Applications of Al Modified Graphene on Gas Sensors and Hydrogen Storage

Zhimin Ao, Jack Yang and Sean Li
School of Materials Science and Engineering,
The University of New South Wales, NSW 2052
Australia

1. Introduction

Graphene is a single layer of graphite with a hexagonal structure, or an individual sheet of sp^2-hybridized carbon bound in two dimensions. It was experimentally fabricated for the first time through mechanical exfoliation of small mesas from highly oriented pyrolytic graphite (HOPG) in 2004 and subsequently was found with excellent electrical properties (Novoselov et al., 2004). This discovery has triggered enormous amount of interest on graphene both in fundamental and applied research. Graphene has shown promising applications as ultra-sensitive gas sensors, transparent electrodes in liquid crystal display devices, and large capacity electrodes in Li batteries (Rao et al., 2009).

Various methods have been reported for the synthesis of single-layer graphene: (1) Mechanical exfoliation from HOPG (Novoselov et al., 2004; Zhang et al., 2005), which is deposited on to a silicon substrate. This method is low cost, but the graphene produced is of poor quality with the limited area. It is particularly difficult and time-consuming to synthesize single-layer graphene in large scale with this method (Yuan et al., 2009). (2) Chemical exfoliation from bulk graphite (Li et al., 2008a;b). In this case, oxidized graphite (by using strong acids) was cleaved via rapid thermal expansion or ultrasonic dispersion, and subsequently the graphene oxide sheets were reduced to graphene. A serious drawback of this method is that the oxidation process induces a variety of defects which would degrade the electronic properties of graphene. (3) Epitaxial growth on an insulator surface (such as SiC) (Zhou et al., 2007). The graphene obtained showed poor uniformity and contained a multitude of domains. (4) Chemical vapour deposition (CVD) on the surfaces of metals (e.g., Ni) (Reina et al., 2009). Recently, N substitutionally doped graphene was first synthesized by a CVD method with the presence of CH$_4$ and NH$_3$ (Wei et al., 2009). As doping accompanies with the recombination of carbon atoms into graphene in the CVD process, dopant atoms can be substitutionally doped into the graphene lattice, which is hard to realize by other synthetic methods.

Several unique electronic properties associated with these 2D crystals have been discovered (Beenakker, 2008). In addition, it is known that carbon nanotubes have good sensor properties (Geim & Novoselov, 2007). Recently, graphenes as highly sensitive gas sensors were also reported (Ao et al., 2008; Bunch et al., 2005; Yang et al., 2010). It was shown that the increase in graphene charge carrier concentration induced by adsorbed gas molecules could be utilized to make highly sensitive sensors, even with the possibility of detecting individual molecules. The sensing property is based on the changes in the resistivity due to molecules adsorbed on
graphene sheet that act as donors or acceptors. The sensitivity of NH$_3$, CO, and H$_2$O up to 1 ppb (parts per 109) was demonstrated, and even the ultimate sensitivity of an individual molecule was suggested for NO$_2$. Furthermore, the preliminary works (Ao et al., 2009a) indicated that graphene has promising physisorption properties for hydrogen. With state-of-art computer simulations, it is believed that the properties of condensed matters can be understood at the atomic level. In the simulation, the simulator builds a model of a real system and explores its properties. In many ways, simulation studies share the same mentality as experimental ones. However, simulations allow absolute control over the experimental parameters and access to the outcomes in details. These strengths have been exploited for the last fifty years since the introduction of computation algorithms that allows one to calculate the properties of materials based on the first-principles in light of fundamental physics outlined in Schrödinger equation without free parameters. In this chapter, the applications of Al modified graphene as gas sensor and hydrogen storage materials are developed and optimized with density functional theories (DFT).

2. Application for ultra-sensitive carbon oxide detection

2.1 Emerging ultra-high sensitive CO detection

It was reported that the detectable range and sensitivity of the single wall carbon nanotubes (SWCNTs) can be widened and enhanced substantially through either doping technology or surface engineering (Kong et al., 2001; Peng & Cho, 2003; Wei et al., 2004). For example, SWCNT coated with Pb nanoparticles has high sensitivity to H$_2$ (Kong et al., 2001), SnO$_2$/SWCNTs hybrid material shows an enhanced sensitivity to NO$_2$ (Wei et al., 2004). The high sensitivity of boron doped SWCNT to CO and H$_2$O absorptions has been also demonstrated (Peng & Cho, 2003). Most recently, Al-cluster and Al doped SWCNT assembly were suggested to be promising systems for novel molecular sensors to NH$_3$ (Zhao et al., 2005) and CO (Wang et al., 2007), and the B doped SWCNTs are highly sensitive to the gaseous cyanide and formaldehyde molecules (Zhang et al., 2006). However, the devices with higher sensitivity to these toxic gases are apparently required for environmental safety issues both in workplaces and residential areas, especially in some industrial and military fields. Graphene based device may be a solution for ultra-high sensitivity gas sensor (Leenaerts et al., 2008; Schedin et al., 2007; Wehling et al., 2008). Similar to CNT, the working principle of graphene devices as gas sensors is based on the changes of their electrical conductivity induced by surface adsorbates, which act as either donors or acceptors associated with their chemical natures and preferential adsorption sites (Collins et al., 2000; Kong et al., 2000; Moseley, 1997). Graphene is considered to be an excellent sensor material and the sensitivity of Al doped graphene system to CO gas detection is investigated using DFT calculations.

2.2 Rationale for choosing Al as candidate dopant: a quantum field theoretical perspective

Since graphene is a stable 2D structure, gas molecules tend to be adsorbed onto pristine graphene weakly through physisorption. This has brought a large disadvantage for using pristine graphene to adsorb toxic gases such as CO. By introducing substituent impurities into graphene through chemical doping, the local electronic structures around the dopants could be modified. Typically, as confirmed by the first principle studies in the next section, incorporating Al into graphene will cause a distortion to the electron density distribution around the dopant. In this case, C-atoms surrounding the Al dopant will attract electrons due to their high electron affinity, whereas on the Al dopant, a decrease in electron density can be observed. The charge redistribution makes the Al to be an active site for CO adsorption. This
Fig. 1. The honecomb graphene lattice with a substituting atom replacing a carbon atom. The substituent changes the local hopping parameter from t to $t - t_0$. The honeycomb lattice is can be considered as made up with two sublattices with atomic types A and B. In this case, an A-type atom has been substituted with an impurity atom.

charge re-distribution effect can be confirmed with advanced field theoretical methods (Peres et al., 2006; 2007; 2009).

Here, the electronic properties caused by a single dopant in graphene layer can also be studied with the field theory.

Under the tight-binding model, the graphene honeycomb lattice can be considered as being constructed from unit cells consisting two types of atoms A and B (Fig. 1). The unit cell vectors in Cartesian coordinates are $\vec{a}_1 = \frac{a_0}{2} (3, \sqrt{3})$ and $\vec{a}_2 = \frac{a_0}{2} (3, -\sqrt{3})$, with a_0 to be the unit cell parameter. \vec{r}_n ($n = 1, 2, 3$) are vectors connecting a given atom to its three direct neighbours. Introducing a phase factor $\varphi(k) = \sum_{i=1}^{3} e^{i \vec{k} \delta_i}$, the tight-binding Hamiltonian for graphene, with a single impurity substituting an A-type atom, can be expressed as

$$\hat{H} = -t \sum_{k, \sigma} \left(\varphi(k) \hat{a}_{k, \sigma}^{\dagger} \hat{b}_{k, \sigma} + h.c. \right) + \frac{t_0}{N_c} \sum_{k, k', \sigma, \sigma'} \left(\varphi(k') \hat{a}_{k', \sigma}^{\dagger} \hat{b}_{k, \sigma} + h.c. \right) + \sum_k \frac{\varepsilon_0}{N_c} \hat{a}_{k, \sigma}^{\dagger} \hat{a}_{k, \sigma},$$

in the reciprocal space. In the above Hamiltonian, $\hat{a}_{k, \sigma}^{\dagger}$ and $\hat{b}_{k, \sigma}^{\dagger}$ creates and destroys an electron with wavevector k and spin on A(B) lattice site, respectively. N_c is the number of atoms in a unit cell. The spin degree of freedom is summed over spin index σ. The hopping parameter between two neighboring C atoms is t, where upon dopant substitution, the hopping parameters between the dopant and its neighboring C atoms are changed to $t - t_0$. The dopant atom also introduces a local potential ε_0. By changing the impurity hopping parameters and local potential, different impurity types can be modeled, which will become apparent later.

Our aim is to calculate the electronic density of states (DOS) on the impurity and its nearest neighboring sites. This requires the knowledge of the system’s Green’s function. Under the Matsubara formalism, it reads

$$G_{\sigma}(\omega_n, k, p) = \left(\begin{array}{cc} G_{aa}(\omega_n, k, p) & G_{ab}(\omega_n, k, p) \\ G_{ba}(\omega_n, k, p) & G_{bb}(\omega_n, k, p) \end{array} \right),$$

www.intechopen.com
in which the matrix elements $G_{\alpha\beta}(\omega_n, k, p)$ are defined as the Fourier transforms of $G_{\alpha\beta}(k, p, \tau) = -\langle T_\tau \hat{\alpha}_\beta^*(\tau)\hat{\beta}_\alpha(0) \rangle$ with $\alpha, \beta = a, b, k$ and p denotes the electronic wavevectors τ is the complex time variable and ω_n are the fermionic Matsubara frequencies.

The system Green's function (Eq. 2) can be solved from the equations-of-motion derived based on Hamiltonian (Eq. 1). The rationale behind the solution procedure is to seek for the relationship behind $G^r(\omega_n, k, p)$ and $G^0(\omega_n, k)$. The Matsubara Green's function for pristine graphene, where the later can be expressed analytically as (Peres et al., 2006):

$$G^0(\omega_n, k) = \left(\begin{array}{cc} G^0_{aa}(\omega_n, k) & G^0_{ab}(\omega_n, k) \\ G^0_{ba}(\omega_n, k) & G^0_{bb}(\omega_n, k) \end{array} \right) = \sum_{j=\pm 1} \frac{1}{i\omega_n - j\varphi(k)} \left(\begin{array}{cc} 1 & je^{i\delta(k)} \\ je^{-i\delta(k)} & 1 \end{array} \right),$$

with $e^{i\delta(k)} = \varphi(k)/|\varphi(k)|$.

Since we are interested in the electronic DOS on the impurity (A) site and its nearest-neighboring (B) sites, therefore, it would be sufficient to solve for $G_{aa}(\omega_n, k, p)$ and $G_{bb}(\omega_n, k, p)$ in Eq. 2. The electronic DOS can then be found from the imaginary parts of the retarded Green's functions $G^r_{aa}(\omega, k, p)$ and $G^r_{bb}(\omega, k, p)$ through analytical continuation of the Matsubara Green's functions. The presence of both diagonal and nondiagonal disorders means that the solutions will be of a more complex form than the usual T-matrix for a single Anderson impurity scattering problem, and the results are

$$G_{aa}(\omega_n, k, p) = \delta_{k,p} G^0_{aa}(\omega_n, k) + g(\omega_n) + h(\omega_n) \left[G^0_{aa}(\omega_n, k) + G^0(\omega_n, p) \right] + G_{aa}(\omega_n, k)T(\omega_n)G^0_{aa}(\omega_n, p),$$

$$G_{bb}(\omega_n, k, p) = \delta_{k,p} G^0_{bb}(\omega_n, k) + \frac{e^{i\delta(k)}\varphi(p)}{(i\omega)^2} G^0_{bb}(\omega_n, k)T(\omega_n)G^0_{bb}(\omega_n, p),$$

where

$$g(\omega_n) = t_0^2 G^0_{aa}(\omega_n)/[N_eD(\omega_n)],$$

$$h(\omega_n) = t_0(t - t_0)/[N_eD(\omega_0)],$$

and

$$T(\omega_n) = -[i\omega_nt_0(2t - t_0) - \varepsilon_0] / [N_eD(\omega_n)],$$

with

$$D(\omega_n) = (t - t_0)^2 + [i\omega_nt_0(t - t_0) - \varepsilon_0] G^0_{aa}(\omega_n),$$

and

$$G^0_{aa}(\omega_n) = \frac{1}{N_e} \sum_k G^0_{aa}(\omega_n, k).$$

The important term is the $g(\omega_n)$ whose double Fourier transform gives $G_{aa}(\omega_n, 0, 0)$ which is the return (back-scattering) amplitude of the electron wave to the impurity site. Its magnitude, which depends on $D(\omega_n)$, depicts the electronic DOS on the impurity sites. In the case of Al doping, where the dopant has a larger atomic radius than carbon, we can let $t_0 = -t$, with $\varepsilon_0 < 0$, as a limiting case. This gives

$$g_1(\omega_n) = \frac{G^0(\omega_n)}{\left(4 - 4i\omega_n G^0(\omega_n)\right) + (i\omega_n - \varepsilon_0 G^0(\omega_n))}. $$
Fig. 2. Local density of states (LDOS) on the impurity atom at A site and surrounding carbon atoms at B sites for the case where \(t_0 = -1, t = 1 \), mimicking the situation of Al doping in graphene. (Reproduced with permission from Ref. (Peres et al., 2009). Copyright 2009, APS)

On the other hand, for a dopant with smaller ionic radius, we would have \(\epsilon_0 > 0 \) and \(t_0 = |\gamma| t \).

The most interesting case is for a physisorbed species on graphene layer, in which \(t_0 = t \), indicating that the molecule would have no interaction with the graphene layer. Under such a condition, the Matsubara Green’s function for a free particle can be reclaimed as,

\[
g_2(\omega_n) = \frac{1}{i\omega_n - \epsilon_0}.
\]

(12)

Fig. 2 shows the resulting electronic DOS on the impurity site and its neighboring carbon atoms with \(t_0 = -t \). In this case, the \(\epsilon_0 \) is chosen to be zero, whereas a nonzero \(\epsilon_0 \) will simply modify the DOS diagram by destroying the particle-hole symmetry. It is hence evident from Fig. 2 that effect of an Al–like dopant is to deplete electrons from the impurity and causing electron accumulation in the surrounding atoms (\(\rho_A < \rho_B \)).

2.3 CO adsorption effects on atomic configuration, electronic energy and bond lengths of Al doped graphene

Above analysis established a solid theoretical framework for further investigation of the Al doped graphene for application of CO sensor with DFT calculations. In this work, all DFT calculations were performed in Dmol3 code (Delley, 1990). It is widely known that calculations limited at the local density approximation (LDA) overestimate bond energy \(E_b \) and underestimate equilibrium distances (Jeloaica & Sidis, 1999; Lugo-Solis & Vasiliev, 2007). Thus, a GGA with the RPBE method is used as the exchange correlation function (Hammer et al., 1999). The DFT semicore pseudopotential (DSPP) core treatment (Delley, 2002) was implemented for relativistic effects, which replaces core electrons by a single effective potential. To ensure that the results of the calculations were comparable, identical conditions had been employed for the isolated CO molecule, the original Al doped graphene and also the adsorbed graphene system. The \(k \)-point was set to 6 \(\times \) 6 \(\times \) 2 for all slabs, which brought out the convergence tolerance of energy of 1.0 \(\times \) 10\(^{-5} \) hartree (1 hartree = 27.21 eV), and that of maximum force of 0.002 hartree.

In the simulation, three-dimensional periodic boundary condition had been adopted and C-O bond length was set to \(l_{\text{C-O}} = 1.13\text{Å} \), which is consistent with experimental results (Lide, 2000). For the graphene, a single layer \(2 \times 2 \) supercell with a vacuum width of 12 Å above had been constructed, which ensured that the interaction between repeated slabs in a direction...
normal to the surface was small enough. All atoms were allowed to relax for all energy calculations. The adsorption energy E_b between the CO gas molecule and graphene is defined as,

$$E_b = E_{CO+graphene} - (E_{graphene} + E_{CO}),$$

where the subscripts CO+graphene, graphene, and CO denote the adsorbed system, isolated graphene and CO molecules, respectively.

Fig. 3. Twelve available binding sites for CO adsorbed on intrinsic graphene (top and below images show the top and side view, respectively). (a) T-B-T, (b) T-H-T, (c) H-T-H, (d) H-B-H, (e) B(C atom)-T-H, (f) B(O atom)-T-H, (g) T-(O atom upward), (h) B (O atom upward), (i) H (O atom upward), (j) T (C atom upward), (k) B (C atom upward), (l) H (C atom upward). T, B and H denote top site of C atoms, bridge site of C-C bond and hollow site of carbon hexagon, respectively. Gray, pink and red spheres are denoted as C, Al and O atoms, respectively. (Reproduced with permission from Ref. (Ao et al., 2008). Copyright 2008, Elsevier)

To search for the most stable structure between a CO molecule and the intrinsic graphene, E_b described in Eq. 13 and the binding distance, d, for all possible configurations were calculated. Twelve possible binding sites for the CO adsorbed on graphene layer were considered as initial structures as shown in Fig. 3(a)-(l). After full structural relaxation, no distinctive structural change has been found. All of the results are displayed in Table 1. It is found that adsorption configuration shown in Fig. 3(f) has the smallest d value and the largest E_b value among all the possible configurations. This indicates that the configuration shown in Fig. 3(f) is the most stable atomic arrangement with the strongest interaction between CO and graphene with $E_b = 0.016$ eV and $d = 3.768$ Å, which are consistent with the other simulation
results of $E_b = 0.014$ eV and $d = 3.740$ Å (Leenaerts et al., 2008). However, in this particular adsorption configuration, the E_b value is still considered to be too small and d too large, even though they are the most favorable one for adsorption, reflecting that CO undergoes weak physisorption on the intrinsic graphene. This indicates that the intrinsic graphene is insensitive to CO molecules.

<table>
<thead>
<tr>
<th>Initial binding configurations</th>
<th>Intrinsic graphene</th>
<th>Al doped graphene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_b (eV)</td>
<td>d (Å)</td>
</tr>
<tr>
<td>CO∥graphene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-B-T</td>
<td>-0.011</td>
<td>3.839</td>
</tr>
<tr>
<td>T-H-T</td>
<td>-0.012</td>
<td>3.805</td>
</tr>
<tr>
<td>H-T-H</td>
<td>-0.014</td>
<td>3.826</td>
</tr>
<tr>
<td>H-B-H</td>
<td>-0.009</td>
<td>3.857</td>
</tr>
<tr>
<td>B(C atom)-T-H</td>
<td>-0.011</td>
<td>3.855</td>
</tr>
<tr>
<td>B(O atom)-T-H</td>
<td>-0.016</td>
<td>3.768</td>
</tr>
<tr>
<td>CO⊥graphene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T(O upwards)</td>
<td>-0.007</td>
<td>3.938</td>
</tr>
<tr>
<td>B(O upwards)</td>
<td>-0.007</td>
<td>3.935</td>
</tr>
<tr>
<td>H(O upwards)</td>
<td>-0.003</td>
<td>3.982</td>
</tr>
<tr>
<td>T(C upwards)</td>
<td>-0.004</td>
<td>3.952</td>
</tr>
<tr>
<td>B(C upwards)</td>
<td>-0.003</td>
<td>3.981</td>
</tr>
<tr>
<td>H(C upwards)</td>
<td>-0.005</td>
<td>3.942</td>
</tr>
</tbody>
</table>

Table 1. Summary of results for CO adsorption on intrinsic graphene and Al doped graphene on different adsorption sites. The meaning of T, B and H are given in the caption of Fig. 3. In the table headings, d represents the distance between CO gas molecule and graphene layer, l represents the bond length of Al and C atom in CO gas molecule.

Upon substituting one carbon atom by Al, the geometric structure of the doped graphene changes dramatically, as shown in Fig. 4. Figs. 4(a) and 4(b) represent the geometries of intrinsic and Al doped graphene after relaxation. As shown in Table 2 and Fig. 4(b), the Al doping results in l elongation from $l_{C-C} = 1.420$ Å to $l_{Al-C} = 1.632$ Å. This is associated with the distortion of hexagonal structures adjacent to the larger Al atom, similar to the restructuring in Al doped SWCNTs (Wang et al., 2007).

When a CO molecule is adsorbed on the Al-substituted graphene, there also exists twelve possible adsorption sites similar to the CO absorption on intrinsic graphene shown in Fig. 3. These are taken as initial configurations. After relaxation, the configuration in Fig. 3(d) has the most stable relaxed structure. The adsorption of CO causes a structure change in the Al doped graphene dramatically, resulting in an expansion of l_{Al-C_2} from 1.632 to 1.870 Å while l_{Al-C_4} elongates from 1.632 to 1.915 Å. The corresponding distance between the CO molecule and Al atom in the Al doped graphene is 1.964 Å, being much shorter than 3.767 Å in the intrinsic graphene system. Moreover, the E_b of CO in the Al doped graphene system is 4.979 eV, which is over 60 times larger than that of CO in the intrinsic graphene system. Comparing with the E_b in other systems, such as $E_b = 1.280$ eV for CO adsorbed in the Al doped SWCNT systems (Wang et al., 2007), $E_b = 0.986$ eV in the B doped SWCNT systems (Wang et al., 2007) and $E_b = 0.201$ eV for CO adsorbed in B doped graphene etc, the Al doped graphene is energetically more favorable for CO adsorption. In other words, the Al doped graphene is much more sensitive to the CO adsorption among the aforementioned systems.
Fig. 4. Atomic configurations of intrinsic graphene and Al doped graphene before and after adsorption of CO gas molecule where one Al atom dopes in site 1, and sites 2, 3 and 4 are C atoms near the doped Al atom. (a) and (b) are the relaxed configurations of intrinsic graphene and Al doped graphene without adsorption. (c) and (d) are the preferred configurations after CO adsorption for intrinsic graphene and Al doped graphene, respectively. (Reproduced with permission from Ref. (Ao et al., 2008). Copyright 2008, Elsevier)

Fig. 5. Images of the electronic density difference for intrinsic graphene (a), Al doped graphene (b), CO-graphene system with preferred configuration (c) and CO-Al doped graphene system with preferred configuration (d). The red region shows the electron accumulation, while the blue region shows the electron loss. (Reproduced with permission from Ref. (Ao et al., 2008). Copyright 2008, Elsevier)

Furthermore, in order to investigate the changes of electronic structures in graphenes caused by the physi- or chemisorption of CO molecule, the net electron transfer (Q) from either the
Table 2. Some structure parameters of intrinsic graphene and Al doped graphene before and after adsorption of CO molecule. Q denotes electrons transferred from the graphene layer to CO molecule, measured in the electronic charge e.

<table>
<thead>
<tr>
<th>System</th>
<th>Configuration</th>
<th>Bond</th>
<th>Bond length l (Å)</th>
<th>Q (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsic graphene</td>
<td>Fig. 4(a)</td>
<td>C1-C2</td>
<td>1.420</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C1-C3</td>
<td>1.420</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C1-C4</td>
<td>1.420</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fig. 4(c)</td>
<td>C1-C2</td>
<td>1.420</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C1-C3</td>
<td>1.421</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C1-C4</td>
<td>1.421</td>
<td></td>
</tr>
<tr>
<td>Al doped graphene</td>
<td>Fig. 4(b)</td>
<td>Al1-C2</td>
<td>1.632</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Al1-C3</td>
<td>1.632</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Al1-C4</td>
<td>1.632</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fig. 4(d)</td>
<td>Al1-C2</td>
<td>1.870</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Al1-C3</td>
<td>1.910</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Al1-C4</td>
<td>1.915</td>
<td></td>
</tr>
</tbody>
</table>

intrinsic or the Al doped graphene to the polar CO molecules had been calculated by Mulliken analysis, where Q is defined as the charge variation caused by the CO absorption. As listed in Table 2, Q = 0.027 e in the Al doped graphene is almost an order of magnitude larger than 0.003 e in the intrinsic graphene. This supports the notion that the Al doping influences the electronic properties of graphene substantially. This can also be verified by the difference of electronic densities between the intrinsic and Al doped graphenes with and without the CO adsorption as shown in Fig. 5. In the figure, the red and blue regions represent the areas of electron accumulation and the electron loss, respectively. Fig. 5(a) indicates the bond in the intrinsic graphene is of covalent nature because the preferential electron accumulation sites are mainly located within the bond rather than heavily centered on a particular atom. However, the electron density distribution along the covalent Al-C bonds has been significantly altered due to the difference in electron affinity of Al and C atom [Fig. 5(b)]. Physisorption of CO on the intrinsic graphene does not alter the electron distribution for both CO molecule and graphene, implying the weak bonding characteristics. It is discernable that electronic polarization is induced by the preferential accumulation of electrons on O in CO molecules [Fig. 5(c)]. As distinct from the CO absorption on the intrinsic graphene, the chemisorption of CO on Al doped graphene leads to significant electron transfer from the graphene to CO molecule [Fig. 5(d)]. In this case, the electrons not only accumulate on the O atom but also on the C atom of the molecule bond with the doped Al atom. The final position of Al atom in the chemisorbed CO-Al-graphene complex is thus a direct consequence of the maximized degree of sp³ orbital hybridization with neighboring C atoms from both the graphene layer and CO molecule. This is evidential because the red lobes around C atoms in Fig. 5(d) are both pointing towards Al atom.

To further determine the effects of CO absorption on electrical conductivity, DOS for the both systems with and without the absorption were calculated. As shown in Figs. 6(a) and (b), the Al doping in graphene enhances its electrical conductivity by shifting the highest DOS peak to just below the Fermi level E_f, which also leads to the reduction of band gap E_g. This indicates that the doped Al atom induces shallow acceptor states in graphene like B atom in SWCNs, thus enhancing its extrinsic conductivity (Peng & Cho, 2003). When the CO molecule adsorbed

www.intechopen.com
on the intrinsic and doped graphene surfaces, the total DOSs are shown in Figs. 6(c) and 6(d). In the intrinsic graphene, the DOS of CO-graphene system near E_f have no distinct change, and the conductivity change is barely observable. It implies that the intrinsic graphene would not be an ideal CO gas sensor. However, for the Al doped graphene with the most stable chemisorbed CO configuration [Fig. 6(d)], not only the highest DOS peak shifts over the E_f, but also the DOS value increases dramatically. This results in an E_g closure [Fig. 6(d)] where E_g of the Al doped graphene is 0.18 eV without adsorption and the E_g becomes zero with adsorption. It suggests that extra number of shallow acceptor states have been introduced when the Al doped graphene interacts with the highly polar CO molecule. As a result, the chemisorbed CO on the Al doped graphene gives rise to a large increase in the electrical conductivity of the doped graphene layer. By detecting the conductivity change of the Al doped graphene systems before and after the adsorption of CO, the presence of this toxic molecule can be detected sensitively. Therefore, the Al doped graphene is a promising sensor material for detecting CO molecules. However, desorption of CO molecule from the Al doped graphene is difficult due to the strong bonding of Al-CO (Peng et al., 2004). This can be solved by applying an electric field F to reactivate the sensor materials (Hyman & Medlin, 2005).

Fig. 6. Electronic density of state (DOS) of intrinsic graphene (a), Al doped graphene (b), CO-graphene system with preferred configuration (c) and CO-Al doped graphene system with preferred configuration (d). (Reproduced with permission from Ref. (Ao et al., 2008). Copyright 2008, Elsevier)

2.4 The effect of electric field on the adsorption/desorption behaviours of CO molecules

The first theoretical work with quantum mechanical calculations on electric field F inducing adsorption/desorption was studied for N$_2$ molecule on Fe(111) surface (Tomanek et al., 1985). Recent simulation works on the effects of F on: (1) the adsorption and dissociation of oxygen on Pt(111) (Hyman & Medlin, 2005), (2) electronic structure of Au-XO(0,-1,+1) (X = C, N and O) (Tielens et al., 2007), and (3) vibrational frequencies of CO on Pt(111) (Lozovoi & Alavi, 2007) showed that F could induce some new physical phenomena by changing their electronic properties (McEwen et al., 2008). Therefore, it is of interest to investigate how F influences the adsorption/desorption behaviours of CO on Al-doped graphene. Here, the favorable adsorption configurations of CO on Al-doped graphene under different F had been determined by DFT calculation, and the effects of F on the corresponding interaction between CO and Al-doped graphene will be further discussed. All DFT calculations were performed using Dmol3 code with the same settings as above in the section 2.3 (Delley, 1990; 2000).
In the calculations, all atoms were allowed to relax. Al-doped graphene structures were obtained through substituting one C atom in the graphene supercell by an Al atom as shown in Fig. 7. In this case, the concentration of the doped Al in graphene is 12.5% atomic ratio. For CO adsorption on Al-doped graphene, there are two highly symmetric adsorption configurations: (1) CO molecule resides parallel to the graphene surface, and (2) CO molecule resides perpendicular to the graphene surface. The detailed structures are similar as in the literature [Fig. 1 in Ref. (Ao et al., 2008)]. The $E_b(F)$ of CO molecule on Al-doped graphene under F can be determined by (Acharya & Turner, 2007),

$$E_b(F) = E_{CO+graphene}(F) - [E_{prot}(F) + E_{CO}(F)].$$

where the subscripts CO+graphene, prot, and CO denote the adsorbed system, the initial isolated graphene with Al atom protruding from the graphene surface and the CO molecule, respectively. In the simulation, F had been chosen in the range of $-0.03 \sim 0.03$ a.u. (1 a.u. = 51 V/Å) and its positive direction is pointed out by the arrow in Fig. 7. Note that the length of the vacuum layer along the direction of normal to the graphene layer in the simulation system is about 15 Å. Thus, the maximum voltage required to induce the electric field with intensity of 0.03 a.u. is about 23 V, which can be easily realized in actual applications.

E_b of the CO/graphene systems with all possible adsorption configurations in the presence of F is listed in Table 3. Based on the calculated E_b values, the corresponding favourite adsorption configurations under different F are present in Fig. 7 where the CO molecule always takes
Table 3. Summary of adsorption energy E_b of CO adsorption in eV on Al-doped graphene with different adsorption sites under different F where an Al atom replaces one C atom of the unit cell. There are twelve possible configurations for CO adsorption on Al-doped graphene, similar as in Ref. (Ao et al., 2008). T, B and H denote top site of C atoms, bridge site of C-C bond and hollow site of carbon hexagon, respectively. The blank space in the table denotes that there is no equilibrium structure in this situation.

<table>
<thead>
<tr>
<th>Initial configurations</th>
<th>F (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.03</td>
</tr>
<tr>
<td>CO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-H-T</td>
</tr>
<tr>
<td></td>
<td>H-T-H</td>
</tr>
<tr>
<td></td>
<td>H-B-H</td>
</tr>
<tr>
<td></td>
<td>B(C atom)-T-H</td>
</tr>
<tr>
<td></td>
<td>B(O atom)-T-H</td>
</tr>
<tr>
<td>CO⊥</td>
<td>graphene</td>
</tr>
<tr>
<td></td>
<td>B(O upwards)</td>
</tr>
<tr>
<td></td>
<td>H(O upwards)</td>
</tr>
<tr>
<td></td>
<td>T(C upwards)</td>
</tr>
<tr>
<td></td>
<td>B(C upwards)</td>
</tr>
<tr>
<td></td>
<td>H(C upwards)</td>
</tr>
</tbody>
</table>

Table 4. Structure parameters of the favorite adsorption configuration under different F shown in Fig. 7. The unit of F and bond length l are respectively a.u. and Å, which is not shown in the table for clarity.

<table>
<thead>
<tr>
<th>l_{A1-C2}</th>
<th>l_{A1-C3}</th>
<th>l_{A1-C4}</th>
<th>l_{A1-C5}</th>
<th>l_{O6-C5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.863</td>
<td>1.911</td>
<td>1.913</td>
<td>1.872</td>
<td>1.883</td>
</tr>
<tr>
<td>1.930</td>
<td>1.907</td>
<td>1.907</td>
<td>1.910</td>
<td>1.915</td>
</tr>
<tr>
<td>1.883</td>
<td>1.861</td>
<td>1.865</td>
<td>1.916</td>
<td>1.922</td>
</tr>
<tr>
<td>2.046</td>
<td>2.009</td>
<td>1.985</td>
<td>1.964</td>
<td>1.950</td>
</tr>
<tr>
<td>1.136</td>
<td>1.145</td>
<td>1.153</td>
<td>1.164</td>
<td>1.174</td>
</tr>
</tbody>
</table>

The corresponding parameters of the stable atomic structures after adsorption in Fig. 7 are listed in Table 4. The results show that the field induces slight atom structure deformation and the top site of the doped Al atom is always the favourable adsorption site. However, the
The desorption of CO from the Al-doped graphene occurs when \(F = 0.03 \) a.u. due to the large upward force on the CO molecule induced by electrical field as shown in Fig. 7(g), while the Al atom goes below the graphene layer due to the downward force on the positive charged Al atom. The configuration in Fig. 7(g) was obtained after 200 geometry optimization steps to demonstrate the desorption configuration.

Fig. 7 presents that the Al atom protrudes from the graphene surface after CO adsorption. However, the Al-doped graphene was found as a planer configuration before the adsorption. After the final adsorption configuration for CO on the Al-doped graphene was obtained, we removed the adsorbed CO and optimized the geometry of the Al-doped graphene. The result showed that the protruded Al-doped graphene layer could not return to the initial planar state and has a lower energy. This means that the planar Al-doped graphene is metastable, and there should be an energy barrier that prevents the Al-doped graphene transiting from the planer state to the protruding configuration. A force in the vertical direction would induce the transition. In this way, the adsorption energies of CO on Al-doped graphene layer in the presence of different electrical field intensities are defined as Eq. 14 and are given in Fig. 8.

![Figure 8](image)

Fig. 8. \(E_b(F) \) function of CO molecule adsorbed on Al-doped graphene. The squares are DFT results and the line is the fitted line to guide the eyes. (Reproduced with permission from Ref. (Ao et al., 2010a). Copyright 2010, Elsevier)

In Fig. 8, \(E_b(F) \) increases nearly linearly as \(F \) increases. Therefore, the adsorption can be significantly strengthened by the negative \(F \), while be weakened by the positive \(F \). As \(F \) further increases, such as when \(F \geq 0.03 \) a.u., desorption occurs due to the electrostatic interaction as shown in Fig. 7(g). The approximate linear relationship between \(E_b \) and \(F \) can be explained by the first-order Stark effect (Hyman & Medlin, 2005). Thus, the highly positive \(F \) can be used to reactivate the sensor material for repetitious application.

On the other hand, in Table 4, as \(F \) increases, bond length \(l_{O6-C5} \) increases while \(l_{Al1-C5} \) reduces where the atom index is shown in Fig. 7. Such variations can be explained by Blyholder model (Koper & van Santen, 1999). The isolated CO molecule is bonded through \(sp_z \) hybrid orbital of a C atom and \(p_z \) orbital of an O atom. Therefore, a \(\sigma \) bond is formed while the interaction between \(p_x \) and \(p_y \) orbitals of the C and O atoms produces two \(\pi \) bonds (Blyholder, 1964). However, a lone pair of electrons on the \(O \) \(2s \) orbital and a lone pair in the \(C \) \(sp_z \) hybrid orbital are left, forming a coordinate bond in a complex with a suitable acceptor orbital such as a \(p \) orbital on Al with a \(\sigma \) bond. It is believed that the back donation from a metal \(p \) orbital to the antibonding \(\pi^* \) molecular orbital of the CO ligand stabilizes the bond by removing the excess electrons. Such a \(\sigma \) orbital can be considered to be a bonding orbital for...
C-O, but as an antibonding orbital for the Al-CO bond. Therefore, depopulating this orbital (donation) elongates l_{O6-C5} but shortens l_{Al1-C5}. In general, Fermi level E_f of a neutral Al lies between σ and π^* levels of CO (Wang et al., 2007). Applying a positive F lowers the energy levels of CO comparing to those of the Al-doped graphene (Lozovoi & Alavi, 2007), resulting in the π^* energy level moving towards E_f, whereas the σ level moves away. Thus, a positive F suppresses donation but enhances back donation, leading to a smaller l_{Al1-C5} and a larger l_{O6-C5}.

$$F = -0.03 F = -0.02 F = -0.01 F = 0 F = 0.01 F = 0.02$$

<table>
<thead>
<tr>
<th></th>
<th>$Al1$</th>
<th>$C2$</th>
<th>$C3$</th>
<th>$C4$</th>
<th>$C5$</th>
<th>$O6$</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F = -0.03$</td>
<td>0.968</td>
<td>-0.341</td>
<td>-0.362</td>
<td>-0.323</td>
<td>-0.040</td>
<td>0.078</td>
<td>0.038</td>
</tr>
<tr>
<td>$F = -0.02$</td>
<td>0.957</td>
<td>-0.313</td>
<td>-0.317</td>
<td>-0.370</td>
<td>-0.056</td>
<td>0.008</td>
<td>-0.048</td>
</tr>
<tr>
<td>$F = -0.01$</td>
<td>0.927</td>
<td>-0.286</td>
<td>-0.294</td>
<td>-0.370</td>
<td>-0.076</td>
<td>-0.058</td>
<td>-0.144</td>
</tr>
<tr>
<td>$F = 0$</td>
<td>0.896</td>
<td>-0.363</td>
<td>-0.275</td>
<td>-0.267</td>
<td>-0.101</td>
<td>-0.128</td>
<td>-0.229</td>
</tr>
<tr>
<td>$F = 0.01$</td>
<td>0.866</td>
<td>-0.358</td>
<td>-0.260</td>
<td>-0.249</td>
<td>-0.124</td>
<td>-0.197</td>
<td>-0.312</td>
</tr>
<tr>
<td>$F = 0.02$</td>
<td>0.829</td>
<td>-0.332</td>
<td>-0.229</td>
<td>-0.267</td>
<td>-0.147</td>
<td>-0.273</td>
<td>-0.410</td>
</tr>
</tbody>
</table>

Table 5. Charges of atoms near the doped Al atom in CO/graphene system as well as charge transfer Q between the graphene and the CO molecules under different F, obtained by Mulliken analysis. The unit of the atom charge is one electron charge $|e|$ and that of F is a.u.

Table 5 lists: (1) the charges of C and Al atoms as well as the CO molecule, and (2) the charge transfer Q between the graphene and the CO molecule under different F obtained by Mulliken analysis. As F increases, the electron numbers of $Al1$, $C5$, and $O6$ increase while those of atoms $C2$, $C3$, and $C4$ decrease. This is because electrons flow from the C atoms in the graphene layer to atoms of $Al1$, $C5$ and $O6$ above the graphene layer with increasing F. This agrees with the reported phenomena where the negative F enhances adsorption while the positive F has a counter effect (Hyman & Medlin, 2005). As F increases, the effects result in a shorter l_{Al1-C5} and a longer l_{O6-C5} due to the reduction of the attraction between $C5$ and $O6$. The trends of l_{Al1-C5} and l_{O6-C5} variations are consistent to the results shown in Table 4. The electronic distribution under different F is displayed in Fig. 9. The bond between the CO and the graphene system in the figure is covalent because the preferential electron accumulation sites mainly localize in the bond rather than centralize on a particular atom. However, due to the different electronegativity of C, Al and O atoms, electrons lean to the C atom for $Al1$-$C5$ bond and O atom for $C5$-$O6$ bond. Furthermore, with increasing F, more electrons transfer from the doped graphene to the CO where the lost electrons are all from Al (Table 5). The images in Fig. 9, where the red regions around CO become larger and thicker, also confirm that Q increases with increasing F.

2.5 The effect of temperature on the adsorption/desorption behaviours of CO molecules

The favourable CO adsorption site on the Al doped graphene was identified through DFT calculations (Ao et al., 2008). But it was still far to be optimized for actual applications. In particular, the effect of temperature T on the adsorption/desorption behaviours on the CO/graphene system is still unclear. Based on the DFT results and thermodynamic analysis at 0 K, the adsorption phase diagrams can be established. The Gibbs free energy of adsorption, ΔG_{ads}, can be expressed as:

$$\Delta G_{ads}(T) = G_{ads}(T) - G_g(T) - G_{CO}(T),$$ \hspace{1cm} (15)
Fig. 9. Images of electron density difference of CO/graphene system under different F, the unit of F is a.u. The red region means electronic accumulation, while the blue region means electronic loss. (Reproduced with permission from Ref. (Ao et al., 2010a). Copyright 2010, Elsevier)

where $G_{\text{ads}}(T)$, $G_g(T)$ and $G_{\text{CO}}(T)$ are the corresponding Gibbs free energies of the adsorbed system, the Al doped graphene and the CO gas molecule at a particular T, respectively. Since the Gibbs free energy of the system before and after adsorption can be obtained with the DFT results, the adsorption-desorption transition could be determined with Eq. 15 theoretically.

Fig. 10. The temperature dependent Gibbs free energy $G(T)$ functions where subscripts ads, g, and CO denote the adsorbed system, the isolated graphene and the CO molecules, respectively. And $G_{\text{ads}}(T)$ denotes Gibbs free adsorption energy, which is obtained in terms of Eq. 14. The symbols are all DFT results. (Reproduced with permission from Ref. (Ao et al., 2009b). Copyright 2009, RSC)

Subsequently, *ab initio* molecular dynamics (MD) calculations were performed under constant volume and constant temperature conditions (NVT) adopting GGA with the revised PBE method. The temperature effects on the atomic and electronic structures were calculated with
a time step of 1 fs at the temperatures from 300 to 450 K with an interval of 50 K. The simulation time t at the particular temperature was 2.5 ps where the total energy fluctuated in the range of 0.01%. MD calculation was based on the velocity Verlet algorithm (Verlet, 1967) for integration of the equation of motion. The implemented algorithm performs the Yoshida-Suzuki multiple-step numerical integration of varying quantity, depending on the choice of interpolation parameters (Suzuki, 1991; Yoshida, 1990). A key parameter in the integration algorithms is the integration time step. A common rule-of-thumb used to set the time step is that the highest frequency vibration should be sampled between 10 and 20 times in one cycle. In this system, the frequency is in the order of 10^{13} Hz, the time step was thus set as 1 fs within a reasonable range (Seitsonen et al., 2001). The temperature was controlled by algorithm of Nose (Nose, 1984). The thermostat employs a feedback loop between the instantaneous kinetic energy and the set temperatures. The rate of feedback is determined by the mass parameter, Q ($Q = 2$) (Loffreda, 2006; Spencer & Yarovsky, 2007; Todorova et al., 2007).

With the thermal desorption method, T dependent desorption time $\tau(T)$ function can be expressed as (Peng et al., 2004; Raanen & Ramstad, 2005)

$$\tau(T) = v_0^{-1} \exp[-E_b(T)/k_B T]$$

where k_B is the Boltzmann’s constant (8.62×10^{-5} eV/K), and v_0 is the attempt frequency of 10^{13} Hz for CO (Seitsonen et al., 2001). This thermal desorption method is close to the experimental conditions and it can be used to determine the thermodynamical properties of the adsorption systems (Raaen & Ramstad, 2005).

With the adsorption structures determined by the DFT calculations at an ideal condition, the phase diagram of adsorption/desorption for the CO adsorbed on the Al doped graphene as a function of temperature can be established with the atomistic thermodynamics described in Eq. 15. Such a simple approach allows the exploration of $\Delta G_{\text{ads}}(T)$ in an actual condition with respect to experiments. $\Delta G_{\text{ads}}(T)$, $G_{\text{ads}}(T)$, $G_g(T)$ and $G_{\text{CO}}(T)$ functions are plotted in Fig. 10. The results show that $\Delta G_{\text{ads}}(T)$ increases as T increases, and eventually becomes positive at $T_d = 120$ K where T_d is defined as the desorption temperature. In another word, the desorption of CO from the Al doped graphene occurs when $T_d > 120$ K at the ideal state with $\tau \to \infty$.

<table>
<thead>
<tr>
<th>$T = 0$ K</th>
<th>$T = 300$ K</th>
<th>$T = 400$ K</th>
<th>$T = 450$ K</th>
</tr>
</thead>
<tbody>
<tr>
<td>$l_{\text{Al1-C2}}$</td>
<td>1.872</td>
<td>1.880</td>
<td>1.946</td>
</tr>
<tr>
<td>$l_{\text{Al1-C3}}$</td>
<td>1.910</td>
<td>1.961</td>
<td>1.972</td>
</tr>
<tr>
<td>$l_{\text{Al1-C4}}$</td>
<td>1.916</td>
<td>1.923</td>
<td>1.929</td>
</tr>
<tr>
<td>$l_{\text{Al1-C5}}$</td>
<td>1.964</td>
<td>1.982</td>
<td>2.097</td>
</tr>
<tr>
<td>$l_{\text{C5-O}}$</td>
<td>1.164</td>
<td>1.161</td>
<td>1.159</td>
</tr>
</tbody>
</table>

Table 6. Some structure parameters of CO molecule adsorbed on Al doped graphene at different temperature, where l is bond length in Å.

However, with $ab initio$ MD calculation at $T = 300, 350, 400$ and 450 K for 2.5 ps to reach the equilibrium at each temperature, it was found that the desorption occurred at 450 K. The atomic configurations at the different temperatures are shown in Fig. 11 and their corresponding atomic structural parameters are listed in Table 6. The results show that T_d is between 400 and 450 K. Since both the data for MD simulation and atomistic thermodynamics come from the simulation, the difference of T_d caused by the simulation methodologies is
Fig. 11. Atomic structure of CO molecule adsorption in Al doped graphene at different temperature. For \(T \neq 0 \), the images are the configurations at simulation time \(t = 2.5 \) ps. In the figure, the uppermost atom is O atom, the third uppermost atom is Al atom, and the others are all C atoms. One Al atom dopes in site 1 and sites 2, 3 and 4 are C atoms near the doped Al atom, and site 5 is C atom in CO gas molecule. (Reproduced with permission from Ref. (Ao et al., 2009b). Copyright 2009, RSC)

limited and it could be ignored. It is believed that the difference is mainly induced by the short equilibrium time of \(t = 2.5 \) ps used in the MD simulation, which is much shorter than the actual situation.

\(E_b(T) \) and \(\tau(T) \) determined by Eqs. 13 and 16 are plotted in Figs. 12 and 13, respectively. Fig. 12 shows that \(E_b(T) \) decreases linearly with \(T \) increasing. This is consistent with the classic Readhead formula (Readhead, 1962). In Fig. 13, \(\tau(T) \) decreases exponentially with \(T \) increasing, showing \(T_d \approx 420 \) K at \(\tau = 2.5 \) ps. This is in agreement with the results obtained from MD simulation, in which the desorption occurs at \(400 < T < 450 \) K. In the experimental environment, the optimal \(\tau \) is in an order of microsecond (\(\mu s \)) (Peng et al., 2004), and \(\tau(400K) \approx 1 \) \(\mu s \) from Fig. 13, indicating that the gas sensor can be reactivated for repetitious applications by heating the materials up to 400 K. Note that the adsorption-desorption process is dynamic. Once the CO molecule is adsorbed, the adsorption state would be remained for a time of \(\tau \) until the desorption occurs. During the adsorption period, electrical conductivity changes of the Al doped graphene can be detected.

Except for \(T_d \), the temperature dependence of atomic structure and electrical properties are also critical information for gas detection. Table 6 lists the structural parameters calculated by \textit{ab initio} MD at 300, 400 and 450 K, respectively. As \(T \) increases, Al-CO bond length \(l_{Al-C5} \)
increases, or the corresponding bond strength decreases. This is also evidenced by the $E_b(T)$ declination as shown in Fig. 12. When T further increases, the desorption of CO from the Al doped graphene occurs [Fig. 11(d)] where bond length of l_{Al-C5} changes sharply from 2.097 Å at 400 K to 4.590 Å at 450 K.

In order to better understand the results, Table 7 lists the charges of C atoms surrounding the doped Al atom, the doped Al atom and the CO molecule as well as charge transformation Q between the doped graphene and the CO molecule, which were obtained by Mulliken analysis. It exhibits that Q decreases as T increases and the Al atom loses electrons. The negative charges of the C atoms surrounding the doped Al also decrease. It results in the charge difference between the C and Al atoms decreases and the Al-C bond length in the
Table 7. Charges of atoms surrounding doped Al atom and doped Al atom, and changes transferred Q form graphene to CO gas molecule at different temperature.

<table>
<thead>
<tr>
<th>Atom</th>
<th>T = 0</th>
<th>T = 300 K</th>
<th>T = 400 K</th>
<th>T = 450 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al1</td>
<td>0.896</td>
<td>0.833</td>
<td>0.765</td>
<td>0.613</td>
</tr>
<tr>
<td>C2</td>
<td>-0.363</td>
<td>-0.303</td>
<td>-0.324</td>
<td>-0.274</td>
</tr>
<tr>
<td>C3</td>
<td>-0.275</td>
<td>-0.287</td>
<td>-0.245</td>
<td>-0.276</td>
</tr>
<tr>
<td>C4</td>
<td>-0.267</td>
<td>-0.239</td>
<td>-0.255</td>
<td>-0.216</td>
</tr>
<tr>
<td>C5</td>
<td>-0.101</td>
<td>-0.089</td>
<td>-0.029</td>
<td>0.111</td>
</tr>
<tr>
<td>O</td>
<td>-0.128</td>
<td>-0.132</td>
<td>-0.127</td>
<td>-0.123</td>
</tr>
<tr>
<td>Q</td>
<td>0.229</td>
<td>0.221</td>
<td>0.156</td>
<td>0.012</td>
</tr>
</tbody>
</table>

graphene layer elongates as T increases. This is consistent with the structure parameters change listed in Table 6. On the other hand, the electrons in C5 and O6 of the CO molecule also decrease with T increasing, and even C5 is positive at $T = 450$ K. Due to the static interaction, l_{C5-O6} decreases as T increases as shown in Table 6.

Fig. 14. Electronic density of state (DOS) of CO/graphene system at $T = 0$ (a), $T = 300$ K (b), $T = 400$ K (c) and $T = 450$ K (d). The dash lines denote the Fermi energy location and the dash curves are the DOS of the Al doped graphene. (Reproduced with permission from Ref. (Ao et al., 2009b). Copyright 2009, RSC)

To understand the effect of T on conductivity changes with and without the adsorption, the temperature dependence of DOS for the Al doped graphene and CO/graphene system are shown in Fig. 14. From Laudauer formula (Tosatti et al., 2001), the number of bands crossing E_f determines the number of conduction channels or the conductivity of CO/graphene system (He et al., 2008; Mares & Van Ruitenbeek, 2005). Therefore, the largest conductivity change induced by the adsorption is found at $T = 400$ K. The performance of CO detection with this material is the best at $T = 400$ K based on the $\tau(T)$ function and conductivity change.

3. Application for efficient hydrogen storage

3.1 Hydrogen storage in Al substitutionally doped graphene

In recent years, hydrogen-based fuel systems have been considered to be a highly important topic of research for future energy schemes as hydrogen is a more efficient fuel in comparison
to the existing carbonaceous fossil fuels (Coontz & Hanson, 2004; Schlapbach & Züttel, 2001). Despite many recent technological developments in the hydrogen-based fuel systems, it is still an enormous challenge to have a safe and efficient reversible hydrogen storage system at ambient conditions (Schlapbach & Züttel, 2001). One possible way for hydrogen storage is an efficient and controllable adsorption/desorption system. Carbon based materials appear promising for such a purpose. Although several mechanisms of hydrogen storage through both physisorption and chemisorption have been proposed (Chandrakumar & Ghosh, 2008; Deng et al., 2004; Klontzas et al., 2008; Mpourmpakis et al., 2007; Nikitin et al., 2008), most of these efforts are far to reach the target of 6 wt% and binding strength of \(-0.2 \sim -0.4\) eV/H₂ at ambient temperature and modest pressure for commercial applications specified by U.S. Department of Energy (DOE).

With DFT simulations, it was predicted that a single ethylene molecule can form a stable complex with two transition metals, thus adsorbing ten H₂ molecules and lead to a high storage capacity of \(\sim 14\) wt% ((Durgun et al., 2006). In addition, the highest H₂ storage capacity of 13 wt% in a fullerene cage with twelve Li atoms capped onto the pentagonal faces was calculated (Sun et al., 2006). This system has average adsorption energy \(E_b = -0.075\) eV/H₂. However, all the DFT results are in the ideal condition at the temperature of \(T = 0\) K, their performances at the DOE specified operation conditions are unclear.

Since carbon nanostructures have high surface areas and thermal stability along with unique mechanical properties, improvement of their adsorption capacity by suitable modification would be of immense interest (Chandrakumar & Ghosh, 2008; Deng et al., 2004; Durgun et al., 2006; Klontzas et al., 2008; Mpourmpakis et al., 2007; Nikitin et al., 2008; Sun et al., 2006). Thus, hydrogen storage using carbon nanostructures is still an important research topic and deserves more attention. In this section, the potential of graphene as hydrogen storage materials through doping is investigated. The advantages of graphene are: (1) a large surface for hydrogen adsorption, (2) economical and scalable production (Li et al., 2008a), and (3) the strongest material ever measured (Lee et al., 2008).

AlH₃ and related aluminum hydrides as hydrogen storage materials have recently become the focus of renewed interest (Graetz et al., 2006; Li et al., 2007) due to their potentially large hydrogen capacity of \(\sim 10\) wt%. These materials are thermodynamically unstable in ambient, but it is kinetically stable without much lost of hydrogen for years. Despite these excellent properties, extremely high pressure (exceeding 2.5 GPa) is required for hydrogen adsorption. While these hydrides possess a small negative enthalpy of formation (Graetz et al., 2006), for practical applications the large hydrogen desorption energy proves impractical. The origin of this energy barrier lies in the rather strong mixed ionic and covalent bonds (Graetz et al., 2006) formed between Al and H. Thus it is essential to significantly reduce the desorption energy.

There appears another way for Al atoms to store hydrogen i.e. to further decrease the interaction between Al and H. In this way, the weak chemisorption can be changed into strong physisorption. For hydrogen storage through physisorption, strong interaction between the H₂ molecule and the surfaces along with a large surface area for adsorption are required. The unique characteristics of graphene and Al for hydrogen storage lead to an investigation of the properties of Al doped graphene as a possible hydrogen storage candidate. It would be intriguing to understand the interaction between graphene, Al and H. In this work, the adsorption behaviour of H₂ in Al doped graphene was studied by DFT calculation. In addition, we processed the \textit{ab initio} MD calculation to investigate the effects of temperature and pressure on the corresponding adsorption and desorption behaviours of this system.
All DFT calculations were performed with Dmol³ code (Delley, 1990). Previous studies (Cabria et al., 2008; Okamoto & Miyamoto, 2001) had shown that the LDA prediction of the physisorption energies of H₂ on the surface of graphite and carbon nanotubes were in good agreement with experiments. The reliability of LDA can be ascribed to the following facts (Cabria et al., 2008): (1) When the electron densities of H₂ and graphene overlap weakly, the nonlinearity of the exchange-correlation energy density functional produces an attractive interaction even in the absence of electron density redistribution; (2) The overestimated binding energy by LDA (Leenaerts et al., 2008; Lugo-Solis & Vasiliev, 2007) may compensate for the insufficient account of van der Waals interactions (Cabria et al., 2008). In contrast, DFT calculation using GGA produced a purely repulsive interaction. Using a GGA-PW91 functional, a repulsive interaction between H₂ and a graphene layer and also between H₂ and a (6,6) carbon nanotube was obtained (Tada et al., 2001). This contradicts the experimental findings (Sahaym & Norton, 2008). It was noted that LDA calculations well reproduce the empirical interaction potentials between graphitic layers and also in the other graphitic systems for distances near to the equilibrium separation although the LDA is not able to reproduce the long-range dispersion interaction (Girifacol & Hodak, 2002). Therefore, LDA had been selected in this work. To ensure that the calculated results were comparable, identical conditions were employed for the isolated H₂ molecules and the graphene, and also the adsorbed graphene system. The k-point was set to 6 x 6 x 2 for all slabs, which brought out the convergence tolerance of energy of 1.0 x 10⁻⁵ hartree (1 hartree = 27.21 eV), and that of maximum force is 0.002 hartree/Å.

Fig. 15. Eight different adsorption sites on Al doped graphene. The gray and pink balls are respectively C and Al atoms. (Reproduced with permission from Ref. (Ao et al., 2009a). Copyright 2009, AIP)

In the simulation, three-dimensional periodic boundary condition was taken and H-H bond length was set to \(l_{HH} = 0.74 \, \text{Å} \), which is consistent with the experimental results (Lide, 2000). The graphene used in our simulation consist of a single layer of 2 x 2 supercell with a vacuum width of 12 Å to minimize the interlayer interaction. All atoms were allowed to relax in all energy calculations. The adsorption energy \(E_b \) between the H₂ gas molecule and graphene is defined as,

\[
E_b = E_{H2+graphene} - (E_{graphene} + E_{H2})
\]

where the subscripts H2+graphene, graphene, and H2 denote the adsorbed system, isolated graphene and H2 molecules, respectively.

www.intechopen.com
For the Al doped graphene, the concentration of Al is 12.5 at% with the additional constrain that there is only one Al atom per graphene hexagonal ring (Fig. 15) to avoid Al atoms clustering on graphene (Krasnov et al., 2007). For H₂ adsorption on the Al doped graphene, there are 4 top sites of T1, T2, T3 and T4, and 3 bridge sites of B1, B2 and B3, and 2 center sites of C1 and C2, as shown in Fig. 15. (In this figure, a larger simulation cell is given in order to better display the different adsorption sites on the Al doped graphene. Fig. 16 reflects the actual simulation cell size.) At each adsorption site, there are two highly symmetrical adsorption configurations, namely H₂ molecule resides parallel or perpendicular to the graphene surface. Therefore, a total of 18 adsorption configurations for H₂ on the Al doped graphene are present.

Fig. 16. The favorite adsorption configurations with 1 H₂ molecule adsorbed in intrinsic graphene (a), and in Al doped graphene (b). The white balls are H atoms. (Reproduced with permission from Ref. (Ao et al., 2009a). Copyright 2009, AIP)

Due to the periodicity of H₂ adsorbed in intrinsic graphene or Al doped graphene systems, we had selected the unit cell with the following conditions: eight C atoms and one H₂, or seven C atoms, one Al atom and one H₂ (see Fig. 16). If we placed a H₂ at any location of the cell, the distance from this H₂ to other H₂ molecules in the nearest cells is 4.920 Å. This large separation, compared to the bond length of H₂ (0.740 Å), would ensure that there is no interaction between H₂ molecules in the different cells (Arellano et al., 2000).

To calculate the H₂ adsorption capability of Al doped graphene at room temperature and modest pressure, we performed ab initio MD calculation with CASTEP (Cambridge Sequential Total Energy Package) code based on the structure obtained by DFT above, which utilizes plane-wave pseudopotential to perform the first principle quantum mechanics calculations (Degall et al., 2002). LDA with the Ceperley-Alder-Perdew-Zunger (CAPZ) function (Ceperley & Alder, 1980; Perdew & Zunger, 1981) was employed as exchange-correlation functions, cutoff energy $E_c = 280$ eV and k-points is $6 \times 6 \times 2$. In this work, the k-points of $6 \times 6 \times 2$ for all slabs have the energy convergence tolerance of 1.0×10^{-6} eV/atom. Such energy tolerance is small enough to ensure establishment of the actual equilibrium structure.

Each MD simulation was performed in NPT statistical ensemble, i.e. constant numbers of atoms N, pressure P and T, with $T = 300$ K and $P = 0.0001 \sim 1$ GPa. Time step of 1 fs was selected and simulation time t at a particular T was 2.5 ps where the total energy
fluctuation was in the range of 0.01%. The same t was selected for H$_2$S dissociation on the Fe(110) surface (Spencer & Yarovsky, 2007). A Verlet algorithm (Verlet, 1967) was used to integrate the equations of motion, with T controlled by algorithm of Nose (Nose, 1991), and P was controlled according to the Parrinello-Rahaman algorithm (Parrinello & Rahman, 1981).

<table>
<thead>
<tr>
<th>Initial configurations</th>
<th>E_b (eV)</th>
<th>d (Å)</th>
<th>E_b (eV)</th>
<th>l (Å)</th>
<th>d (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$</td>
<td></td>
<td>graphene</td>
<td>T1</td>
<td>-0.136</td>
<td>2.845</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2</td>
<td>-0.34</td>
<td>2.526</td>
<td>2.682</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3</td>
<td>-0.407</td>
<td>2.588</td>
<td>2.486</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T4</td>
<td>-0.361</td>
<td>2.942</td>
<td>2.537</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B1</td>
<td>-0.139</td>
<td>2.817</td>
<td>-0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2</td>
<td>-0.411</td>
<td>2.527</td>
<td>2.575</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B3</td>
<td>-0.411</td>
<td>2.506</td>
<td>2.563</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C1</td>
<td>-0.159</td>
<td>2.635</td>
<td>-0.427</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2</td>
<td>-0.188</td>
<td>2.657</td>
<td></td>
</tr>
<tr>
<td>H$_2$</td>
<td></td>
<td>perpendicular graphene</td>
<td>T1</td>
<td>-0.141</td>
<td>2.615</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2</td>
<td>-0.284</td>
<td>2.427</td>
<td>2.749</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3</td>
<td>-0.406</td>
<td>2.367</td>
<td>2.524</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T4</td>
<td>-0.33</td>
<td>2.976</td>
<td>2.179</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B1</td>
<td>-0.142</td>
<td>2.620</td>
<td>-0.206</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2</td>
<td>-0.412</td>
<td>2.468</td>
<td>2.595</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B3</td>
<td>-0.426</td>
<td>3.196</td>
<td>2.074</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C1</td>
<td>-0.148</td>
<td>2.425</td>
<td>-0.426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2</td>
<td>-0.24</td>
<td>3.117</td>
<td>2.468</td>
</tr>
</tbody>
</table>

Table 8. Summary of results for H$_2$ adsorption on intrinsic graphene and Al doped graphene on different adsorption sites. For H$_2$ adsorption on intrinsic graphene, there are 6 different adsorption sites as listed in the table. For H$_2$ adsorption on Al doped graphene, there are 18 different adsorption configurations as shown in Fig. 15. l represents the distance between Al and H$_2$. d represents the distance between H$_2$ molecule and graphene or Al-doped graphene.

After geometry relaxation, E_b values and the corresponding structural parameters of the 18 adsorption configurations for H$_2$ adsorbed in the intrinsic graphene are listed in Table 8. It was found that the most favorable configuration is H$_2$ adsorbed on the center site of the carbon ring with $E_b = -0.159$ eV as shown in Fig. 16(a) and the distance between H$_2$ and the graphene $d = 2.635$ Å. The results are consistent with other reported results of $E_b = -0.133$ eV and $d \approx 2.8$ Å (Okamoto & Miyamoto, 2001). The small magnitude of E_b (<0.1 eV) shows that the system is in the weak physisorption regime. It indicates that the intrinsic graphene is not suitable for hydrogen storage.

For the adsorption of H$_2$ on the Al doped graphene, the corresponding results are also listed in Table 8. In light of Table 8, the most favourable position with $E_b = -0.427$ eV for the H$_2$ molecule is shown in Fig. 16(b). The distance between H$_2$ and the doped Al, $l = 2.083$Å while that between H$_2$ and carbon layer, $d = 2.073$Å. As seen from Table 8, the interaction reaches the strongest when both l and d are minimized. The adsorption of H$_2$ in the Al doped graphene is much larger than that in other systems, such as $E_b = -0.41$ eV/H$_2$ in Ti-C$_2$H$_4$-graphene system (Durgun et al., 2006), and $E_b = -0.08$ eV/H$_2$ in
12-Li-doped fullerene (Sun et al., 2006). However, it still falls into the physisorption regime as the long distance between the doped graphene and the adsorbed H$_2$. Therefore, this strong physisorption interaction would be ideal for hydrogen storage, which adsorbs more H$_2$ molecules.

Fig. 17. Electronic density of states (DOSs) of adsorbed H$_2$, doped Al and graphene for both the H$_2$/graphene and H$_2$/Al-doped-graphene systems as shown in panel (a) and panel (b), respectively. (Reproduced with permission from Ref. (Ao et al., 2009a). Copyright 2009, AIP)

To understand the enhancement effect of the doped Al on the H$_2$ adsorption, the DOSs of the adsorbed H$_2$, the doped Al and the C atoms in both H$_2$/graphene and H$_2$/Al-doped-graphene systems were plotted and shown in Fig. 17. Fig. 17 (a) shows the DOSs of H$_2$+graphene system. The main peaks of H$_2$ are located at -4.37 eV and 6.92 eV. However, the main peaks of intrinsic graphene are located between 9 and 13 eV. Therefore, the interaction between H$_2$ molecule and the intrinsic graphene is very weak because of non-overlapping of electrons in these substances, where E_b is small. On the other hand, for the H$_2$/Al-doped-graphene system shown in Fig. 17(b), the main peaks of H$_2$ are located at -8.15 eV, 5.74 eV, 6.52 eV, and 7.51 eV, respectively. The bands of H$_2$ interact with both the doped Al and the C atoms synchronously at the positions indicated by the dash lines, showing a strong interaction between H$_2$ and the Al doped graphene where E_b is the largest. In addition, the doped Al changes the electronic structures of both H$_2$ and the graphene, and both their DOSs shift towards the lower energy. It exhibits that the H$_2$/Al-doped-graphene configuration is a much more stable system.
Table 9 shows the charge distribution in both the H$_2$/graphene and H$_2$/Al-doped-graphene systems using Mulliken analysis. Before and after H$_2$ adsorption, the charge variation for the former is little while it is significant for the latter. In addition, H6 has much more positive charge than H5. Thus, the interaction between H$_2$ and the Al doped graphene is mainly achieved through H6. The interaction between the band at the location of the highest peak of DOS plot of H$_2$ and that of C atoms implies a strong interaction between the H$_2$ and C atoms, as shown in Fig. 17(b).

Table 9. Charges of atoms in H$_2$ adsorbed in graphene system as well as charge transfer Q between graphene and H$_2$ molecule, obtained by Mulliken analyse. The unit of the atom charge is one electron charge e, which is elided here for clarity.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Intrinsic graphene</th>
<th>Al doped graphene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al1(C1)</td>
<td>0.001</td>
<td>0.292</td>
</tr>
<tr>
<td>C2</td>
<td>-0.002</td>
<td>-0.228</td>
</tr>
<tr>
<td>C3</td>
<td>0</td>
<td>-0.193</td>
</tr>
<tr>
<td>C4</td>
<td>0</td>
<td>-0.193</td>
</tr>
<tr>
<td>H5</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td>H6</td>
<td>-0.001</td>
<td>0.021</td>
</tr>
<tr>
<td>Q</td>
<td>-0.002</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Fig. 18. Electron density distributions in the H$_2$/graphene [panel (a)] and H$_2$/Al-doped-graphene [panel (b)] systems. (Reproduced with permission from Ref. (Ao et al., 2009a). Copyright 2009, AIP)

The illustrations of electron density distribution for the H$_2$/graphene and H$_2$/Al-doped-graphene systems are shown in Fig. 18. In the system of H$_2$/graphene [Fig. 18(a)], no electron exists in the region between H$_2$ and C layer while some electrons appear in the region among H$_2$, Al atom and C layer in the system of H$_2$/Al-doped-graphene [Fig. 18(b)]. This supports the notion that the H$_2$/Al-doped-graphene possesses a much stronger H$_2$ adsorption ability.

After understanding the mechanism of the enhancement for H$_2$ adsorption in the Al doped graphene, it is important to determine how much H$_2$ molecules can be adsorbed on the 2 × 2 layer surface. We constructed an adsorption configuration with 3 H$_2$ molecules adsorbed in the three favourable C1 adsorption positions on the topside of the doped system. After geometry relaxation, the atomic structure is shown in Fig. 19(a). It has $E_b = -0.303$ eV/H$_2$, which satisfies the requirement of $E_b = -0.20 \sim -0.40$ eV/H$_2$ at room temperature (Chandrakumar & Ghosh, 2008; Deng et al., 2004; Klontzas et al., 2008; Mpourmpakis et al., 2008; Ao et al., 2009a).
Fig. 19. Atomic configurations $\text{H}_2/$Al-doped-graphene system at different temperature and pressure. (a) In the ideal condition with $T = 0$ K, (b) in the condition with $T = 300$ K and $P = 0.1$ GPa, (c) in the condition with $T = 300$ K and $P = 0.0001$ GPa, and (d) in the condition with $T = 300$ K and $P = 1$ GPa. (Reproduced with permission from Ref. (Ao et al., 2009a). Copyright 2009, AIP)

2007) set by DOE although the value of 5.1 wt% of H_2 adsorbed is slightly below the DOE’s 6 wt% target.

In order to understand the effect of the adsorbed H_2 molecule number on the E_{b}, the configuration with 6 H_2 molecules adsorbed in the Al doped graphene in the favorable C1 adsorption positions on both sides was calculated. It is found that $E_{b} = -0.164$ eV/H_2, which is almost half of the E_{b} for above the case where the Al doped graphene adsorbed 3 H_2 on one side of graphene. In addition, the adsorption with 8 H_2 molecules in the Al doped graphene was also calculated, and it is found 2 H_2 molecules were released. In the other words, the interaction between H_2 molecules would weaken the adsorption on the doped graphene and the saturated number of H_2 molecules adsorption is 6. Note that E_{b} for the cases of 3 H_2 and 6 H_2 are respectively -0.303 eV/H_2 and -0.164 eV/H_2, which is about twice for the case of 3 H_2 comparing with the case of 6 H_2. This is because H_2 molecules were very weakly adsorbed below the graphene layer where the doped Al atom locates above the graphene layer.

It is well known that T and P have essential effects on hydrogen storage, where increasing P and decreasing T enhance the capacity of hydrogen storage. Thus, most studied systems are either under high P or at very low T (Sahaym & Norton, 2008), which may not be viable for mobile applications. For example, a storage capacity of 8 wt% for purified single wall carbon nanotubes (SWNTs) at 80 K with a hydrogen pressure of 13 Mpa (Ye et al., 1999) and a lower hydrogen storage capacity of 2.3 wt% at 77 K were reported (Panella et al., 2005). The hydrogen storage capacities in other carbon related materials, such as activated carbon (AC), single walled carbon nanohorn, SWNTs, and graphite nanofibers (GNFs) were also investigated (Xu et al., 2007). Although the AC had a capacity of 5.7 wt% at 77 K with $P = 3$ MPa, its capacity is < 1% at 300 K (Xu et al., 2007). Recent experimental results demonstrated that the intrinsic graphene has hydrogen storage capacity of 1.7 wt% under 1 atm at 77 K, and 3 wt% under 100 atm at 298 K (Ghosh et al., 2008). Thus, to meet the DOE target, it is necessary to study the adsorption and desorption behaviours of H_2 in the Al doped graphene at $T = 300$ K with different P. Therefore, the adsorption behaviours of 3H_2/Al-doped-graphene and 6H_2/Al-doped-graphene systems were calculated under 0.0001, 0.01, 0.1 and 1 GPa using $\textit{ab initio}$ MD simulation. For both the 3H_2/Al-doped-graphene and 6H_2/Al-doped-graphene systems, we found that all H_2 molecules were released at 0.0001 GPa [Fig. 19(c)]. However, there was only one H_2 molecule adsorbed in both the systems at 0.01 GPa, while the structure
of the doped graphene was completely destroyed with H and Al forming covalent bond at 1 GPa [Fig. 19(d)]. When \(P = 0.1 \) GPa, there are three \(\text{H}_2 \) left on the top side of the two Al doped systems [Fig. 19(b)]. Therefore, the Al doped graphene for hydrogen storage capacity at room temperature and 0.1 GPa is 5.13 wt% with \(E_b = -0.260 \) eV/\(\text{H}_2 \), satisfying the requirements of actual application. In addition, all the adsorbed \(\text{H}_2 \) molecules can be released when \(P = 0.0001 \) GPa.

3.2 Hydrogen storage in graphene with Al atom adsorption

Very recently, based on DFT calculations, Ca atoms adsorbed on graphene layers and fullerenes were found to result in high-capacity hydrogen storage mediums, which could be recycled at room temperature (Ataca et al., 2009; Yoon et al., 2008). In these systems, the adsorbed Ca atoms become positively charged and the semimetallic graphene changes into a metallic state, while the hydrogen storage capacity (HSC) can be up to 8.4 wt%. However, a recent report claimed that DFT calculations overestimated significantly the binding energy between the \(\text{H}_2 \) molecules and the \(\text{Ca}^{+1} \) cation centers (Cha et al., 2009). On the other hand, Al-doped graphene where one Al atom replaces one C atom of a graphene layer was reported as a promising hydrogen storage material at room temperature with HSC of 5.13 wt% (Ao et al., 2009a).

In this work, DFT was applied for studying the hydrogen adsorption on graphene with Al atom adsorption. The favourite adsorption configuration of Al atoms on single side and on both sides of a graphene layer have been determined. The obtained materials were studied for adsorption of \(\text{H}_2 \) molecules and we discuss its hydrogen storage properties.

![Fig. 20. Three different sites for an Al atom adsorbed on graphene. H, B and T denote the hollow of hexagon, bridge of C-C bond and top site of C atom, respectively. In addition, the charges of atoms near the adsorbed Al atom are also given, where the unit of charge is one electron charge \(e \) which is not given in the figure for clarity. The gray and pink balls in this figure and figures below are C and Al atoms, respectively. (Reproduced with permission from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)](image)

LDA was used for all the calculations in this section. All DFT calculations were performed using the Dmol\(^3\) code (Delley, 1990). Double Numerical Plus polarization (DNP) was taken as the basis set. In this case, three-dimensional periodic boundary conditions were applied and the H-H bond length was set to \(l_{\text{H-H}} = 0.74 \) Å identical to the experimental value (Lide, 2000). The computational unit cell consists of a \(2 \times 2 \) graphene supercell with a vacuum width of 18 Å to minimize the interlayer interaction. As shown in Fig. 20, the supercell contains 8 C atoms. All atoms were allowed to relax in all calculations.
The binding energy of Al atoms onto graphene E_{b-Al} is defined as,

$$E_{b-Al} = \frac{E_{nAl-graphene} - (E_{graphene} + nE_{Al})}{n}$$ \hspace{1cm} (18)

where $E_{nAl-graphene}$, $E_{graphene}$ and E_{Al} are the energy of the system with n Al atoms adsorbed on the graphene layer, the energy of the pristine graphene layer and the energy of one Al atom in the same slab, respectively. The binding energy of H_2 molecules onto Al-adsorbed graphene layer E_{b-H_2} is defined as,

$$E_{b-H_2} = \frac{E_{iH_2+Al-graphene} - (E_{Al-graphene} + iE_{H_2})}{i}$$ \hspace{1cm} (19)

where the subscripts iH2+Al-graphene, Al-graphene, and H2 denote the system with i H_2 molecules adsorbed, isolated Al-adsorbed graphene and a H_2 molecule, respectively.

Fig. 21. A cluster model for 2 H_2 molecules adsorbed on graphene with an Al atom adsorbed on its one side. The white balls are hydrogen atoms in this figure and figures below. (Reproduced with permission from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

To investigate the potential effects of different methodologies on our results, a calculation using the cluster model was carried out with both LDA and wave function approaches with the Møller-Plesset second order perturbation (MP2) within the Gaussian modules where the 6−331++G* basis set was taken and maximum step size was set to 0.15 Å. Note that the cluster configuration shown in Fig. 21 was used because of the requirement of Gaussian modules, and the system was recalculated by LDA for purposes of comparison. In this calculation, a cluster with 24 carbon atoms and with 1 Al atom and 2 H_2 molecules adsorbed over the carbon surface was simulated where the dangling bonds of the C atoms at the boundary are terminated with H atoms.

On the basis of the published results, one may assume that the uptake capacity of hydrogen would increase if more metal atoms were adsorbed on the surface of a graphene nanostructure (Ataca et al., 2009; Liu et al., 2009). Furthermore, the binding between metal atoms and a surface would be strengthened if more charge is transferred between the metal atoms and the graphene nanostructure. Obviously, the binding can also be enhanced by adding more metal atoms with concomitant additional charges available for electronic transfer. However, metal atoms intend to aggregate into clusters when their concentration is large due to their high cohesive energies compared with those of metal atoms adsorbed on graphene, which

www.intechopen.com
may significantly reduce the hydrogen uptake (Krasnov et al., 2007). For the Al, the cohesive energy is -3.39 eV (Gaudoin et al., 2002). To examine the validity of this assumption, a unit cell with eight C atoms and one Al atom was used in the present study, which is shown in Fig. 20. The ratio Al:C = 1:8 is quite moderate and moreover strictly obeys the doping rules for high coverage metals (Froudakis, 2001; Gao et al., 1998), which makes it possible for us to achieve a relatively high storage capacity. This rule ensures that the Al-Al distance is sufficiently large avoiding clustering of Al on graphene.

The favourite adsorption position of this Al atom on graphene is then determined. There are three different adsorption sites as shown in Fig. 20, which are the hollow of the carbon hexagon (H), the bridge of C-C bond (B), and the top site of the C atom (T), respectively. The Al-Al interaction is indeed negligible owing to the large distance of about 4.92 Å. It is found that the Al adsorbed at the H site has the lowest energy and is therefore the favourite adsorption configuration with a binding energy of -0.824 eV and the distance between Al and the graphene layer d_1 is about 2.079 Å. In Fig. 20, the charges of atoms near the adsorbed Al atom are given, which were obtained by Mulliken analysis. The adsorbed Al atom has a positive 0.266 e charge, while each C atom nearby has a negative charge -0.049 e. Note that the other two C atoms in the simulation cell contribute the rest of the electron charge to the negative C atoms. Therefore, the long distance of Al-Al, the relative strong bonding between the Al atom and the graphene layer, and the Coulomb repulsion between the Al atoms prevent metal aggregation on graphene.

![Fig. 22. Six different adsorption sites for the second Al atom on the other side of the graphene layer. The charges of atoms near the adsorbed Al atoms are also given, where the unit of charge is one electron charge e. (Reproduced with permission from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)](image)

Due to the positive charge on the Al atoms and the negative charge on the carbon atoms, an electric field is induced between the Al atoms and the graphene layer, which in turn leads to a back transfer of charge from the graphene layer to the Al atom. Hence, by increasing Al coverage, adsorbed Al atoms would become less positively charged, which would decrease the Coulomb repulsion between the Al atoms, and eventually this may lead to metal aggregation. This also agrees with the doping rules (Froudakis, 2001; Gao et al., 1998).

To further confirm the stability of Al atoms on graphene, the diffusion behavior of an Al atom on graphene was studied by the transition search (TS) method in order to obtain the diffusion barrier. It has been shown above that the most stable configuration of an Al atom on graphene corresponds to adsorption on the H site of graphene. Consequently, the diffusion scenario of an Al atom on graphene between two H sites is considered in order to study surface diffusion. Based on the TS calculation, it is found that the classical barrier for surface
diffusion is 0.104 eV. Notice that the calculated diffusion barrier corresponds only to a classical hopping model of diffusion. In practical cases, quantum tunneling effects should also be considered (Wu et al., 2009). In addition, because only a single Al atom is involved in the simulation cell, the Al-Al distance is kept unchanged. While in actual diffusion, the Al-Al distance would be shortened and repulsive Coulomb interaction among positively charged Al atoms would increase, leading to a significant increase of the diffusion barrier, which will prevent aggregation of adsorbed Al atoms on graphene.

Next the adsorption of Al atoms on both sides of the graphene layer is considered in order to increase the available surface area for hydrogen storage, since the charged metal atoms are the nucleation centres for hydrogen adsorption (Ataca et al., 2009; Liu et al., 2009; Yoon et al., 2008). As shown in Fig. 22, there are six different sites for the second Al atom to be positioned on the other side of the graphene layer. After geometry optimization of the six configurations, we found that the lowest energy configuration is realized for the second Al atom adsorbed on the H2 site with energy $E_{b-Al} = -1.096$ eV and the average E_{b-AI} for the two Al atoms is -0.960 eV. As shown in Fig. 22, the two Al atoms are positioned on two shoulder-by-shoulder carbon hexagons but on opposite sides of the graphene layer. The repulsive Coulomb interaction between the positively charged Al atoms on the upper and lower parts of the graphene plane is screened by the negative charge on the C-atoms. The graphene layer is now more negatively charged as compared to the previous single Al atom case, while the adsorbed Al atoms are more positively charged (the charges of the atoms on the Al and C atoms are given in Fig. 22). It leads to a stronger binding energy for the Al atoms on the graphene. In addition, $d_1 \approx 2.138$ Å which is slightly larger as compared to the case of single side adsorption which is counter intuitive. The reason is that the small increase of d_1 is a result of the Coulomb repulsion between the two positively charged Al atoms located above and below the graphene layer, which is screened by the charged graphene layer.

For the case of one H2 molecule adsorbed on graphene with Al atoms adsorbed on a single side of graphene, the configuration after relaxation is shown in Fig. 23(a) where a 4×4 supercell is taken in order to better display the atomic structure, especially the adsorption site of the H2 molecule. It indicates that the H2 molecule would take the center site of equilateral triangles formed by adsorbed Al atoms. The vertical distance between the H2 molecules and the graphene layer is $d_2 = 2.830$ Å, while d_1 decreases slightly to 2.060 Å, and the adsorption energy for the first H2 molecule is $E_{b-H2} = -0.182$ eV/H2. In the figure, it shows that a parallelogram formed by the adsorbed Al atoms has two centre sites of equilateral triangles. However, due to the limitation of interaction among adsorbed H2 molecules, H2 would take just one of the two centre sites. When more H2 molecules are adsorbed, the two centre sites would be both occupied as shown in Fig. 23(b) where two H2 molecules are adsorbed. The adsorption energy for the second H2 molecule is $E_{b-H2} = -0.273$ eV/H2, which gives an average adsorption energy for the two H2 molecules of -0.227 eV/H2. Fig. 23(c) gives the atomic structure of three adsorbed H2 molecules. Two H2 molecules take the two centre sites as in Fig. 23(b), the other H2 molecule would take the top site of the Al atom. The distance of the three H2 to the Al atom are respectively 2.786, 2.879 and 2.903 Å with average binding energy of -0.176 eV/H2. If we further increase the number of H2 molecules, after relaxation, the result shows that the fourth H2 molecule cannot be adsorbed. Therefore, it is concluded that the maximum number of H2 molecules adsorbed on a single side of a 2×2 graphene unit cell is three.

For the cases of one and two adsorbed H2 molecules, it was found that the H2 molecules are parallel to the graphene layer and all H2 molecules are equidistant from the Al atoms. Once
Fig. 23. Atomic structures of H\(_2\) molecules adsorbed on Al-adsorbed graphene. (a) One H\(_2\) molecule adsorbed on graphene with Al adsorbed on the single side, (b) two H\(_2\) molecules adsorbed on graphene with Al adsorbed on a single side of graphene, (c) three H\(_2\) molecules adsorbed on graphene with Al adsorbed on one side of graphene, (d) four H\(_2\) molecules adsorbed on each side of graphene with Al adsorbed on its both sides, (e) six H\(_2\) molecules adsorbed on each side of graphene with Al adsorbed on its both sides. In this figure, 4 × 4 supercells are plotted to better display the adsorption sites of the H\(_2\) molecules. In (d) and (e), due to the Al atoms and H\(_2\) molecules adsorbed on both sides of graphene, Al atoms and H\(_2\) molecules below the graphene layer are shown as orange and yellow, respectively. Meanwhile, in order to show the two-layer adsorption arrangement of H\(_2\) molecules, initial simulation cells of side view are also given in the nether part of (d) and (e). (Reproduced with permission from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

In addition, it was noted that the E\(_{b-H_2}\) of the second H\(_2\) molecule is much larger than that of the first one, i.e. it is about 50% larger. In order to understand this enhancement, PDOS of Al, C atoms and H\(_2\) molecules are plotted and shown in Fig. 24. It was reported that the band broadening of the molecular level of H\(_2\) below the Fermi energy indicates a significant H\(_2\)-H\(_2\) interaction that in turn increases its binding energy to the substrate (Ataca et al., 2009). In this work, the same mechanism is found where the band broadening of about –6 eV appears in Fig. 24. In fact, the binding energy of the first H\(_2\) molecule to the Al atom which prefers to be parallel to the graphene layer is generally small (Ataca et al., 2009).

Figure 25 displays the electron density of the system with one and two adsorbed H\(_2\) molecules. Notice that there is non-zero electron density in the region between the graphene layer and the adsorbed Al atom. This is the reason why Al atoms are strongly adsorbed on the graphene
Fig. 24. PDOS of Al, H\textsubscript{2} and C in the systems of one and two H\textsubscript{2} molecules adsorbed on graphene with Al adsorbed on the single side. The Fermi level is at 0. (Reproduced with permission from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

Fig. 25. Electron density distribution in the systems of one and two H\textsubscript{2} molecules adsorbed on graphene with Al adsorbed on a single side of graphene. (Reproduced with permission from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

In addition, some electronic distribution also appears among the H\textsubscript{2} molecules, the Al atom and the graphene layer. For H\textsubscript{2} molecules adsorbed on pristine graphene, no electron density was found between the H\textsubscript{2} molecules and the graphene layer (Ao et al., 2009a). Therefore, H\textsubscript{2} adsorption is enhanced in the Al-adsorbed graphene system due to the adsorbed Al atoms that act as bridges to link the electron clouds of the H\textsubscript{2} molecules and the graphene layer. Furthermore, Fig. 25(b) also shows that there is some electron distribution between the two adsorbed H\textsubscript{2} molecules. This means that the interaction between the H\textsubscript{2} molecules will change the electron distribution and may induce an enhancement of the adsorption energy as found in Fig. 24.

Very recently, the mechanism of H\textsubscript{2} adsorption onto Ca cation centers was investigated using both DFT and wave function approaches (Cha et al., 2009). It was found that DFT calculations overestimated the binding energy between the H\textsubscript{2} molecules and the Ca1+ cation centers significantly. Similarly, a calculation was carried out on 2 H\textsubscript{2} molecules adsorbed on an Al coated graphene using the cluster model with both LDA and wave function approaches with MP2 within the Gaussian modules. The average binding energies for H\textsubscript{2} in this cluster system were found to be -0.196 and -0.185 eV/H\textsubscript{2} with LDA and MP2, respectively. Thus the two values differ by less than 6% giving some credibility to our numerical obtained binding energy.
In other words, the significant overestimation by DFT as found earlier for the binding of H\textsubscript{2} molecules onto Ca1+ system does not occur for our system.

In addition, in order to investigate the effect of the simulation cell size on the results calculations were also performed using a 4 \times 4 supercell with H\textsubscript{2} molecules adsorbed as shown in Fig. 23(a). We found almost the same results as obtained with the 2 \times 2 supercell. In the 4 \times 4 system, the H\textsubscript{2} molecules are adsorbed on the center sites of the equilateral triangles of Al atoms, as shown in Fig. 23(a). The distance between the H\textsubscript{2} molecules and the graphene surface are, respectively, 2.884 and 2.825 Å in 2 \times 2 and 4 \times 4 systems, while \(E_{b-H_2} \) in 4 \times 4 system is \(-0.190 \text{ eV}/\text{H}_2\) and \(E_{b-H_2} = -0.182 \text{ eV}/\text{H}_2 \) in 2 \times 2 system.

For the case of hydrogen adsorption on Al that is adsorbed on both sides of graphene, the situations of one, two and three H\textsubscript{2} molecules adsorbed on each side of graphene are rather similar to the above case of adsorption on a single side of graphene. In other words, two H\textsubscript{2} molecules will take the center sites of equilateral triangles formed by the adsorbed Al atoms as shown in Figs. 23(a) and 23(b), and the third H\textsubscript{2} will take the top site of the Al atom as in Fig. 23(c). Previously, it is shown that a maximum of three H\textsubscript{2} molecules per 2 \times 2 unit cell can be adsorbed on one side of graphene. However, for the case of adsorption on both sides of the graphene layer, each side can absorb more than 3 H\textsubscript{2} molecules. In Fig. 23(d) with 4 H\textsubscript{2} molecules adsorbed on each side, we show a 4 \times 4 supercell. Two of them take the centre sites of equilateral triangles, and the other two are located on the bridge sites of two Al atoms. However, the four H\textsubscript{2} molecules are in two different planes with distances to the graphene layer being 2.672 and 4.675 Å. The distances of the four H\textsubscript{2} molecules to the Al atom are respectively 2.444, 2.531, 2.918, and 2.947 Å. The average \(E_{b-H_2} \) is \(-0.209 \text{ eV}/\text{H}_2\). If further increasing the number of H\textsubscript{2} molecules, the two H\textsubscript{2} molecules in the center sites of the equilateral triangles will hop to the bridge sites of the two Al atoms while keeping the two-layer structure. Therefore, each Al atom can absorb a maximum of six H\textsubscript{2} molecules, due to the two-layer adsorption structure and each Al atom has six nearest Al atoms with each adsorbed H\textsubscript{2} molecule shared by two Al atoms.

Fig. 23(e) gives the corresponding atomic structure with H\textsubscript{2} molecules fully adsorbed. It shows that all the H\textsubscript{2} molecules are located at the bridge sites of Al-Al and are arranged into two layers on each side of graphene. Note that the adsorption of H\textsubscript{2} on both sides of graphene will automatically change the sites of adsorbed Al atoms from the centre site of the carbon hexagon to nearly the bridge site of the C-C bond as shown in Figs. 23(d) and 23(e). The different location of the Al atoms in the presence of adsorbed H\textsubscript{2} for single side and both sides of graphene is a consequence of: (1) the different charges of Al atoms adsorbed on one side of graphene and on both sides of graphene, and (2) the different number of adsorbed H\textsubscript{2} molecules. Therefore, HSC is up to 13.79 wt% with an average \(E_{b-H_2} = -0.193 \text{ eV}/\text{H}_2\). Note that the obtained HSC is in excess of 6 wt%, surpassing DOE’s target, and the obtained \(E_{b-H_2} \) is almost within the required range of \(-0.2 \) to \(-0.4 \text{ eV}/\text{H}_2\) (Li et al., 2003).

For the practical purpose, \(E_{b-H_2} \) is required to be a weak function of the adsorption coverage \(X \) of H\textsubscript{2} molecules on graphene, so that the adsorbed H\textsubscript{2} molecules can be desorbed to almost zero \(X \). In this work, \(E_{b-H_2} \) is about \(-0.2 \text{ eV}/\text{H}_2\) and it is found that the amount of coverage has only a weak effect on \(E_{b-H_2} \). The coverage dependence of \(E_{b-H_2}(X) \) is shown in Fig. 26 with \(E_{b-H_2}(X) \) varying within 15%. Note that \(E_{b-H_2} \) is the lowest when 4 H\textsubscript{2} molecules were adsorbed. This is because adsorption is strongest when H\textsubscript{2} molecules are located on the centre sites of equilateral triangles formed by the adsorbed Al atoms. This was confirmed above in Fig. 23(a) where one H\textsubscript{2} molecule was first adsorbed at the centre sites of the equilateral triangles. Due to the interaction between the H\textsubscript{2} molecules as shown in the Figs. 24, 25 and
discussed above, adsorption with 2 H$_2$ molecules on each side on the centre sites of equilateral triangles is strongest.

When 12 H$_2$ molecules are adsorbed on both sides of a 2 x 2 supercell of graphene, the H$_2$ molecules on each side of graphene will be arranged into two layers as shown in Fig. 23(e), the distances of each layer to the graphene surface are respectively about 2.5 and 5.0 Å, while d_1 is about 2.2 Å. As discussed above, the adsorption energy E_{b-Al} for adsorption on both sides of graphene is larger than that for single side adsorption. At the same time, the Al atoms are more positively charged, and the C atoms are more negatively charged when the Al atoms are adsorbed on both sides of graphene. As found previously hydrogen adsorption is mainly induced by charged metal atoms, and the strength of the adsorption depends on the amount of the transferred charge (Liu et al., 2009; Sun et al., 2006). Thus, the graphene layer when Al is adsorbed on both sides of graphene has a larger capacity for H$_2$ storage. However, due to the limited space between the Al atoms and the repulsive interaction between the adsorbed H$_2$ molecules, some adsorbed H$_2$ molecules move upwards, over the Al atoms. This is also the reason why H$_2$ molecules can form a two-layer arrangement in the case of Al adsorbed on both sides of graphene, only a single H$_2$ layer is found for the corresponding single side system.

To test the stability of the hydrogen storage system, *ab initio* MD simulations was performed on a 12H$_2$-Al-graphene system which is shown in Fig. 23(e). The MD simulation in the NVT ensemble, i.e., constant number of atoms N, volume V, and temperature T, was performed over a time of 1 ps with a massive GGM thermostat at 300 K and without external pressure. We found that only the outer 2 H$_2$ molecules are escaping from each side of the graphene layer, because they are more weakly bound than the other H$_2$ molecules. For example, the first H$_2$ molecule that is released has a binding energy of -0.129 eV. In this case, the HSC becomes 9.64 wt%, which is still much higher than DOE’s target. While *ab initio* MD simulation is quite computationally time consumption, 1 ps is not enough to get statistically meaningful values for the desorption temperature. However, it does suggest that the system keeps a rather high hydrogen storage capacity at room temperature. This is even the case in the absence of external pressure, and it is thus possible to release H$_2$ molecules without removing the Al atoms. Note
that the system stability of hydrogen storage in Ti-decorated carbon nanotubes was tested in similar conditions, where the MD calculations lasted 1.5 ps (Yildirim & Ciraci, 2005). In addition, the release of H\textsubscript{2} molecules can be further prevented by decreasing the temperature or increasing the pressure of storage to increase its HSC.

Fig. 27. The configuration of H\textsubscript{2} molecules adsorbed in a 4 supercell system. (Reproduced with permission from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

To investigate the effect of the concentration of adsorbed Al atoms on its hydrogen storage capacity, a 4 × 4 graphene supercell was considered with one Al atom on the centre site of the carbon hexagon above and below the graphene layer. It is found that each Al atom can maximally adsorb 6 H\textsubscript{2} molecules with average $E_{b-H_2} = -0.172$ eV/H\textsubscript{2} resulting in a HSC of 5.19 wt%. The adsorption configuration is shown in Fig. 27. Note that the HSC is much lower than 13.79 wt% found for the 2 × 2 supercell system above. In the case of H\textsubscript{2} adsorbed in the 2 × 2 system, the H\textsubscript{2} molecules are adsorbed on the bridge sites of Al-Al and are arranged into a two layer configuration. Thus, each adsorbed H\textsubscript{2} molecule interacts with the nearest two Al atoms. In the 4 × 4 system, which corresponds to a lower density of adsorbed Al, the distance between two Al atoms is very long, up to 9.84 Å. Thus, each H\textsubscript{2} interacts with one Al atom and the graphene layer, and there is more space available for the adsorbed H\textsubscript{2} molecules which are located in a single layer. The corresponding adsorption energies E_{b-H_2} also decrease slightly as the Al-Al distance increases. For single H\textsubscript{2} molecule and two H\textsubscript{2} molecules adsorbed on a 4 × 4 supercell, E_{b-H_2} are -0.169 and -0.178 eV/H\textsubscript{2}. In case of a 2 × 2 supercell we found that E_{b-H_2} are -0.182 and -0.227 eV/H\textsubscript{2}, respectively.

For the practical applications, it is desirable to know the exact charge status of the hydrogen storage material. From it the information whether the hydrogen storage material is fully charged or the adsorbed H\textsubscript{2} molecules are completely released can be obtained. The charge exchanged with the graphene layer can be determined by the conductivity of the graphene layer, which is strongly determined by the DOS at the Fermi level (He et al., 2008; Schedin et al., 2007). The X-dependence of the latter quantity is given in Fig. 28. The result shows that the DOS at the Fermi level decreases as X increases and this dependence becomes weaker at high X.

4. Conclusion

A principle of CO adsorption enhancement was developed theoretically by using density functional theory through doping Al into graphene. The results show that the Al doped graphene has strong chemisorption of CO molecule by forming Al-CO bond, where CO onto intrinsic graphene remains weak physisorption. Furthermore, the enhancement of
CO sensitivity in the Al doped graphene is determined by a large electrical conductivity change after adsorption, where CO absorption leads to increase of electrical conductivity via introducing large amount of shallow acceptor states. Therefore, this newly developed Al doped graphene would be an excellent candidate for sensing CO gas. After that, the correlation of the applied electric field F and adsorption/desorption behaviors of CO molecule in the Al doped graphene was studied. The results indicate that the positive F reduces the adsorption energies E_b of the CO adsorbed onto the doped graphene, while E_b increases under the negative F. Furthermore, desorption commences when a large positive F ($F \geq 0.03$ au) is applied. Finally, the thermal stability of interaction between the CO molecules and the Al doped graphene is studied with \textit{ab initio} molecular dynamics calculation to reveal the adsorption/desorption behaviours of the system. Based on the results of the calculations, the adsorption/desorption phase diagram was established by the atomic thermodynamics and the temperature dependent desorption time $\tau(T)$ was determined with thermal desorption method. The results show that the optimal desorption temperature is 400 K. Meanwhile, the effect of T on atomic structure parameters and electrical properties were analyzed, and the results show that the greatest conductivity change before and after adsorption is at $T = 400$ K. Therefore, this sensor material has the best sensing performance with appropriate τ and the biggest conductivity change at 400 K.

Furthermore, the promising hydrogen storage mediums, Al-modified graphenes, are proposed through density functional theory calculations. Hydrogen molecule is predicted to be strongly physically adsorbed on Al substitutionally doped graphene with adsorption energy -0.427 eV/H$_2$ that is in a reasonable range, so that hydrogen storage can be recycled at near ambient conditions, while a graphene layer with Al adsorbed on both sides can store hydrogen up to 13.79 wt% with a two-layer arrangement of H$_2$ molecules formed on each side. Its hydrogen storage capacity is in much excess of 6 wt% of DOE’s target. In the Al substitutionally doped graphene system, it is believed that the doped Al alters the electronic structures of both C and H$_2$, and the bands of H$_2$ overlapping with those of Al and C simultaneously are the underlying mechanism of the hydrogen adsorption enhancement from -0.159 eV/H$_2$ in pristine graphene. In the Al adsorbed on both sides of graphene system, this
high-capacity hydrogen storage is due to the adsorbed Al atoms that act as bridges to link the electron clouds of the \(\text{H}_2 \) molecules and the graphene layer. In addition, we find that the \(\text{H}_2 \) concentration in the hydrogen storage medium can be measured by the change in the conductivity of the graphene layer.

There has been an explosion of ideas that suggest graphene for potential applications. This is often led by analogies with carbon nanotubes that continue to serve a guide in searching for new applications. Except for its excellent electronic properties, graphene also displays several unusual attributions. Graphene is a giant aromatic macromolecule that conducts both electricity and heat well in two dimensions. Their mechanical strength of graphene is comparable to that of CNTs, while CNTs can be considered as a rolled up graphene. The shape, size, and chemical structure of graphene sheets can be further modified by engineering. Nonetheless, research toward the application of graphene-based materials has just begun. Many challenges and opportunities remain. For examples, applications for batteries and supercapacitors, in separation technologies, as supports for catalysts, and filler for composition materials, and so on, are widely expected in the recent future.

5. Acknowledgement

This work was financially supported by the Vice-Chancellor’s postdoctoral research fellowship program of the University of New South Wales (SIR50/PS19184) and the Australian Research Council Discovery Programs (DP1096769 and DP0988687).

6. References

The Stone Age, the Bronze Age, the Iron Age... Every global epoch in the history of the mankind is characterized by materials used in it. In 2004 a new era in material science was opened: the era of graphene or, more generally, of two-dimensional materials. Graphene is the strongest and the most stretchable known material, it has the record thermal conductivity and the very high mobility of charge carriers. It demonstrates many interesting fundamental physical effects and promises a lot of applications, among which are conductive ink, terahertz transistors, ultrafast photodetectors and bendable touch screens. In 2010 Andre Geim and Konstantin Novoselov were awarded the Nobel Prize in Physics "for groundbreaking experiments regarding the two-dimensional material graphene". The two volumes Physics and Applications of Graphene - Experiments and Physics and Applications of Graphene - Theory contain a collection of research articles reporting on different aspects of experimental and theoretical studies of this new material.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
