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1. Introduction

In this chapter, we specifically examine distributed traveling salesman problems in which the
cost function is defined by information distributed among two or more parties. Moreover, the
information is desired to be kept private from others.
As intuitive situations in which distributed private information appears in combinatorial
optimization problems, we take problems in supply chain management (SCM) as examples.
In SCM, the delivery route decision, the production scheduling and the procurement
planning are fundamental problems. Solving these problems contributes to improvement
of the correspondence speed to the customer and shortening the cycle time(Vollmann, 2005;
Handfield & Nichols, 1999). In the process of forming the delivery route decision and
production schedule decision, the combinatorial optimization plays an important role.
When the SCM is developed between two or more enterprises, information related to the
stock, the production schedule, and the demand forecast must be shared among enterprises.
Electronic Data Interchange (EDI), the standardized data exchange format over the network,
is often used to support convenient and prompt information sharing1. Information sharing
apparently enhances the SCM availability; however, all information related to the problem
resolution must be disclosed to all participants to lay the basis for global optimization. Such
information is often highly confidential and its disclosurewould be impossible in many cases.
As more concrete examples, two scenarios are presented. These scenarios pose situations that
appear to be unsolvable unless private information is shared.
Scenario 1: Let there be a server EA that manages a route-optimization service and a user EB

who tries to use this service. The user’s objective is to find the optimal route that visits points
F1, ...,Fn chosen by himself. The user, however, does not like to reveal the list of visiting points
to the server. The server manages a matrix of cost for traveling between any two points. The
server does not like to reveal the cost matrix to the user, either. How can the user learn the
optimal route without mutually revelation of private information?
Note that this problem is obviously solved as the Traveling Salesman Problem (TSP) if either
of traveling cost or visiting points is shared. As more complicated examples, a multi-party
situation is described next.
Scenario 2: Let there be two shipping companies EA and EB in two regionsA and B. Client EC

requests that EA deliver freight to point FA
1
, ...,FAn in region A and also requests EB to deliver

1United Nations Economic Commission for Europe, http://www.unece.org/trade/untdid/welcome.htm
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2 Traveling Salesman Problem, Theory and Applications

freight to point FB
1
, ...,FBn in region B, separately. Now EA,EB and EC are involved in the

business cooperation and try to unify the delivery route to reduce the overall delivery cost. To
search for the optimum unified route and to estimate the reduced cost, EA and EB must reveal
their costs between any two points, but they would not reveal their delivery cost because they
seek mutual confidentiality. How can these companies search for the optimal unified delivery
route without revealing their confidential information?
In these scenarios, costs and visiting points are confidential information and participants
would not reveal them. As shown, the difficulty of private information sharing sometimes
thwarts problem resolution.
In our study, we specifically investigate a privacy-preserving local search to solve the traveling
salesmanproblem. The easiestway to converting existingmetaheuristics toprivacy-preserving
metaheuristics is to introduce an entity called a trusted third party (TTP). A TTP is an entity
that facilitates interactions between two parties who both trust the TTP. If a TTP exists, then all
parties can send their private information to the TTP; the TTP can find a local optimum using
the existing metaheuristics and can return the optimized solution.
This idea works perfectly. However, preparation of a TTP is often quite difficult mainly in
terms of cost. Needless to say, a protocol that works only between participants in the standard
network environment (e.g. TCP/IP network) is preferred.
Secure function evaluation (SFE) (Yao, 1986; Goldreich, 2004) is a general and well studied
methodology for evaluating any function privately, which allows us to convert any existing
metaheuristics into privacy-preserving metaheuristics. However, the computational cost of
SFE is usually quite large. The time complexity of SFE is asymptotically bounded by the
polynomial of the size of the Boolean circuit of the computation. If the computation is primitive,
SFE works practically; however, it can be too inefficient for practical use, particular when the
large-scale computation is performed or large amount of datasets are taken as inputs and
outputs.
In solving the traveling salesman problem by means of metaheuristics, not only the input
size but the number of iterations can be quite large. Therefore, in our protocol, in order to
solve TSP in a privacy-preserving manner, we make use of a public-key cryptosystem with
homomorphic property, which allows us to compute addition of encrypted integers without
decryption. Existing SFE solutions are used only for small portions of our computation as a
part of a more efficient overall solution.

2. Problem definition

In this section, we introduce distributed situations of the traveling salesman problem (TSP).
Then the privacy in the distributed traveling salesman problem is defined.
Let G = (V,E) be an undirected graph and |V| = n be the number of cities. For each edge
ei, j ∈ E, a cost connecting node i and node j, αi, j, is prescribed. Tours are constrained to be a
Hamilton cycle. Then the objective of TSP is to find a tour such that the sum of the cost of
included edges is as low as possible.
The permutation representation or the edge representation is often used to describe tours. In
this chapter, we introduce the scalar product representation with indicator variables for our
solution. Let x = (x1,2, ...,x1,n,x2,3, ...,x2,n, ...,xn−1,n) be a tour vector where xi, j are indicator
variables such that

xi, j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 ei, j is included in the tour,

0 otherwise.
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The cost can be written as an instance vector α = (α1,2, ...,αn−1,n) similarly. The number of
elements of the tour vector x and the cost vector α are d = n(n − 1)/2. For simplicity, we
respectively describe the i-th element of x and α as xi and αi. Then, using this representation,
the objective function of TSP is written in the form of the scalar product:

f (x,α) =
d
∑

i=1

αixi = α · x. (1)

The constraint function of the TSP is defined as

g(x;V) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 If x is a Hamilton cycle of V,

0 otherwise.

Next, we consider distributed situations of the TSP. The instance of the TSP consists of city set
V and cost vector α.
First, the simplest and typical two-party distributed situation is explained. Let there be two
parties P(1) and P(2). Assume that city set V is publicly shared by P(1) and P(2). In such a
case, P(1) (referred to as searcher) arbitrarily chooses a city subset V′ ⊆ V and privately holds
it. Here, V′ represents the searcher’s private list of visiting cities. The searcher can generate
tour x that includes all cities in V′ and aims to minimize the total cost of the tour.
In addition, P(2) (referred to as server) privately holds cost vector α for all cities in V. The
server works to support the optimization of the searcher.
We call this problem (1,1)-TSP or one-server one-searcher TSP. Here, (1,1)-TSP corresponds to
the formal description of scenario 1 described in section 1.
Multi-party cases are explained as the extension of (1,1)-TSP. Assume a situation in which
the cost vector α is distributed among k servers. Let α(i) be a vector that is owned by the i-th

server such that α =
∑k

i=1α(i). As in the case of (1,1)-TSP, V′ is chosen by the searcher. We
designate this distributed TSP as (k,1)-TSP, which corresponds to the formal description of
scenario 2 presented in section 1.
Next we explain (1,k)-TSP. Let {V′(1), ...,V′(k)} be city subsets that are chosen independently
by k searchers independently. Let V′ = ∪k

i=1
V′(i). The server privately manages α.

See Fig. 1 for the partitioning patterns of these distributed TSPs. Apparently, (1,1)-TSP is
a special case of these cases. The cost function is represented as the scalar product of two
vectors in all situations. The constraint function is written as g(x;V′), which is evaluable by
the searcher in (1,1) or (k,1)-TSP . However, g(x;V′) cannot be evaluated by any single party
in (1,k)-TSP.
In our protocol presented in latter sections, we require that constraint function g is evaluable
by a single party. For this reason, we specifically investigate (1,1)-TSP and (k,1)-TSP in what
follows.

3. Our approach

In this section, we explain our approach for solving distributed TPSs with private information
by means of the local search. For the convenience of description, we specifically examine
(1,1)-TSP in the following sections. The extension to (k,1)-TSP is mentioned in Section 6.
Let N(x) be a set of neighborhoods of solution x. Let ∈r denote an operation which chooses
an element form a given set uniformly at random. Then, the algorithm of local search without
privacy preservation is described as follows:
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Fig. 1. Privacy model of the distributed TSP

[Local search]

1. Generate an initial tour x0

2. x ∈r N(x0), N(x0)←N(x0) \ {x}.

3. If f (x) < f (x0),x0← x

4. If some termination conditions are satisfied, output x0 as x
∗. Else, go to step 2.

In the process of local search, cost values are evaluated many times. From the perspective of
privacy preservation, if cost values are shared at each iteration, information leakage is likely
to arise. For example, in (1,1)-TSP, the searcher might infer some elements of the server’s
private distance vector from a series of tours and cost values.
Fortunately, formany rank-basedmetaheuristics algorithms, including local search, cost values
need not always be evaluated; the evaluation of a paired comparison of two cost values is
sometimes sufficient. This fact is convenient for privacy preservation in optimization because
the risk of information leakage from the result of paired comparison would be much smaller
than the cost value itself.
Considering the matters described above, we consider a protocol that solves
privacy-preserving optimization through a combination of local search and a cryptographic
protocol that privately compares a pair of scalar products.
First, we define the private paired comparison of the scalar product. Let x1,x2,α ∈ Z

d
m(=

[0, ...,m− 1]d). Also assume the the following inequalities.

– α · x2 − α · x1 ≥ 0 be I+

– α · x2 − α · x1 < 0 be I−

Then, the problem can be stated as follows:

Statement 1 (Private scalar product comparison) Let there be two parties: Alice and Bob. Alice has
two private vectors x1,x2 and Bob has a private vector α. At the end of the protocol, Alice learns one
correct inequality in {I−, I+} and nothing else. Bob learns nothing.

We call this problem private scalar product comparison. Assuming that there exist protocols that
solve this private scalar product comparison, private scalar product comparison allows us to
perform local search in a privacy-preserving manner as shown below:
In step one, the searcher generates an initial tour x0. In step two, the searcher chooses a tour
in neighborhood of x0, N(x0), uniformly at random. These two steps can be executed by the
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searcher solely. At step three, we make use of private scalar product comparison. Recall that
f (x) = α · x and f (x0) = α · x0. Whatweneed here is to learnwhether or not α · x0−α · x< 0. This
problem is readily solved by means of private scalar product comparison without sharing the
searcher’s x, x0 and the server’s α. In step four, the searcher can terminate the computations
after generating a prescribed number of individuals, or can terminate the serarch when he
finds N(x) = ∅. In both cases, step four can be executed by the searcher solely.
As shown, assuming the existence of a protocol for private scalar product comparison,
TSPs including private information can be securely solved. In next section, we introduce
cryptographic building blocks required for solving private scalar product comparison. Then
in Section 5, a protocol for solving the private scalar product comparison is presented.

4. Cryptographic building blocks

In this section, three cryptographic building blocks are introduced.

4.1 Homomorphic public-key cryptosystem

For our protocol, we use a public-key cryptosystem with a homomorphic property. A
public-key cryptosystem is a triple (Gen, Enc, Dec) of probabilistic polynomial-time algorithm
for key-generation, encryption, and decryption, respectively. The key generation algorithm
generates a valid pair (sk,pk) of secret and public keys. The secret key and public key are
used only for decryption and encryption. Then Zp = {0,1, ...,p− 1} denotes the plain text space.
The encryption of a plain text t ∈ Zp is denoted as Encpk (t;r), where r is a random integer.
The decryption of a cipher text is denoted as t = Decsk (c). Given a valid key pair (pk,sk),
Decsk (Encpk (t;r)) = t for any t and r is required.
A public key cryptosystem with additive homomorphic property satisfies the following
identities.

Enc(t1;r1) · Enc(t2;r2) = Enc(t1 + t2 mod p;r1 + r2)

Enc(t1;r1)
t2 = Enc(t1t2 mod p;r1)

In those equations, t1, t2 ∈ Zp are plain texts and r1,r2 are random numbers. These random
numbers are used to introduce redundancy into ciphers for security reasons; encrypted values
of an integer with taking difference random numbers are represented differently. These
properties enable the addition of any two encrypted integers and the multiplication of an
encrypted integer by an integer. A public-key cryptosystem is semantically secure when a
probabilistic polynomial-time adversary cannot distinguish between random encryptions of
two elements chosen by herself. Paillier cryptosystem is known as a semantically secure
cryptosystem with homomorphic property(Pailler, 1999). We use the Paillier cryptosystem in
experiments in section 6.

4.2 Secure function evaluation

As mentioned in the introductory section, secure function evaluation (SFE) is a general
and well studied cryptographic primitive which allows two or more parties to evaluate a
specified function of their inputs without revealing (anything else about) their inputs to each
other (Goldreich, 2004; Yao, 1986).
In principle, any private distributed computation can be securely evaluated by means of SFE.
However, although polynomoially bounded, naive implementation of local search using SFE
can be too inefficient. Therefore, in order to achieve privacy-preserving local search efficiently,
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we make use of existing SFE solutions for small portions of our computation as a part of a
more efficient overall solution.

4.3 Random shares

Let x= (x1, ...,xd) ∈ Z
d
N
. When we say A and B have random shares of x, A has xA = (xA

1
, ...,xA

d
)

and B has xB = (xB
1
, ...,xB

d
) in which xA

i
and xB

i
are uniform randomly distributed in ZN with

satisfying xi = (xA
i
+ xB

i
) modN for all i. Random shares allow us to keep a private value

between two parties without knowing the value itself. Note that if one of the party pass the
share to the other, the private value is readily recovered.

5. Scalar product comparison

Before describing the protocol for scalar product comparison, we introduce a protocol
which privately computes scalar products from privately distributed vectors. Goethals et
al. proposed a protocol to compute scalar products of two distributed private vectors without
revealing them bymeans of the homomorphic public-key cryptosystem (Goethals et al., 2004).
For preserving the protocol generality, parties are described as Alice and Bob in this section.
The problem of private scalar product is stated as follows:

Statement 2 (Private scalar product) Let there be two parties: Alice and Bob. Alice has a private
vector x ∈ Zd

µ; Bob also has a private vector α ∈ Z
d
µ. At the end of the protocol, both Alice and Bob learn

random shares of scalar product x · α and nothing else.

Let Zp be the message space for some large p. Set µ = ⌊
√

p/d⌋. In what follows, the random
number used in encryption function Enc is omitted for simplicity. Then, the protocol is
described as follows.
[Private scalar product protocol]

– Private Input of Alice: α ∈ Zd
µ

– Private Input of Bob: x ∈ Zd
µ

– Output of Alice and Bob: rA + rB = x · α mod p

(Alice and Bob output rA and rB, respectively)

1. Alice: Generate a public and secret key pair (pk,sk).

2. Alice: For i= 1, ...,d, compute ci = Encpk (αi) and send them to Bob.

3. Bob: Compute w← (
∏d

i=1 c
xi
i
) · Encpk (−rB) where rB ∈r Zp and send w to Alice.

4. Alice: Compute Dec(w) = rA(= x · α− rB)

In step two, Alice sends the ciphertext of her private vector (c1, ...,cd) to Bob. Bob does not
possess the secret key. Therefore, he cannot learn Alice’s vector from received ciphertexts.
However, in step three, he can compute the encrypted scalar product based on homomorphic
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properties without knowing Alice’s x:

w = (
d
∏

i=1

cxi
i
) · Encpk (−rB) = (

d
∏

i=1

Encpk (αi)
xi) · Encpk (−rB)

= Encpk (α1x1) · · · Encpk (αdxd) · Encpk (−rB)

= Encpk (
d
∑

i=1

αixi − rB) = Encpk (α · x− rB)

Then, in step four, Alice correctly obtains a random share of α · x by decrypting w using
her secret key: Bob’s rB is a random share of α · x, too. Assuming that Alice and Bob behave
semi-honestly2, it canbeproved that the scalar product protocol is secure (Goethals et al., 2004).
In the discussions of subsequent sections, we assume that all parties behave as semi-honest
parties.
A protocol for the private scalar product comparison appears to be obtained readily using
the private scalar product protocol. The difference of two scalar products α · x2 − α · x1 can be
computed as

d
∏

i=1

c
x2,i
i
·

d
∏

i=1

c
−x1,i
i

= Encpk (α · x2 − α · x1). (2)

By sending this to Alice, Alice learns α · x2 − α · x1. Equation 2 appears to compare two scalar
products successfully and privately. However, it is not secure based on statement 1 because
not only the comparison result but also the value of α · x1 −α · x2 is known to Alice. In the case
of the TSP, tour vectors are x1,x2 ∈ {0,1}

d. Therefore, Bob’s x1 and x2 are readily enumerated
from the value of α · x2 − α · x1 by Alice. To block Alice’s enumeration, Bob can multiply some
positive random value rB to the difference of two scalar products,

d
∏

i=1

c
rBx2,i
i
·

d
∏

i=1

c
−rBx1,i
i

= Encpk (rB(α · x2 − α · x1)).

By sending this to Alice, Alice learns rB(α · x2 −α · x1). Since rB > 0, Alice can knowwhether or
not α · x2 > α · x1 from this randomized value; however, this is not secure, either. rB is a divider
of rB(α · x2 − α · x1) and is readily enumerated again. Alice can also enumerate the candidate
of Bob’s x1 and x2 for each rB in polynomial time.
As shown, multiplying a random number does not contribute to hinder Alice’s guess, either.
In our protocol, we use the SFE for private comparison with scalar product protocol. Private
comparison is stated as follows:

Statement 3 (Private comparison of random shares) Let Alice’s input be xA and Bob’s input be xB,
where xA

i
and xB

i
are random shares of xi for all i. Then, private comparison of random shares

computes the index i∗ such that

i∗ = argmax
i

(xAi + xBi ). (3)

2A semi-honest party is one who follows the protocol properly with the exception that the party retains
a record of all its intermediate observations. From such accumulated records, semi-honest parties attempt
to learn other party’s privte information (Goldreich, 2004).
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After the protocol execution, Alice knows i∗ and nothing else: Bob learns nothing.

When Alice has a cost vector α and Bob has two tour vectors x1,x2, the protocol for private
scalar product comparison is obtained using SFE as follows:
[Private scalar product comparison]

– Private Input of Alice : α ∈ Zd
m

– Private Input of Bob : x1,x2 ∈ Z
d
m

– Output of Bob : An inequation I ∈ {I−, I+} (Alice has no output)

1. Alice: Generate a private and public key pair(pk,sk) and send pk to Bob.

2. Alice: For i= 1, ...,d, Alice computes ci = Encpk (αi). Send them to Bob.

3. Bob: Compute w←
∏d

i=1 c
x2,i
i
·
∏d

i=1 c
−x1,i
i
· Encpk (−r

B) and send w to Alice where r ∈r ZN

4. Alice: Compute rA = Decsk(w)(= x2 · α− x1 · α− r
B).

5. Alice and Bob: Jointly run a SFE for private comparison. If ((rA + rB) modN) ≥ 0, I+ is
returned to Bob. Else, I− is returned to Bob.

First, Alice encrypts her cost vector and send all elements to Bob. Then, Bob computes the
encrypted difference of two scalar products with randomization as follows:

w =
d
∏

i=1

c
x2,i
i
·

d
∏

i=1

c
−x1,i
i
· Encpk (−r

B) (4)

= Encpk

⎛

⎜

⎜

⎜

⎜

⎜

⎝

d
∑

i=1

αix2,i −

d
∑

i=1

αix1,i − r
B

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(5)

= Encpk
(

α · x2 − α · x1 − r
B
)

. (6)

At step four, Alice obtains

rA = x2 · α− x1 · α− r
B, (7)

where rA and rB are random shares of x2 ·α− x1 ·α overZN ; both do not learn any from random
shares. Then at the last step, Both jointly run SFE for private comparison to evaluate whether
or not (rA + rB) modN is greater than zero, which is the desired output.
In what follows, we describe the execution of this protocol as (α, (x1,x2)) −→SPC (∅, I).
Note that the input size for SFE is p regardless of the vector size m and dimension d. In
principle, the computational load of SFE is large particularly when the input size is large.
Although the computation complexity of this protocol in step two and step three is still O(d),
we can reduce the entire computational cost of private scalar product comparison by limiting
computation of SFE only to comparison of random shares.

Theorem 1 (Security of private scalar product comparison) Assume Alice and Bob behave
semi-honestly. Then, private scalar product comparison protocol is secure in the sense of Statement 1.

The security proof should follow the standardized proof methodology called simulation
paradigm (Goldreich, 2004). However, due to the limitation of the space, we explain the
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security of this protocol by showing that parties cannot learn nothing but the output from
messages exchanged between parties.
The messages Bob receives from Alice before step five is Encpk (α1), ...,Encpk (αd). Because Bob
does not have Alice’s secret key, Bob learns nothing about Alice’s vector. The information
Alice receives from Bob before step five is only a random share rA = α · x2 − α · x2 − rB, from
which she cannot learn anything, either. At step five, it is guaranteed that SFE reveals only
the comparison result (Yao, 1986). Consequently, the overall protocol is secure in the sense of
Statement 1.

6. Local search of TSP using scalar product comparison

Using the protocol for private scalar product comparison, local search is convertible to a
privacy-preserving protocol. As an example, we introduce a Privacy Preserving Local Search
(PPLS) for TSP using 2-opt neighborhood.
Because the local search described in Section 3 is rank-based, it is readily extended to a
privacy-preserving protocol. Using the protocol for private scalar product comparison, PPLS
is designed as follows:
[Privacy-Preserving Local Search]

– Private Input of Server: instance vector α ∈ Zd
m

– Private Input of Searcher: subset of instance V′ ⊆ V

– Private Output of Searcher: local optimal solution x∗

1. Server: Generate a pair of a public and a secret key (pk,sk) and send pk to the searcher.

2. Server: For i = 1, ...,d, compute ci = Encpk (αi) and send them to the searcher.

3. Searcher: Generate an initial solution x0 using V′

4. Searcher: x ∈r N(x0),N(x0)←N(x0) \ {x}

5. Searcher:

a) Compute (α, (x,x0)) −→SPC (∅, I) with probability 0.5. Otherwise, compute
(α, (x0,x)) −→SPC (∅, I).

b) If I corresponds to α · x− α · x0 < 0, then x0← x

6. Searcher: If N(x0) = ∅ or satisfies some termination condition, x∗ ← x0 and output x∗.
Otherwise, go to step 4.

Step one and step two can be executed solely by the server. In step three, an solution is
initialized. Step three and step four are also executed solely by the searcher.
Step five can be executed privately by means of private scalar product comparison. Note that
the order of the inputs of private scalar product comparison is shuffled randomly in step 5(a).
The reason is explained in detail in Section 6.2.
Readers can find multi-party expansion of private scalar product protocol in (Goethals et al.,
2004). Multi-party expansion of private scalar product comparison is straightforward with a
similar manner in the literature. This expansion readily allows us to obtain protocols of PPLS
for (k,1)-TSP.
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6.1 Communication and computation complexity

Communication between the server and the searcher occurs in steps one, two, and five. In
(1,1)-TSP, we can naturally assume that the cost vector α is not changed during optimization.
Therefore, transfer of (c1, ...,cd) occurs only once in steps one and two. The communication
complexity of step 5(a) is O(1). As shown, the communication complexity is not time
consuming in this protocol.
The time consuming steps of PPLS are private comparison by SFE (step five of private scalar
product comparison) and exponentiation computed by the searcher (step three of private scalar
product comparison). The computation time of the SFE is constant for any d and cannot be
reduced anymore. On the other hand, there is still room for improvement in the exponentiation
step.
Using naive implementation, step three of private scalar product comparison costs O(d)(=
O(n2)). To reduce this computation, we exploit the fact that the number of changed edges by
2-opt is much smaller than d.
In vector x− x0, only 2 elements are changed from 1 to 0 and the other 2 elements are changed
from 0 to −1 when 2-opt is used as the neighborhood. The remaining elements are all 0
irrespective of the problem size. Since the exponentiation of 0 can be skipped in step three of
private scalar product comparison, the time complexity is saved at most O(1) by computing
only in changing edges.

6.2 Security

Given a TTP, the ideally executed privacy-preserving optimization is the following.

Statement 4 (Privacy-preserving local search for (1,1)-TSP (ideal)) Let the searcher’s input beV′ ⊆V.
Let the server’s input be α ∈ Zd

m. After the execution of the protocol, the searcher learns the (local)
optimal solution x∗, but nothing else. The server learns nothing at the end of the protocol, either.

Unfortunately, the security of the PPLS is not equivalent to this statement. We briefly verify
what is protected and leaked after the protocol execution.
Messages sent from the searcher to the server are all random shares. Thus, it is obvious that
the server does not learn anything from the searcher.
There remains room for discussion about what the searcher can guess from what it learns
because this point is dependent on the problem domain. The searcher learns a series of the
outcome of private scalar product comparison protocol in the middle of PPLS execution. Let
the outcome of the t-th private scalar product comparison be I(t).
In the case of TSP, I(t) corresponds to an inequality, α · x−α · x0 ≤ 0 or α · x−α · x0 > 0. Although
the elements of the private cost vector α are not leaked from this, the searcher learns whether
α · (x− x0) > 0 or not from this comparison. This indicates that orders of cost values might be
partially implied by the searcher because the searcher knows what edges are included in these
solutions.
As long as the server and the searchermutually interact only through the private scalar product
comparison, the server never learns the searcher’sV′ and the searcher never learns the server’s
α. However, the security of PPLS is not perfect as a protocol with a TTP. A method to block
the guess of the searcher from intermediate messages remains as a challenge for future study.
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7. Experimental analysis and discussion

In this section, we show experimental results of PPLS for (1,1)-TSP in order to evaluate the
computation time and investigate its scalability.

7.1 Setting

Five problem instances were chosen from TSPLIB(Reinelt, 1991). The city size is 195 – 1173.
In the distributed TSP, the searcher can choose a subset of cities V′ arbitrarily as the input.
For our experiments, V′ is set to V for all problems because the computation time becomes
greatest when V = V′. PPLS was terminated when x0 reaches a local optimum.
As a homomorphic cryptosystem, the Paillier cryptosystem(Pailler, 1999) with 512-bit and
1024-bit key was used. The server and the searcher program were implemented using java.
Both programswere run separately on a Xeon 2.8 GHz (CPU) with 1 GB (RAM) PCswith a 100
Mbps Ethernet connection. For SFE, Fairplay (Malkhi et al., 2004), a framework for generic
secure function evaluation, was used.
PPLS was repeated for 50, 100, and 300 times with changing initial tours (depicted as 50-itr,
100-itr and 300-itr).
Both the first and the second step of PPLS can be executed preliminarily before choosing city
subset V′. Therefore, we measured the execution time from the third step to the termination
of the protocol.

7.2 Results

Fig. 2 shows the estimated computation time required for optimization. With a 512-bit key,
PPLS (1-itr) spent 19 (min) and 79 (min) to reach the local optimum of rat195 and rat575. Using
a 1024-bit key, PPLS (1-itr) spent 21 (min) and 89 (min) for the same problems.
Table 1 shows the error index (=100× obtained best tour length / known best tour length) of
PPLS (average of 20 trials). Note that privacy preservation does not affect the quality of the
obtained solution in anyway because the protocol does not change the behavior of local search
if the same random seed is used.
Earlier, we set V′ = V for all problems. Even when the number of cities |V| is very large, the
computation time is related directly to the number of chosen cities |V′ | because the number of
evaluations is usually dependent on the number of chosen cities.
Although the computation time is not yet sufficiently small in large-scale problems, results
show that the protocol completes in a practical time in privacy-preserving setting when the
number of cities are not very numerous.

8. Related works

A few studies have been made of the Privacy-Preserving Optimization (PPO). Silaghi
et al. proposed algorithms for distributed constraint satisfaction and optimization
with privacy enforcement (MPC-DisCSP)(Silaghi, 2003)(Silaghi & Mitra, 2004). Actually,
MPC-DisCSP is based on a SFE technique (Ben-Or et al., 1988). Yokoo et al. proposed
a privacy-preserving protocol to solve dynamic programming securely for the multi-agent
system (Yokoo & Suzuki, 2002; Suzuki & Yokoo, 2003). (Brickell & Shmatikov, 2005) proposed
a privacy-preserving protocol for single source shortest distance (SSSD) which is a
privacy-preserving transformation of the standard Dijkstra’s algorithm to find the shortest
path on a graph. These studies are all based on cryptographic guarantees of security.
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Fig. 2. Computation time of PPLS. Estimated time required for the completion of PPLS
optimization (left: 512-bit key, right: 1024-bit key).
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PPLS (2-opt)
1-itr. 50-itr. 100-itr. 300-itr.

rat195 13.3 9.16 8.73 8.65
pcb442 16.4 8.88 8.88 8.88
rat575 11.6 9.96 9.96 9.90
rat783 12.2 10.8 10.8 10.3
pcb1173 15.4 12.9 12.9 12.3

Table 1. The error index of PPLS (2-opt).

To the best of authors’ knowledge, this study is the first attempt for privacy-preserving
optimization by means of meta-heuristics. As discussed earlier, private scalar product
comparison allows us to compare two scalar products. It follows that our PPLS is available for
anyprivacy-preserving optimizationproblemsprovided that the cost function is represented in
the formof scalar products. In addition, private scalar product comparison canbe incorporated
into not only local search but more sophisticated meta-heuristics, such as genetic algorithms
or tabu search, as long as the target algorithm uses only paired comparison for selection.

9. Summary

We proposed and explained a protocol for privacy-preserving distributed combinatorial
optimization using local search. As a connector that combines local search and privacy
preservation, we designed a protocol to solve a problem called private scalar product
comparison. The security of this protocol is theoretically proved. Then, we designed a
protocol for privacy-preserving optimization using a combination of local search and private
scalar product comparison. Our protocol is guaranteed to behave identically to algorithms
that do not include features for privacy preservation.
As an example of distributed combinatorial optimization problems, we specifically examined
the distributed TSP and designed a privacy-preserving local search that adopts 2-opt as a
neighborhood operator. The result show that privacy-preserving local searchwith 2-opt solves
a 512-city problemwithin a fewhourswith about 10% error. Although the computation time is
not yet sufficiently small in a large-scale problem, it is confirmed that the protocol is completed
in a practical time, even in privacy-preserving setting. Both the searcher’s and the server’s
computation can be readilyparalleled. The implementation of parallel computation is a subject
for futurework. Application of PPLS to distributed combinatorial optimization problems such
as the distributed QAP, VRP, and Knapsack problem is also a subject for future work.
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