
1. Introduction

The Multi-Agent Based Simulation (MABS) area is placed at the intersection of two distinct
areas: Distributed Artificial Intelligence (DAI) and Computational Simulation. This field
of research provides a proper infrastructure for modeling and understanding the processes
related to social interactions such as coordination, cooperation, training and coalition of
groups and resolutions of conflicts, among others. Such understanding is made possible
because of the relationship established between local and global behavior, which leads to
leading to explicit chains of cause and effect of how internal agent components affect the
agents behavior, how this behavior affects the agency and, dialectically, how the agency
affect its agents components. Multi-agent simulation models are based on the concept of the
individual-program relationship, which allows the simulation of artificial worlds where each
entity (interactive computing entity) is represented as an agent that maps a single entity (or a
group of them) in the target system. Since the infrastructure of technical and theoretical areas
of simulation allows researchers to mimic the essential elements of a target system without
having to work directly with the target system itself, it becomes handful when dealing with
phenomena such as the spread of fire without hazarding the integrity of the environment and
its living beings.
Artificial Life in Computers yields the creation of a laboratory capable of providing the
necessary means to study, research, reproduce and maximize the simulations on a specific
subject. As stated previously, a simulation model is a particular type of model that aims
to represent a given system. However, it differs from classical models in the sense that it
facilitates a) the study of how the modeled systems behave under certain conditions, and b)
the examination, in varying degrees of detail, the consequences of changing internal behaviors
of the system, and vice versa.
The results obtained in a simulation might be of great help in the decision-making process, in
the evaluation of systems and in reducing implementation time and costs.
In (Ferber, 1996; Gilbert & Troitzsch, 1999) some simulation goals are presented, namely:

• Discover and formalize new theories and models;

• Develop a better understanding of some features of the real system;

• Test hypotheses of the modeled system;
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• Predict future actions and behaviors.

More specifically, (Ferber, 1996) defines that an agent-based simulation model relates to the
idea that a system is comprised of all relationships of its inner parts, and in that sense, it is
possible to simulate an artificial world based on the relationships of its entities.
The simulation occurs when there is a transposition of the population of a target system 1 to
a conceptual model equivalent, followed by the encoding of this model to a computational model.
In this case, an agent (or actor) equates to a real world entity or a group of them. Such actors
can be of different natures and with various granularities, such as humans, robots, computer
programs, inanimate objects and organizations.
After the establishment of the multi-agent paradigm in the computer science, the role of
multi-agent based simulation has been acquiring relevance in a variety of scientific disciplines.
In particular, the sources of analogy between agent-based technologies and models of actual
social systems, and the efforts towards dealing with such complex systems through simulation
models have created this intense interdisciplinary effort that provided ground for the advent
of a new scientific field, named Multi-Agent Based Simulation (MABS). As a result, research
interfaces were created across various disciplines under the umbrella of a multidisciplinary
area that involves researchers from as diverse fields of study as Psychology, Sociology,
Economy and Computer Science.
Considering the relatively recent advent of MABS, its multidisciplinary aspect might also
pose as one of the biggest challenges to be overcome by researchers, since it requires cutting
across traditional boundaries of school of thoughts, mixing different theories, methodologies,
techniques and point of views. In this chapter, the principles of multi-agent based simulation
are presented, as well as some simulations that exemplify the integration of MABS and
artificial life. To accomplish that, the chapter is divided in three main parts: the first part focus
on the presentation of MABS concepts and techniques. The second part presents some of the
main simulation platforms and frameworks available today and also analyses and compares
two of them. The third and final part displays a set of models that aim to simulate artificial
life though the use of MABS techniques.

2. Principles of Multi-Agent Based Simulation

The main goal of the Multi-Agent Based Simulation (MABS) researchers is to develop and
study simulation models taking into consideration a theoretical-technical framework based
on the Distributed Artificial Intelligence field. The general relevance of simulation, and more
specifically agent-based simulation becomes so clear that some authors have gone far enough
to consider it as a third way of doing science, along with traditional deduction and induction
reasoning (Axelrod, 1998). It could be stated that simulation distinguishes from standard
deduction and induction in its implementation and also in its goals. A simulation starts with
a set of explicit assumptions (as in deduction) but not generally providing any theorems,
producing data which are suitable for analysis by induction that come from a strictly set of
assumptions.
Following that perspective, a simulation model is a kind of model that represents a specific
target system. What makes this model distinct from the others is (i) the chance of studying
the global behavior of the modeled system in certain conditions and (ii) the possibility to
inspect the consequences of changes in the internal components of the system. An important
aspect to be considered in simulation systems is the assurance that both conceptual and

1 The target system is equivalent to the simulation domain and can be real or theoretical.

42 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com



• computational models accurately represent the target system, and that can be achieved by
using two processes: validation and verification.
The validation process aims to certify that the conceptual model represents the target system
in an acceptable degree of adherence. Thus, the validation processes fundamentally addresses
a specific question: Does the simulation outcomes correspond to those from the target
system? On the other hand, the verification process’ main purpose is to assure that the
conceptual model was correctly translated to the computational environment. Specifically, a
multi-agent simulation model is based on the concept that it is feasible to simulate an artificial
world inhabited by interactive computational entities. Such simulation can be achieved by
transposing the population from a target system to its artificial counterpart. In that sense, an
agent is similar to an entity or a group of entities of the target system. Moreover, agents can
be of distinct natures and granularities, such as human beings, robots, computer algorithms,
inanimate objects and organizations.
In a multi-agent based simulation, the relationship between agents can be specified in several
ways, ranging from reactive to deliberative attitude approaches. In both cases, agents must be
able to decide and perform their actions autonomously. Nevertheless, to ensure a proper
execution of the simulation, agents actions must be synchronized through the scheduling
of a minimum set of events, and their behavior can be either time-stepped scheduled -
performed within each discrete time step - or event-driven scheduled, in which agent actions
are scheduled by other agents’ actions and/or events.
The MABS area provides a suitable infrastructure to model, study and understand the
processes related to complex social interactions such as coordination, collaboration, group
formation, evolution dynamics of norms and conventions, free will and conflict resolution,
among others. That can be achieved by relating local and global behavior and analyzing how
agents can affect the environment and other agents (and vice-versa, leading to explicit chains
of cause and effect), how internal agent components affect the agent’s behavior, how this
behavior affects the agency and, dialectically, how the agency affects its agents components
(Gilbert & Troitzsch, 1999).

2.1 Multi-agent modeling

Multi-agent simulations require the development of multi-agent models, which aims to model
complex real-world systems as dynamical systems comprised of interacting autonomous
decision-making entities called agents. Traditional analytical methods might not be suitable
to deal with complex phenomena that are simply too complicated to be analytically
tractable, especially when involving non-linear relationships. Multi-agent models have then
emerged as an alternative for these types of problems. In recent scientific literature, many
denominations for agent-based modeling can be found, such as: Individual-Based Modeling
(IBM), Agent-Based Systems (ABS), among others.
An agent-based model is essentially a population of heterogeneous agents, which represents
autonomous entities that interacts between themselves and with their environment, allowing
the formation of a social system where aggregated structures (patterns) emerge from those
interactions. The fundamental principle of an agent-based model is the emergence of social
structures and groups of behaviors from the interactions of individual agents. These agents
operate in artificial environments and under specific rules that are valid only when taking
into account the limitations of each agent regarding their own computational and memory
capabilities.
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In Table 1 a comparison between a traditional and agent-based modeling is presented (each of
the aspects is explored in the subsequent sections of this chapter).

Traditional Agent-Based

Focus on continuous time Focus on discrete time

Mathematical language (equations) Descriptive model

Aggregate level granularity Individual level granularity

Top-down (macro-to-micro) approach Bottom-up (micro-to-macro) approach

Pre-defined behavior Emergent behavior

Global control Local control

Table 1. Comparison Between Traditional and Agent-Based Modeling.

2.2 Main aspects of multi-agent models

Simulation models based on multi-agents are comprised of a number of heterogeneous agents,
relationships between these agents and an environment capable of simulating the behavior
and interactions of such agents. Also, there is no central authority in charge, as agents are
modeled to behave autonomously in a self-organized model based on simple local rules of
interactions between agents and the environment. The ultimate goal of such model is to allow
the emergence of system-level phenomena resulting from these local interactions between
agents themselves and the environment.
A more specific definition of agent would be of a discreet entity with its own objectives and
behaviors. Each agent contains internal states and behavior rules, allowing them to interact
with other agents and the surrounding environment. Agents are also autonomous and display
some degree of initiative, allowing them to behave as object-oriented entities. They are
modeled to execute the vast majority of their actions without any direct interference from
either humans or other computational agents. Examples of agents include people, groups,
organizations, social insects, swarms, robots, and so forth.

2.2.1 Ascending (bottom-up) modeling

Agent-based models are built from agents that have very simple rules defined for their
behavior. The interactions between these agents create collective structures in an ascending
approach instead of a descending one, where the macro structures and behavior of a system
would be modeled and then used to explain micro interactions of its components. Modeling
a complex system using a top-down approach would prove much too complex and not
appropriate as a complex system behavior is the result of a large number of interactions.
An analytical/reductionist approach is also not adequate for modeling complex systems as
it assumes that the system behavior can be understood by analyzing its parts separately.
So a bottom-up model is therefore more suitable for complex systems such as the ones
applied to artificial life simulation, as the bottom-up approach focus instead on simple rules
of behavior for small parts of a system - its agents - and how they interact with each other,
making use of computational power to simulate a large number of those agents and their
interactions, allowing emergent patterns to be observed and studied. The model can then be
easily manipulated in terms of addition or removal of its micro-level individual properties and
how these changes might affect the macro-level social phenomena. For instance, a bottom-up
model for an ant colony would describe ants in a micro-level and in terms of their behavior
as individuals in the colony and how they communicate to each other. A simulation tool
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would then be used to mimic the colony environment where several individual ants are put to
communicate and perform tasks, allowing an observer to study the emergence of colony-level
social phenomena.

2.2.2 Complex systems

The word “complexity” has roots in two Latin words: “complexus” which means “totality”
and “completere” which means “to embrace”. So complex system are formed by two or
more interlinked components that creates a network of objects interacting with each other,
displaying a dynamic and aggregated behavior. In this context, the complex adjective is not to
be confused with complicated. Moreover, in a complex system the action of a single element
might affect the actions of other objects in the network, making the famous paradigm ‘The
whole is more than the sum of its parts’ even more true.
In fact, complex systems are made of several simple behavioral units that influence each other
mutually in an intricate network of connections that ultimately generates a global complex
behavior. As a result of such a systematic behavior, many properties of a complex system
can only be observed during its collective behavior and cannot be identified in any of its
fundamental units. One example of a complex system is the fire propagation phenomenon.
An adequate (non-analytical) approach to treat complex systems, more specifically the fire
propagation phenomenon, is to use simulation techniques based on Cellular Automata (CA).
Simulating complex systems allows researchers to (a) propose new structures or alternatives
to treat social systems, studying and understanding their existence and operation; (b) have
a better understanding of the social, anthropological, psychological aspects, etc. used to
describe and explain the analyzed phenomena and (c) to use existing theoretical models
already proven effective when dealing with institutional and social processes.

2.2.3 Unpredictable systems

Unpredictable systems are complex systems with a high degree of instability and
unpredictability in the decision-making process, and such aspects need to be treated in a
dynamic manner. According to (Lempert, 2002), agent-based models are often useful under
conditions of deep uncertainty where reliable prediction of the future is not possible by either
in a best estimate or probabilistic approaches (such as the ones in traditional simulation
models).
In his work, (Lempert, 2002) argues that agent based models are useful at describing the
behavior of inherently unpredictable systems. According to him, the predictive policy analysis
is an example of application of agent-based simulations, as police simulators may be effective
in situations where the standard methods of predictive policy analysis are least effective.
Also, in dynamic and unpredictable systems, agents must be modeled in a way that their
deliberation and responsiveness are balanced so that they act appropriately. This must be
done to avoid long deliberations that might impact the performance of the simulation but
also to avoid agents to become too reactive to choose the best action to execute.

2.2.4 Emergent behavior

According to (Axelrod, 1998), ‘emergent properties’ of a system can be described as the
large-scale effects of locally interacting agents, noticed as non self-evident, stable macroscopic
patters arising from individual agent’s local rules of interaction. Below is a non-exhaustive
list of situations when agent-based models are useful for capturing emergent behavior:

45Modeling Artificial Life Through Multi-Agent Based Simulation

www.intechopen.com



1. The interactions between agents are discontinued, nonlinear. This can be particularly
useful when describing complex individual behavioral. Discontinuity proves much too
complex by using traditional analytical methods (for instance, differential equations);

2. There is a significant necessity of designing a heterogeneous population of agents. The
heterogeneity allows agents with clearly distinct rationality and behavior to be modeled;

3. The topology of the agent’s interactions is complex and heterogeneous. This can be
particularly useful when modeling social processes, specially the inherent complexity of
physical and social networks.

Emergent phenomena can also be formalized as requiring new categories to describe them,
which are not necessary to describe the behavior of the model’s underlying components (i.e.
agents) (Gilbert & Terna, 2000). In some models, the emergent properties can be formally
deduced, but they can also be unpredictable and unexpected, as anticipating the consequences
of even simple local interactions sometimes proves to be a hard task. Also, according to
(Axelrod, 1998), an example of emergent phenomenon can be seen in a model where agents
represent consumers and have local behavior rules that allow them to choose and buy brands
of video tapes according to the availability of machines on which to play it. Only by analyzing
the agent’s local rules, one would not intuitively notice that the simulation model is most
likely to lead one format to completely overcome the other.
Moreover, mathematical analysis might be limited in its ability to derive the dynamic
consequences in models where, for instance, agents have an adaptive behavior influenced
by their past experience. For this type of situation, a simulation model is usually the only
feasible method.

2.2.5 Open systems and self-organization

Self-organization is a process where the organization of a system is not guided or managed
by an outside source. Self-organizing systems normally represent open systems and might
typically display emergent properties. Open Systems in turn can be described as a system with
high environmental adaptability through quick incorporation of new elements, information
and ideas. On the other hand, a closed system resists the incorporation of new ideas and risks
atrophy, ceasing to properly serve the environment it lives in.
Self-organization is considered an effective approach for modeling the complexity in modern
systems, allowing the development of systems with complex dynamics and adaptable to
environmental perturbations without complete knowledge of future conditions. According
to (Gardelli et al., 2008), “The self-organization approach promotes the development of simple
entities that, by locally interacting with others sharing the same environment, collectively produce
the target global patterns and dynamics by emergence. Many biological systems can be modeled using
a self-organization approach”.
Some examples of self-organizing environments include food foraging in ant colonies,
nest building in termite societies, the comb pattern in honeybees, brood sorting in
ants, decentralized coordination for automated guided vehicles, congestion avoidance in
circuit-switched telecommunication networks, manufacturing scheduling and control for
vehicle painting and self-organizing peer-to-peer infrastructures, among others.

2.2.6 Local and global control

Governing laws of behavior for individual agents in a multi-agent simulation model can be
implemented as either local, global or a combination of both. The decision depends on the
type of simulation being modeled and the constraints imposed by the problem being solved.
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According to (Parker, 1992), emergence might occur solely based on the interaction of the local
control laws of the individual agents, which might not be aware of any global goals. However,
this approach might not be sufficient to model some simulations where agents are expected to
cooperate towards a global goal, and a hybrid model with both local and global control might
offer a solution. Still according to (Parker, 1992), the key difficulty when designing control
laws governing the behavior of individual agents is to find the proper balance between local
and global control and how to design such controls: as global goals designed into the agents,
as global or local knowledge or through a behavioral analysis method.

3. Multi-agent based simulation platforms

This section presents two frameworks that aid in the building and execution of SMA’s: Swarm
(Group, 2009) and Mason (Cioffi-Revilla & Rouleau, 2010). In this context, the main aspects
of each platform are covered in order to establish a comparative overview among these
platforms. Although the scope of this section is limited to these two platforms, it is worth
emphasizing that there are many others multi-agent frameworks being used by scientists, for
example Repast, NetLogo, and etc.

3.1 The Swarm Platform

The Swarm Platform was created in 1994 at the Santa Fe Institute, USA by Christopher Langton
with the help of other researchers. It was written in Objective C, but later a Java interface
was also developed. The Swarm Platform offers multi-agent researchers a good variety
of resources such as memory management, action scheduling, graph generation, real-time
simulation updating/interference, etc.
A Swarm can be described as a type of animal behavior characterized by the reunion of many
similar entities that together seem to behave as a bigger, single organism, such as a school of
fishes swimming at the sea or a swarm of bees flying in the sky. This type of behavior displays
a noticeable degree of flexibility (a swarm of insects adapting to environmental changes such
as the wind, rain, smoke, etc.), robustness (a global objective will still be pursued - and most
likely achieved - even if some of the members of the swarm are lost during the execution of
the task), decentralization (there is no central control as in a fish shoal) and self-organization
(insects in a swarm will organize themselves to achieve a global objective).
Following that philosophy, the Swarm Platform was developed to allow the mimic of such
features and concepts, modeling the agents with reactive features and actions. A second
feature provided by this platform is the creation of hierarchical models. In other words, it
could be possible to design multi-agent simulations which the agents are composed by other
agents, forming a multi-agent simulation by itself, or a simulation of nested simulations. This
allows the formation of systems with a high level of complexity.

3.1.1 The Swarm Platform architecture

The basic component that organizes agents in the Swarm platform is called SWARM. A SWARM

can be described as a collection of agents under a schedule of events and represents the entire
model, as it contains all agents within then model as well as the representation of time. The
basic architecture of a swarm simulation is comprised of a MODELSWARM, an OBSERVERSWARM

and, optionally, simulation PROBES. Figure 1 displays the basic architecture of a simulation in
the Swarm Platform.
The MODELSWARM contains the conceptual model implementation, and is comprised by a
SWARM and optional sub-swarms. In this architecture, active and passive agents are defined
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Fig. 1. Basic Architecture of a Simulation in the Swarm Platform.

along with their structures, features and their influential environment. The OBSERVERSWARM

is responsible for collecting the simulation data and the consequent presentation of such data
through charts, animations, files, etc. Finally, optional PROBES can be implemented so the user
can interact with the simulation in real time by observing and changing variables, agent states
and so forth.
Another essential element in a Swarm simulation is the SCHEDULER, which is responsible for
synchronizing the actions of agents of each swarm. Only one scheduler is allowed for each
swarm in a Swarm simulation

3.2 The Mason platform

The “Multi-Agent Simulator Of Neighborhoods” (MASON) Platform is a multi-agent
simulation framework written in Java, comprised of a model library and a set of 2D and
3D visualization tools. It is a result of a coordinated effort between The Evolutionary
Computation Laboratory and The Center for Social Complexity at George Mason University.
Among its characteristics, it is worth mentioning:

• Models are completely independent from their visualization;

• Portability between different platforms allowing the production of identical results;

• Native generation of simulation snapshots and movies from the simulation data.

Figure 2 shows the basic architecture of the Mason platform.
Just as the Swarm Platform, the Mason Platform contains a scheduler that allows the
simulation of discrete-time events. However, a significant difference between the two
schedulers is that in Mason the scheduler schedules agents instead of events, while in Swarm
the events themselves are the ones scheduled by the scheduler.
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Fig. 2. Basic Architecture of MASON.

4. Integrating artificial life and Multi-Agent Simulation: A new approach to making

science

Most of social science research work follows two approaches. In a theoretical approach, a
theory is chosen and it is used as a foundation for the whole research, which develops that
theory itself or proposes the creation of new ones derived from that primary theory. On the
other hand, a practical approach proposes the building of a model that could be represented
by equations, following an empirical line of work. Both approaches look into the social
phenomena using a different pair of glasses, although both glasses were made by the same
manufacturer (Social Science). Also, this shows how some social scientists can be. Anything
out of the theoretical or empirical approach might be seen as far-fetched and does not fit into
Social Science. In some cases, it could even be treated as “no-science” at all.
A third way to represent and analyze the social phenomena translates the social theories to
computer programs and presents itself as an alternative scientific method. According to this
method, artificial societies can be perceived as social laboratories that could be used to analyze
and test the social theories (Axelrod, 1998). This section’s goal is to set forth this third way of
doing science.
Generally speaking, simulations (especially multi-agent based simulations) are becoming
more relevant in such ways that some researchers consider that they are a “third way to
make science”, along with induction and deduction. Induction attempts to analyze the
micro-elements and to extrapolate such analysis in order to describe the global scenario
(micro to macro), which implies a deep understanding of each individual element. Deduction
uses the macro structures and global concepts as a guide to observe and to describe the
micro-elements. This method takes the opposite direction of induction; instead of describing
individual behaviors, the global behaviors are described in detail and they are employed as
rules that must be followed by all elements.
On the other hand, the way of how multi-agent based simulations deal with their goals
and their development may explain why they are considered a new form of science. At
first, simulations start with high level, explicit premises (as in the deductive process) but
not applying proofing theorems. Also, simulations provide effective results for an inductive
analysis based on well-defined premises. That way, it could be said that simulations gather
some of the best aspects of both classical scientific methods of reasoning in order to fulfill
their goals, while keeping a logical coherence. Finally, due to the complex nature of the
social phenomena and the appliance of distributed properties in that field, multi-agent based
simulations can fit well in both demands by design (Goldspink, 2002).
Besides the integration of these two classical approaches, the multi-agent based simulations
provide: (i) a conceptual model that describes the system to be simulated according to theories
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and general concepts, (ii) a computation model which, after being implemented, could be
analyzed empirically in a safe and controlled environment, (iii) tools for improving and
revising the theories used for building the model, (iv) new ways of looking into the social
theories using, for example, artificial worlds or a distinct set of rules for a real case scenario
that would never be feasible in a physical experiment.
Thanks to the multi-agent based simulations, a new family of multidisciplinary projects
is coming. Social theorists, mathematicians, computing specialists, biologists, linguists
and many other professionals are working together to model and to improve the social
simulations.

4.1 Artificial life and MABS in practice

At the following sections, a general overview of the research work of the Artificial and Social
Intelligence Group at Center of Mathematics, Computation and Cognition, Federal University
of ABC (UFABC) is presented to exemplify how multi-agent simulations can be used to
model artificial life systems. The applications are classified into groups according to the
following: Group I (basic applications), Group II (focus on information exchange) and Group
III (advanced models). Such division is performed to provide a better understanding of the
MABS’ potential.

4.1.1 Group I: Basic applications

Two basic applications are well-known in the MABS area: Conway’s Game of Life and
the Prey-Predator Model. Such applications provide the basis for several other MABS
applications, as they successfully represent most basic MABS concepts, such as emergency,
self-organization, bottom-up modeling, etc.

4.1.1.1 Conway’s game of life

A Cellular Automata (CA) is a set of cells disposed in a bi-dimensional grid where each cell
might assume a certain state, with the number of possible states being finite. All of the Cellular
Automata cells will simultaneously evolve to the next generation according to the same set of
evolution rules.
The Game of Life was created in 1970 by a British mathematician called John Conway, which
extended the work of John von Neumann. Having simplicity as the guiding rule for his work,
Conway achieved impressive results. Contrary to the work of John von Neumann, which was
comprised by a large number of rules, Conway’s Game of Life is comprised by few simple
rules. In an orthogonal grid, each cell can assume two states, alive or dead. During each turn
(or time-step), the automata determine whether each cell will be alive or dead based on four
simple rules, as follows:

• any live cell with fewer than two live neighbors dies by loneliness;

• any live cell with more than three live neighbors dies by overpopulation;

• any dead cell with exactly three live neighbors becomes alive;

• any live cell with two or three live neighbors survives.

Figure 3(A) shows the execution of the first rule, where isolated cells die by loneliness. Figure
3(B) shows the execution of the second rule, where a cell with more than three live neighbors
dies by overpopulation. Third rule can be seen in Figure 3(C), where each cell with exactly
three live neighbors becomes alive.
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Fig. 3. Examples of rules execution in a Conway’s Game of Life.

The results that turned the Game of Life an example of complex system are still a subject of
research. These four simple rules are capable of generating a broad range of patterns, from
static ones to complex arrangements that will look and behave as “creatures” that seem to
walk through the grid, many times destroying other clusters of live cells or originating new
creatures. Figure 4 shows an example of static pattern generated by such rules. Figure 5 shows
a classic example of a formation known as “Pulsar”, where the cluster of cells will alternate
between the three states shown on each step of the simulation.

Fig. 4. An Example of a Static Pattern.

Fig. 5. An Example of a Pulsar Creature and the Corresponding States.

4.1.1.2 The Prey-Predator model

There are many examples of self-sustained, complex systems in nature. The Food Chain is
one of such systems, and it can be described as a hierarchy of consumers. An herbivore eats
grass and, in turn, a carnivore eats herbivores. Should something happen to this chain, there
might be a minor shift in one of the chain members’ population which could lead to a major
shift in higher level chain members. Therefore, the Food Chain system can be understood as a
complex system since the overall behavior of that system relies on how each element interact
with each other, and not by the individual behaviors alone (Engbert & Drepper, 1994).
The Predator-Prey Model - modeled after the Food Chain system - is a prime example of
a heterogeneous system: there are populations (groups) of distinct species. Some of the
behaviors found in these species are the same, such as moving and escaping. However, some
species must deal with the hunt of preys and the escape from predators. The interaction
between predators and preys makes this system complex, in spite of the simple behaviors
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displayed by each element. The purpose of the simulation is to model an environment where
there are preys that attempt to run away from their predators while looking for food, and
predators that are hunting for these preys. This kind of simulation addresses both populations
and hazardous elements that could decrease them, as well as special elements (such as Cheese)
that could increase them.
Environment settings
The environment is described as a bi-dimensional grid with 50 rows by 50 columns, and each
cell can hold a numeric value. “0” stands for an empty space. “4” indicates a slice of cheese.
Values 1,2 and 3 represent a dog, a cat and a rat respectively.
Agents
At first, each agent fights for its survival, hunting for preys and running away from predators,
and performs the following actions at each simulation step:
Dog The DOG tries to notice a CAT. If there are no CATS close to it, a random movement is
performed. If there is a CAT nearby, the next step is to establish whether the DOG hit the CAT.
If it did, the CAT is killed. Otherwise, the newfound CAT is pursued by the DOG.
Cat The CAT follows a similar behavior to the DOG. In other words, the CAT looks for a RAT

nearby and, if a RAT is noticed, the CAT starts pursuing it. Likewise, if the RAT is hit, it is
killed. However, a runway element is added to the CAT: if a DOG is nearby, the CAT behaves
like a pray, running away from the DOG. If there is neither a DOG nor a RAT nearby, a random
movement is performed.
Rat
Essentially, the RAT runs away from the CAT and tries to follow the biggest Cheese gradient.
If a Cheese is hit, the RAT eats it, and in the place where the Cheese was found, a new RAT is
born. If there is neither a clear major Cheese gradient (one that represents the RAT’s direction
change) nor a CAT nearby, the RAT will perform a random movement.
Standard actions
There are some standard actions for all agents. For these actions, the agents’ viewing area is a
two-cell Von Neumann’s neighborhood, and they can be described as follows:

Notice Agent To search a certain agent.

Follow Agent If a target-agent is close enough, the agent will pursuit it.

Run Agent If a predator is detected, the agent will run in the opposite direction of this
dangerous agent.

Hit Agent To identify an agent in a one-cell Von Neumann neighborhood.

Kill Agent If a target-agent has been hit, it must be killed, which means that its cell must be
clean (get a zero value).

Random Movement If there is no target-agent nor predator is noticed or hit, the agent will
move randomly in one of the eight possible directions (N,NE,NW,S,SE,SW,E,W).

Follow Major Gradient Only available for the rats, it represents a linear search where the
largest concentration of cheese in the environment can be found.

The Figure 6 shows the execution of the predator-prey model using the Swarm Framework.
The yellow dots represent the cheese, the blue ones the dog agents, the red ones the cats and
the white ones are the rats.
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Fig. 6. The Predator-Prey Model Simulation Running.

4.1.2 Group II: Applications focused on information exchange and coordinated actions

This section presents simulations that are focused on the communication and exchange of
messages among agents in order to obtain a common objective.

4.1.2.1 Exploring Robots

The resolution of search problems represents a vast research field in AI, influencing the
Robotics area as well. Movement planning, execution and the recognition of an unknown
territory allows autonomous devices to successfully perform such tasks in highly dynamic
environments. In face of that, let’s consider an unknown environment (such as a maze or
a room with walls) where a group of robots share information while creating a collective
memory, in order to map the environment so that an exit can be found. Besides detecting
and mapping walls, the robots are supposed to navigate thought the environment avoiding
collisions and using routes not visited before while determining the best escape path. Below,
an overview of the model and the simulation that represent the aforementioned situation is
presented.
Conceptual model
The model of a simulated exploring robot will be implemented using the Swarm platform,
where several independent agents build their own maps using a simulated computational
vision system. The idea is to make use of technologies such as computational vision, path
finding, maps creation, etc. The basis for this type of implementation is an already discretized
model, containing walls and at least one exit that will be the agent’s main goal. The premises
for the creation of the conceptual model are as follows:

• The agent simulates a robot, thus is important to consider its characteristics and
limitations;

• The robot is equipped with four sensors which are capable of detecting any front, lateral
or rear obstacle;

• Walls detected by such sensors are automatically added to the map;

• A single map is shared among all robots, which means that robots collaborate on building
a collective representation of the environment;

• The map can be trusted, which means that the correctness of the information provided by
the robots is assured;

• Routes already mapped must be avoided as unknown routes are prioritized;
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• Whenever enough information to find the exit is available, the most efficient algorithms
must be used.

The map and the environment
Figure 7 shows an example of environment used in the simulation proposed by this study. At
the beginning of the simulation, the environment is loaded by the simulator and robots are
scattered randomly.

Fig. 7. Example of a Simulation Environment for Exploring Robots.

The map is a bi-dimensional representation implemented in Swarm using a structure known
as Discrete2dImpl, a type of matrix where each position holds an integer. The meaning of such
number is given by the following pattern: 0 - no information, 1 - identified wall, 2 - identified
free pathway, 3 to 15 - path already taken (incremented in each step) and 50 - exit.
Figure 8(a) shows the map at the beginning of the simulation. Figure 8(b) shows the map at
the end of the simulation, when robots have found the exit.

(a) Map at the Beginning of the
Simulation.

(b) Map at the End of the
Simulation.

Fig. 8. Map at Both Beginning (a) and End (b) of the Simulation.
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• The robots
The agent that represents a robot is capable of moving towards four directions (left, right,
forward and backward) as well as detecting obstacles in any of these directions. On each
movement, the agent evaluates its sensor’s information as well as its last movement to
determine its next step. First, the agent will check to which directions a movement is
possible through the detection of walls and other obstacles. Such information is added to
the map, which is updated with information regarding the location of walls and free spaces.
In possession of that data, the agent will try to infer the following:

• Any position occupied by a wall is immediately discarded from the list of possible
movements;

• Any position occupied by another agent is also immediately discarded from the list of
possible movements;

The choice of a new position among those available will be based on the priorities below,
according to the following order:

• Exit the environment;

• Movement’s continuity, which means that the agent will prefer to follow the same direction
as the one taken in its last movement, as changing the direction will most likely incur cost;

• Never visited locations;

• Least visited locations;

At the moment an agent occupies a new position, the related point in the map is incremented
indicating that a new visit was made. In the next inference, such position will be despised by
all agents.

Search algorithm
Considering the heuristics discussed so far, the search algorithm used might be classified as
a blind search algorithm, which is fairly inefficient (Russell & Norvig, 2004). However, as the
map doesn’t provide broad range information (the robot is capable of detecting only whatever
lies in its surroundings), it is impossible to make use of more sophisticated algorithms.
On the other hand, exploring algorithms greatly favor the exploration and mapping of the
environment.
Whenever enough information is gathered by one or many agents to link their position to the
map’s exit, the A∗ (read as Star) algorithm is used to get the shortest path to the exit. The A∗

search algorithm is one of the most common solutions to finding the shortest path in a graph
(Russell & Norvig, 2004).
In the context of an exploring robot simulation, the graph used is obtained by discretizing the
environment. Figure 9 shows how such discretization is performed and the resulting graph.
The weight of the edges is 1, and the total weight of the path from the robot’s current position
to the exit is the same as the number of cells (or vertexes) visited during the walk.

4.1.2.2 Autonomous Robot Navigation Through Fuzzy Logic

The example presented in 4.1.2.1 shows the navigation in a discretized Cartesian environment
where well-defined geometric basis are established. The autonomous navigation in real
environments finds application from automated machine movement in factories to the
creation of partially or completely automated robots used in outer space exploration. Such
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Fig. 9. Discretized Environment and the Resulting Graph.

broad range of applications also includes automating vehicles navigation, which is the focus
of the study presented below. In this context, it is necessary to take into consideration the
following:

• How inhospitable is the environment where the vehicle navigates;

• Which variables are involved;

• How to represent such variables and how they influence the movement.

The use of Fuzzy Logic offers a better interpretation of unpredictable environments, where
the knowledge of the environment is required on each step for making as much of a natural
decision as possible. This type of decision involves concepts like close, far away, fast, slow,
slight turn, very slight turn, etc. Such concepts cannot be easily modeled by using classical
logic, making Fuzzy Logic a very attractive choice.
Created in the 60’s by Lotfi Zadeh, Fuzzy Logic is derived from Classical Logic. Zadeh
considered that dealing with ambiguity (as the one caused by imprecise information) is an
innate human ability. The application of Fuzzy Logic occurs in three stages:

• Fuzzification (to transform values into linguistic variables);

• Logical Inference (to apply logical rules);

• Defuzzification (to transform linguistic variables into values).

Fuzzification is the process of mapping a problem’s input values into a function called
pertinence function, which represents the parameter’s variation and its linguistic counterpart.
For instance, if 1.60 meters is considered short and 1.80 meters is considered tall, 1.70 meters
might be considered as in-between (not short nor tall, and at the same time kind of short
and kind of tall). On the other hand, Defuzzification is the inverse process. The result of
logical inference is a value that needs to be translated to a linguistic value. For instance, is a
30-year-old a young, adult or old person?
Using Fuzzy Logic to solve the autonomous navigation problem allows a better modeling of
the system’s rules, as the ambiguity found when determining if something is far away, close,
moving fast or moving slow is much better described by the tools offered by Fuzzy Logic.
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Also, when considering the broad range of choices available in a decisions domain outside
a formal logical context (where only true and false exist), the application of Fuzzy Logic is
probably the most adequate for solving the aforementioned problem.
There are numerous worth mentioning studies using Fuzzy Logic, such as (Baltes & Otte,
1999) which presents a robot’s navigation control system using Fuzzy Logic with heuristic
functions, reducing in up to 75% the need of human control for the robots navigation. (Lu
& Chuang, 2005) also presents a navigation system which is capable of navigating through
obstacles controlling the angle of turn of the robot according to its acceleration. (Farhi &
Chervenkov, 2008) shows a design of a fuzzy controller for autonomous vehicle navigation in
unknown environments. (Jianjun et al., 2008) presents a practical example of an autonomous
navigation system for farm tractors using diffuse logic. In that system, the robot’s position is
obtained with the help of a GPS (Global Positioning System) and other digital sensors.
A common point can be seen in all of the studies mentioned: the use of few Fuzzy Logic rules.
In contrast to the traditional modeling of this type of problem, the use of Fuzzy Logic in all of
those works proved to be very simple and efficient.
Conceptual model
The model proposed in this work for the autonomous navigation problem uses Fuzzy Logic
and considers as input all the distance measurements obtained by the car’s exterior sensors.
Fundamental questions of an autonomous navigation system include keeping the vehicle in a
desirable path as well as keeping an appropriated ground velocity.
Six inference variables are used as input to the system, five of them being obtained by the
vehicle’s distance sensors and another accounting for the vehicle’s instantaneous velocity.
Figure 10(a) shows the location of the sensors in the vehicle. The result of the inference
process determines the value of the two output variables: the turning angle of the vehicle
and its acceleration.

(a) Location of the Sensors in
the Vehicle.

(b) Pertinence Function: A -
Left, Front, Right and Left
Corners Sensors. B - Right
Sensor.

Fig. 10. Conceptual Model.

The Sensors provide the distance (in a straight line) from the vehicle to an obstacle. An
additional parameter could be the current visibility, which would determine how far an
obstacle can be while still being detected by the sensor. The fuzzification is executed according
to the readings of such sensors using the composition shown in Figure 10(b) as the pertinence
function. The choice of different pertinence functions for the right sensor (Figure 10(b)) is
justified by the necessity of keeping the vehicle to right of the road, respecting the right-hand
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traffic regulation. This is achieved by modeling the functions considering “near” in the left
side as being “nearer” than in the right side.
Besides the sensor’s reading, the vehicle’s current velocity is also evaluated using a pertinence
function. After the fuzzification of these variables, the inference process occurs following the
set of rules shown in Table 2.

RULE IF THEN

LEFT LEFT CORNER FRONT RIGHT CORNER RIGHT SPEED ANGLE ACCELERATE

1 NEAR RIGHT KEEP

2 NEAR STRONG RIGHT KEEP

3 NEAR LEFT KEEP

4 NEAR STRONG LEFT REDUCE

5 MEAN OR FAR MEAN OR FAR RIGHT KEEP

6 FAR FAR STRONG RIGHT KEEP

7 FAR SLOW OR MEAN KEEP ACCELERATE

8 NEAR OR FAR NEAR OR FAR MEAN OR FAR MEAN OR QUICK KEEP REDUCE

Table 2. Table of Rules Used in the Model.

The idea of using simple rules and in reduced number also favor the observation of emergent
behavior. These rules are applied in each simulation step and the results are submitted to the
defuzzification process.

Implementation of the simulation
Figure 11 shows the simulation running, where vehicles are seen navigating through an
unknown route. The expected behavior is observed, as vehicles reduce their velocity during
turns while keeping the distance to vehicles navigating in front of them or in the opposite
direction.
An example of association between the rules and the agent’s behavior is shown in Figure
11(a). Figure 11(a)-A shows an example of Rule 1 (see Table 2) executed as a result of the
vehicle being near the left side of the road without a velocity’s reduction needed. On the
other hand, Figure 11(a)-B shows a hazardous situation that triggers Rule 2, which in turn
changes the vehicles’ trajectory and reduces its velocity drastically.

(a) Situations Associated to the
Triggering of Rules.

(b) Occurrence of Accidents
During the Simulation.

Fig. 11. Implementation of the Simulation - Situations Associated to the Triggering of Rules
and Occurrence of Accidents.

The velocity range that the vehicle operates on is another parameter that can be informed
during the creation of a new agent. In one simulation instance, some of the agents were
instructed to navigate in above-average velocity. Figure 11(b) show the execution of such
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simulation as well as the occurrence of an accident caused by excessive velocity when making
a turn. This is an example of an emergent behavior which wasn’t explicitly modeled but is
still completely coherent to the real system.

4.1.3 Group III: Advanced applications in various themes

This section shows the potential and flexibility of advanced multi-agent based simulations
involving both more complex scenarios and agents with deeper behavior patterns.

4.1.3.1 Panic in crowds

Sociology deals with the birth and formation of social groups and institutions. On the other
hand, the collective behavior field studies social phenomena that do not strictly run according
to institutions and social norms. The people’s behavior in such phenomena is decoupled from
the social rules, and it emerges from the interactions among individuals.
Some collective behavior events include mobs, fans in a rock fest, bystanders glaring at a
showcase, and so on. The social theorists of the 19th century were the firsts to study and
propose theories describing the collective behavior phenomena.
During the 20th century, some approaches were proposed to offer an overview of the collective
behavior events and the individual’s actions along these events. From a blind-folded action
(relating groups of people to herds) to a more organized behavior with roles and some sort
of hierarchy, the social phenomena studies evolved, improved and proposed new ways of
looking at the collective behavior field.
The panic in crowds’ phenomenon is a kind of collective behavior that happens during
hazardous situations such as fire, earthquake and flooding. In such situations, life is at stake.
Because of that, there is an urge to act and think fast, although the individuals do not behave
in a randomly fashion. Instead, there is coordination, communication and a strong sense to
act quickly (dos Santos França et al., 2009).
Because of this inherent emergency and the formation of behaviors and coordinated, social
actions during the event, multi-agent based simulations could easily be applied to this social
situation. Besides, it could be unethical and logistically impractical to create panic situations
in real life. The social simulation approach allows “what if” scenarios and an even a more
realistic portrayal of events, all without the health concerns that a simulation of panic in real
life would imply. For instance, the room’s disposition could be changed at will in order to
observe how the individuals react to an obstacle or a small door. Collective behavior (and
panic in crowds by extension) must follow some steps. Figure 12(a) shows the possible steps
in an interactionist approach for the collective behavior phenomenon.
In short, the panic starts when an exciting event occurs. That event could be a fire or the
furniture trembling. The individuals get curious about what is happening and what has
changed the ordinary situation they were in. This social unrest leads them to find more
information about the new condition they are facing. One way to take more information
is milling, a verbal/non-verbal communication method that applies looks, touches, gestures
and short expressions to pass a message to the others.
The milling is important because the individuals start making a collective representation of
the situation. At first, this representation is at a micro level. However, as soon as the event gets
more dangerous and the need of act becomes essential for survival, that representation starts
to be unified by the collective excitement and the social contagion. During these steps, the
individuals’ communication and their actions work as a feedback mechanism that enhances
and narrows the best lines of action.
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(a) Possible Steps in an
Interactionist Approach.

(b) A Panic Simulation
Screenshot.

Fig. 12. Panic in Crowds - Model and Simulation.

When the individuals share a similar representation of the current situation, they choose a
line of action and they act in order to re-establish the previous condition or to save themselves
from the imminent danger, in a typical collective panic behavior. These steps are linear just for
didactical purposes, since the individuals may jump or redo some of these steps when they
see fit (dos Santos França et al., 2009).
The transition from a theoretical model to a computation model could be a challenge.
However, if the transition occurs, the implemented model might be used to analyze the social
phenomena in a privileged seat. The data, behaviors and communications shown during the
simulation can be compared to the theory and even validate it. Figure 12(b) shows a panic
simulation screenshot.

4.1.3.2 An Agent-Based Model for the spread of the Dengue Fever

The dengue fever is today the most spread arbovirosis in Brazil. Transmitted only by the
female Aedes aegypti mosquito, it reaches its peak during the hot and humid Brazilian summer
season. While there are many approaches to analyze the spread of the dengue fever, most of
them focus on developing a mathematical model to represent that process. One disadvantage
of such approach is to neglect the importance of micro-level behavior, focusing instead on the
macro-level aspects of the system.
(Jacintho et al., 2010) developed an agent based simulation model for the spread of the Dengue
Fever in the city of Rio de Janeiro, Brazil. Such model achieved similar results to the models
currently being used, with the advantage of using just one set of agents and their interactions.
The virus is transmitted to mosquitoes when they feed on the blood of a person already
infected with the dengue virus. After an incubation period of eight (8) to twelve (12) days, the
mosquito is then ready to propagate the disease. In humans, the incubation period might last
from three (3) to fifteen (15) days, and symptoms are noticeable only after this period. Most
importantly, there is no transmission through direct patient contact (including secretions) with
a healthy person. The virus is not transmitted through water or food as well. To better
understand and simulate the features observed in the real world, a transposition was made in
order to build a model to be executed in a controlled environment. Rules were established for
building a model as close to reality as possible, according to the scope of the project.
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Below, a description of the simulation model based on (Otero et al., 2005; Santos et al.,
2009) is presented, as well as the behavioral rules transposed to the computational model
implemented in the Swarm platform.
(A) Mosquito Agent Behavior
As in the real world, this agent is modeled to display four (04) distinct stages: egg, larva, pupa
and the land form, which corresponds to the adult mosquito. During simulation, each stage is
represented internally in the mosquito agent, with no graphical/visual representation being
used to differentiate distinct stages. The mosquito agent evolves according to the simulation
progress and its behavior is internally adjusted according to its current life cycle stage.

(A.1) Egg Agent Behavior
Egg agents cannot move or feed and have an ideal temperature higher than 20 ºC, with an
ideal humidity higher than 70%. Their outbreak will normally take place in about three (03)
days.

(A.2) Larva Agent Behavior
These agents move only within their birthplace water spot, feeding on microorganisms and
on their own egg remains. Their ideal temperature is between 25 ºC and 29 ºC, and their ideal
humidity is higher than 70%. Under such conditions, this stage will take between three (03)
to five (05) days to complete.

(A.3) Pupa Agent Behavior
Just like eggs, pupa agents cannot move nor feed. Their ideal temperature and humidity
is around 20 ºC e 70% respectively, and they will have an 83% chance to become adult
mosquitoes within three (03) days approximately.

(A.4) Adult Mosquito Agent Behavior
In this stage, agents are able to move freely through the environment up to 100m from their
birthplace. Only females are capable of transmitting the disease, and that rarely happens
at temperatures below 16 ºC, normally taking place under temperatures above 20 ºC. The
mosquitoes proliferate at an estimated temperature between 16 ºC and 29 ºC, and have an
average egg positivity of four (04) during their lifetime. Females will lay about 300 eggs on
clean water with a 40% survival rate and 60% chance of being capable of transmitting the
disease, i.e., other females. That means about 72 eggs will be considered in the simulation.
The mosquitoes can be killed by either exterminator agents or traps in the environment. They
have an incubation period of about 8 to 11 days, by the time at which they become infectious
and remain so for the rest of their life. Each infected female mosquito can propagate the
disease to healthy humans by only a simple bite.

(B) Human Agent Behavior
As in the real world, this agent represents a human being, which might or might not become
infected by the disease. Humans can move freely through the environment. After being bitten,
it takes three (03) to six (06) days for the symptoms to become apparent. The Dengue Fever
might last from three (03) to fifteen (15) days, with an average of five (05) to six (06) days. After
being infected, the human agent can transmit the virus to others non-infected mosquitoes by
blood contact during a mosquito’s bite. This can occur one day before the first symptom
appears and continues up to the last day of the disease. The death rates on multiple infections
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(also called the hemorrhagic dengue) are: 0.5% when infected twice; 10% when infected three
times; 15% when infected four times and 25% when infected more than four times.
(C) Exterminator Agent Behavior
The exterminator agent moves freely through the environment based on the mosquitoes’
gradient, attracted by areas of high density of mosquitoes in the map. This represents the
public health organizations that map and notify all risk areas when planning control actions.
Their role in the simulation exterminate adult mosquito agents.
(D) The Environment
The environment is not modeled as an agent by itself, but influences the agents’ behaviors.
Environmental factors such as temperature, food rate (probability of finding food) and
humidity are globally defined as average values for the entire simulation, simplifying the
simulation model and allowing the study of scenarios with different average values. There
will be two states presented in the scenario: clean water and trap. Clean water servers as
the place where mosquitoes will lay their eggs. Traps, on the other hand, are placed by
exterminators to eliminate mosquitoes.
The conceptual model is transposed to a computational model that was later implemented in
the Swarm simulation platform.
The environment interacts with all agents offering food for the mosquitoes, water for their
reproduction and traps with substances to inhibit their proliferation. The results of such
interactions between agents and the environment can be visualized in a 2D raster provided
by the Swarm platform. According to Dantas et al. (Dantas et al., 2007) and Dibo et al.(Dibo
et al., 2008), meteorological aspects such as temperature, humidity and precipitation can be
used as predictors for Dengue incidence. In that sense, evaluating different climatic seasons
allows a better understanding of the spread of the disease.
In this work, a tropical wet and dry climate region (Aw) is considered, according to the
Köppen-Geiger climate classification (McKnight & Hess, 2000; Peel et al., 2007), as this is the
predominant climate for most of Brazil. The weather in Brazil is characterized by high average
annual temperatures and by a pluviometric regime that separates two distinct seasons: a rainy
summer and a dry winter season.
Scenario I: Winter season
To simulate the Brazilian winter season, the Rio de Janeiro’s climate information was used,
with an average temperature of 18 ºC e average humidity of 45%. As the winter in Brazil is
characterized by high dryness, 20 water spots were considered, with 5% of them set as traps.
As the winter is a season with historically low dengue fever occurrence, only 10 exterminators
were made available in this simulation scenario. The simulation started with 100 human
agents, with 8% already infected with the disease, and 50 mosquitoes, with 60% already
infected by the disease.
After 180 simulation cycles (60 days), no occurrences of hemorrhagic dengue (a human agent
being infected more than once) were noticed, and the infection rate actually dropped to 7%.
The number of mosquitoes in the environment also dropped from 50 to 30, with a 100%
infection rate and with 111 mosquitoes in non-adult stages of their life cycles. Figure 13 (a)
shows the simulation screen after 60 days. The color gradation shows the density of infected
mosquitoes, and clearly displays few concentration spots. Figure 13 (b) shows the chart of
mosquitoes in non-adult stages against adult mosquitoes. It was observed that even though
there were many non-adult mosquitoes, several adults were unable to survive due to the harsh
winter conditions (temperature, humidity and lack of water spots). Figure 13 (c) shows the
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