shifted 
from 3.002 to 3.1 GHz, hence justifying it as an alternative topology for spherical-circular 
antennas. 
After the HFSS® optimization, the resulting faceted antenna dimensions are given in Table 4. 
This same table presents the deviation between the initial dimensions and the final ones. It is 
important to point out that the optimized antenna dimensions are not far off the initial ones, 
thus validating the developed CAD ability to generate the initial modified antenna 
geometry. 

www.intechopen.com



Microstrip Antennas Conformed onto Spherical Surfaces   

 

105 

0.98 0.99 1.00 1.01 1.02

-15

0

15

30

45

60

In
p
u
t 

im
p
ed

an
ce

 [
Ω] 

Normalized frequency

 Re(Z
in
) CAD

 Im(Z
in
) CAD

 Re(Z
in
) HFSS

 Im(Z
in
) HFSS

 

Fig. 24. Input impedance. 
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Eθ radiation pattern: xz plane. 
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Eφ radiation pattern: yz plane. 

Fig. 25. Radiation patterns. 
 

rF 17.20 1.3% 

rp 4.68 6.8% 

rd 20.47 0% 

Table 4. Final dimensions in mm and percent deviation. 

For the modified antenna geometry under consideration, although the dielectric layer and 

the metallic patch are not conformed onto the ground sphere, it is still necessary to produce 

the metallic sphere, which is in general an expensive and complex structure to fabricate. 

However, if the mechanical considerations can be relaxed, as, for instance, for educational 

purposes, a styrofoam sphere covered with aluminium foil, easily found in any hardware 

store, can serve well the fabrication of the ground sphere, as illustrated in Fig 26. 

Measurements were conducted for validating the fabrication of the antenna prototype 

following this simplified approach. Fig. 27 presents the comparison between the measured 

input impedance and the one calculated in HFSS® software. As seen, the results agree very 

well, the 3.1-MHz shift between the curves representing just 0.1% of the antenna operating 

frequency. This deviation is less than the one allowed due to the substrate relative 

permittivity tolerance. So, the good agreement between the curves validates the procedure 

used for manufacturing the proposed antenna prototype. 
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                    (a) Styrofoam sphere.                                              (b) Planar circular patch. 

 
(c) Antenna prototype. 

Fig. 26. Photos of the faceted antenna. 
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Fig. 27. Input impedance comparison. 

5. Conclusions 

In summary, an effective CAD algorithm capable of synthesizing and analyzing probe-fed 
spherical thin radiators was discussed. Some of its intrinsic advantages in terms of fine 
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accuracy, short computational time and low cost were described; besides, quite 
conveniently, the CAD does not require a powerful computer to run on. Such characteristics 
make this program adequate not only for educational purposes but also for practical 
antenna design. The CAD’s ability to generate a precise initial geometry before further 
optimization with commercial software such as HFSS®, can effect significant reductions in 
design time and cost. Furthermore, through the use of the global coordinate system 
technique, radiation patterns of meridian- and circumferential-spherical arrays can also be 
generated. Finally, a prototype was designed and built using a simplified fabrication 
technique, resulting in an operating frequency shift of only 0.1%, which is less than the 
deviation due to the substrate relative permittivity tolerance itself, thus validating the 
fabrication technique proposed. 
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