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1. Introduction

The increasing use of Internet has dramatically contributed to the growing number of threats
that inhabit within it. Seeking for a better protection, Computer Security and, specifically,
Network Intrusion Detection Systems (NIDS) have risen to become a topic of research and
concern in order to fight these threats.
More accurately, a NIDS is a type of computer software that is able to distinguish legitimate
network users from malicious ones. Moreover, due to the rising complexity and volume of the
attacks, NIDS are performed in an automated manner, so the NIDS software monitors system
usage to identify behaviour breaking the security policy. Generally, NIDS are categorised
based in their scope: misuse network detectors and anomaly detectors. On the one hand,
misuse detection systems deal with menaces already known in beforehand. Basically, these
systems manage a comprehensive attack base and their work consists of invigilating at all
incoming traffic to detect any sequence that appears in that knowledge base.
On the other hand, anomaly detection systems are more ambitious and try to discover new
unknown threats (the so-called zero-day attacks). To this extent, these systems model be-
nign or legitimate system usage in order to thereafter obtain a certainty measure of potential
deviations from that normal profile. Each deviation that is found significant enough will be
considered anomalous and notified to a human operator. Research in network anomaly detec-
tion has applied several well-known Artificial Intelligence paradigms such as finite automata
(Vigna et al., 2000), neural networks (Mukkamala et al., 2005), genetic algorithms (Kim et al.,
2005), fuzzy logic (Chavan et al., 2004), support-vector machines (Mukkamala et al., 2005) or
diverse data-mining-based approaches (Lazarevic et al., 2003).
Actually, these solutions, both misuse and anomaly, perform better or worse against a net-
work attack. Misuse detection systems are overwhelmed since they cannot face menaces that
have not been previously described in their rule base but they overcome very fast the ones
that have. Unfortunately, anomaly detection itself may not be considered as the the perfect
solution, as well. In this way, it is much less exact than misuse detectors with well-known
attacks and, despite they do find zero-day threads, sometimes they also produce false posi-
tives (i.e. select as a menace what is perfectly right). Summarizing, each approach is clearly
surpassed when it comes to the other’s area of expertise and the goal is, thus, to find the way
to integrate both system’s benefits while reducing their weaknesses.
In this way, Bayesian networks (Pearl & Russell, 2000) represent the sort of tool that can help
us to achieve this integration. Specifically, they are probabilistic models very helpful when
facing problems that require predicting the outcome of a system consisting of a high number
of interrelated variables. After a training period, the Bayesian network learns the behaviour of
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the model and, thereafter it is able to foresee its outcome. In this way, successful applications
of Bayesian networks include for instance email classification for spam detection (Yang et al.,
2006), failure detection in industrial production lines (Masruroh & Poh, 2007) (Liu & Li, 2007),
weather forecasting (Abramson et al., 1996) (Cofiño et al., 2002), intrusion detection over IP
networks (Krügel et al., 2003) (Faour et al., 2006) or reconstruction of traffic accidents (Davis &
Pei, 2003) (Davis, 2006). In all cases, the respective target problem is modelled as a constella-
tion of interconnected variables whose output is always the result of the prediction (e.g. spam
found, failure detected, intrusion noticed and so on). Therefore, we can model a NIDS as a
constellation of variables controlling the type of the traffic, information on packet headers,
packet payload or their temporal relationships (i.e. to check whether they form a coordinated
attack). If we connect this representation to an attack variable, we will be able, after a proper
training, to predict when do incoming packets represent a menace to the system.
Given this background, we present ESIDE-Depian (Intelligent Security Environment for
Detection and Prevention of Network Intrusions), the first inherently unified misuse and
anomaly detector. Besides, we focus on the integration of anomaly and misuse and show
how this goal can be achieved by using a Bayesian network. In addition, we test this inte-
gration with real network attacks and show ESIDE-Depian’s efficiency both as misuse and as
anomaly detection.
The remainder of the chapter is organised as follows. follows. Section 2 illustrates the dif-
ferences between misuse and anomaly detections systems. Section 3 details the concept of a
Bayesian network and describes the used in ESIDE-Depian. Section 4 describes how ESIDE-
Depian integrates misuse and anomaly prevention. Section 5 presents the experiments to
evaluate this integration and discuses their results. Section 6 concentrates on the problems
appeared and the solution designed to solve them. Section 7 discusses related work and,
finally, section 8 concludes and outlines the avenues of future work.

2. Misuse versus Anomaly Detection

Currently, misuse detection is the most extended approach for intrusion prevention, mainly
due to its efficiency and easy administration (Bringas et al., 2009). Its philosophy is quite sim-
ple: based on a rule base that models a high number of network attacks, the system compares
incoming traffic with the registered patterns to identify any of these attacks. Hence, it does not
produce any false positive (since it always finds exactly what is registered) but it cannot detect
any new threat. Further, any slightly-modified attack will pass unnoticed. Finally, the knowl-
edge base itself poses one of the biggest problems to misuse detection: as it grows, the time to
search on it increases as well and, finally, it may require too long to be used on real-time.
Anomaly detection systems, on the contrary, start not from malicious but from legitimate be-
haviour in order to model what it is allowed to do. Any deviation from this conduct will
be seen as a potential menace. Unfortunately, this methodology is a two-sided sword since,
though it allows to discover new unknown risks, it also produces false positives (i.e. pack-
ets or situations marked as attack when they are not). In fact, minimising false positives is
one of the pending challenges of this approach (Kruegel, 2002). Moreover, misuse detection
presents a constant throughput since its knowledge base does not grow uncontrollably but
gets adapted to new situations or behaviours. Again, an advantage is also source of problems
because it is theoretically possible to make use of this continuous learning to little by little
modify the knowledge so it ends seeing attacks as proper traffic (in NIDS jargon, this phe-
nomenon is known as session creeping). In other words, its knowledge tends to be unstable.
Finally, anomaly detection, unlike misuse, demands high maintenance efforts (and costs).

3. Bayesian-network-based intrusion detection

3.1 Background
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2. Misuse versus Anomaly Detection

In summary, both alternatives present notable disadvantages that demand a new approach
for network intrusion prevention.

3. Bayesian-network-based intrusion detection

3.1 Background
Reverend Thomas Bayes pioneered with his work the research on cause-consequence rela-
tionships. The most important fruit of that investigation, known as the “Bayes’ theorem”
(Bayes, 1763) in his honour, is the basis of the so-called Bayesian inference, a statistical infer-
ence method that allows, upon a number of observations, to obtain or update (if the system is
already working) the probability that a hypothesis may be true. In this way, Bayes’ theorem
adjusts the probabilities as new informations on evidences appear.
According to its classical formulation, given two events A and B, the conditional probability
P(A|B) that A occurs if B occurs can be obtained if we know the probability that A occurs,
P(A), the probability that B occurs, P(B), and the conditional probability of B given A, P(B|A)
(as shown in equation 1):

P(A|B) =
P(B|A) · P(A)

P(B)
(1)

More accurately, Bayesian Networks (Pearl & Russell, 2000) are defined as graphical prob-
abilistic models for multivariate analysis. Specifically, they are directed acyclic graphs that
have an associated probability distribution function (Castillo et al., 1996). Nodes within the
directed graph represent problem variables (they can be either a premise or a conclusion) and
the edges represent conditional dependencies between such variables. Moreover, the proba-
bility function illustrates the strength of these relationships in the graph (Castillo et al., 1996)
(Figure 1).

Fig. 1. Example of a Bayesian Network.

Formally, let a Bayesian Network B be defined as a pair, B = (D, P), where D is a directed
acyclic graph; P = {p(x1|Ψ2), ..., p(xn |Ψn)} is the set composed of n conditional probability
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functions (one for each variable); and Ψi is the set of parent nodes of the node Xi in D. The set
P is defined as the joint probability density function (Castillo et al., 1996) (equation 2)

P(x) =
n

∏
i=1

p(xi |Ψi) (2)

The most important capability of Bayesian Networks is their ability to determine the probabil-
ity that a certain hypothesis is true (e.g., the probability of an e-mail to be spam or legitimate)
given a historical dataset.

3.2 Bayesian Network Obtaining Process
The obtaining of the knowledge model in an automated manner can be achieved in an unsu-
pervised or supervised way.
Typically, unsupervised learning approaches don not take into consideration expert knowl-
edge about well-known attacks. They achieve their own decisions based on several mathe-
matical representations of distance between observations from the target system, revealing
themselves as ideal for performing Anomaly Detection.
On the other hand, supervised learning models do use expert knowledge in their making of
decisions, in the line of Misuse Detection paradigm, but usually present high-cost adminis-
trative requirements. Therefore, both approaches present important advantages and several
shortcomings. Being both ESIDE-Depian, it is necessary to set a balanced solution that enables
to manage in an uniform way both kinds of knowledge.
Therefore, ESIDE-Depian uses not only Snort information gathering capabilities, but also
Snort’s decision-based labelling of network traffic. Thereby, the learning processes inside
ESIDE-Depian can be considered as automatically-supervised Bayesian learning, divided into
the following phases. Please note that this sequence only applies for the standard generation
process followed by the Packet Header Parameter Analysis experts (see Figure 2).
We have divided the network traffic according to its type (TCP-IP, UDP-IP and ICMP-IP) and
created three Bayesian networks (experts) to analyse their respective packet headers (which is
an strategy already proven successful in this area (Alípio et al., 2003)). Moreover, in order to
cover all possible kind of menaces, we also have to take into account the payload (i.e. body)
of the packet and the potential temporal dependencies between packets. Therefore, we have
added 2 further experts, the protocol payload and the connection tracking one, respectively. In
each case, the Bayesian network is composed of several variables depending on the protocol
and the expert; the value to induce is always the probability that the analysed packet is part
of an attack.
Moreover, the creation and setting-up of each Bayesian network comprises the following
phases:

• Traffic sample obtaining. First we need to stablish the information source in order to
gather the sample. This set usually includes normal traffic (typically gathered from the
network by sniffing, arp poisoning or so), as well as malicious traffic generated by the
well-known arsenal of hacking tools (e.g. MetaSploit 1).

• Structural Learning.

The next step is devoted to define the operational model ESIDE-Depian should work
within. With this goal in mind, we have to provide logical support for knowledge ex-
tracted from network traffic information. Packet parameters need to be related into a

1 Metasploit: Exploit research. http://www.metasploit.org
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3.2 Bayesian Network Obtaining Process

Fig. 2. ESIDE-Depian general architecture integrating misuse and anomaly detection.

Bayesian structure of nodes and edges, in order to ease the later conclusion inference
over this mentioned structure.

In particular, the PC-Algorithm (Spirtes et al., 2001) is used here to achieve the structure
of causal and/or correlative relationships among given variables from data. In other
words, the PC-Algorithm uses the traffic sample data to define the Bayesian model,
representing the whole set of dependence and independence relationships among de-
tection parameters.

• Parametric Learning. The knowledge model fixed so far is a qualitative one. Therefore,
the following step is to apply parametric learning in order to obtain the quantitative
model representing the strength of the collection of previously learned relationships,
before the exploitation phase began.

Specifically, ESIDE-Depian implements maximum likelihood estimate (Kjærulff & Mad-
sen, 2008) to achieve this goal. This method completes the Bayesian model obtained in
the previous step by defining the quantitative description of the set of edges between
parameters. This is, structural learning finds the structure of probability distribution
functions among detection parameters, and parametric learning fills this structure with
proper conditional probability values.
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• Bayesian Inference. Next, every packet capture from the target communication infras-
tructure needs one value for the posterior probability of a badness variable, (i.e. the
Snort 2 label), given the set of observable packet detection parameters.

Hence, we need an inference engine based on Bayesian evidence propagation. More
accurately, we use the Lauritzen and Spiegelhalter method for conclusion inference over
junction trees, provided it is slightly more efficient than any other in terms of response
time (Castillo et al., 1996). Thereby, already working in real time, incoming packets are
analysed by this method (with the basis of observable detection parameters obtained
from each network packet) to define the later probability of the attack variable.

The continuous probability value produced here represents the certainty that an evi-
dence is good or bad. Generally, a threshold-based alarm mechanism can be added
in order to get a balance between false positive and negative rates, depending on the
context.

• Adaptation. Usually, the system operation does not keep a static on-going way, but
usually presents more or less important deviations as a result of service installation or
reconfiguration, deployment of new equipment, and so on.

In order to keep the knowledge representation model updated with potential variations
in the normal behaviour of the target system, ESIDE-Depian uses the general sequen-
tial/ incremental maximum likelihood estimates (Castillo et al., 1996) (in a continuous
or periodical way) in order to achieve continuous adaptation of the model to potential
changes in the normal behaviour of traffic.

3.3 Connection Tracking and Payload Analysis Bayesian Experts Knowledge Model Gener-
ation

The Connection Tracking expert attends to potential temporal influence among network
events within TCP-based protocols (Estevez-Tapiador et al., 2003), and, therefore, it requires
an structure that allows to include the concept of time (predecessor, successor) in its model.
Similarly, the Payload Analysis expert, devoted to packet payload analysis, needs to model
state transitions among symbols and tokens in the payload (following the strategy proposed
in (Kruegel & Vigna, 2003).
Generally, Markov models are used in such contexts due to their capability to represent prob-
lems based on stochastic state transitions. Nevertheless, the Bayesian concept is even more
suited since it not only includes representation of time (in an inherent manner), but also pro-
vides generalization of the classical Markov models adding features for complex characteri-
zation of states.
Specifically, the Dynamic Bayesian Network (DBN) concept is commonly recognized as a su-
perset of Hidden Markov Models (Ghahramani, 1998), and, among other capabilities, it can
represent dependence and independence relationships between parameters within one com-
mon state (i.e. in the traditional static Bayesian style), and also within different chronological
states.
Therefore, ESIDE-Depian implements a fixed twonode DBN structure to emulate the Markov-
Chain Model (with at least the same representational power and also the possibility to be
extended in the future with further features) because full-exploded use of Bayesian concepts
can remove several restrictions of Markov-based designs. For instance, it is not necessary

2 A well-known misuse detector. Available at: http://www.snort.org

3.4 Naive Bayesian Network of the Expert Modules

4. Integration of Misuse and Anomaly Detection
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3.3 Connection Tracking and Payload Analysis Bayesian Experts Knowledge Model Gener-
ation

to establish the first-instance structural learning process used by the packet header analysis
experts since the structure is clear in beforehand.
Moreover, according to (Estevez-Tapiador et al., 2003; Kruegel & Vigna, 2003), the introduction
of an artificial parameter may ease this kind of analysis. Respectively, the Connection Tracking
expert defines an artificial detection parameter, named TCP-h-flags (which is based on an
arithmetical combination of TCP flags) and the Payload Analysis expert uses the symbol and
token (thus, in fact, there are two Payload Analysis experts: one for token analysis and another
for symbol analysis).
Finally, traffic behaviour (and so TCP flags temporal transition patterns) as well as payload
protocol lexical and syntactical patterns may differ substantially depending on the sort of ser-
vice provided from each specific equipment (i.e. from each different IP address and from each
specific TCP destination port). To this end, ESIDE-Depian uses a multi-instance schema, with
several Dynamic Bayesian Networks, one for each combination of TCP destination address
and port. Afterwards, in the exploitation phase, Bayesian inference can be performed from
real-time incoming network packets.
In this case, the a-priori fixed structure suggests the application of the expectation and max-
imization algorithm (Murphy, 2001), in order to calculate not the posterior probability of at-
tack, but the probability which a single packet fits the learned model with.

3.4 Naive Bayesian Network of the Expert Modules
Having different Bayesian modules is a twofold strategy. On the one hand, the more specific
expertise of each module allows them to deliver more accurate verdicts but, on the other hand,
there must be a way to solve possible conflicting decisions. In other words, an unique measure
must emerge from the diverse judgements.
To this end, ESIDE-Depian presents a two-tiered schema where the first layer comprises the
expert modules (TCP-IP, UDP-IP, ICMP-IP, Connection Tracking and Protocol Payload) and
the second layer includes only one class parameter: the most conservative response of the
experts (in order to prioritize the absence of false negatives in front of false positives). Both
layers form, in fact, a naive Bayesian network.
Such a Naive classifier (Castillo et al., 1996) has already been proposed in network intrusion
detection, mostly for anomaly detection (Amor et al., 2004). This approach provides a good
balance between representative power and performance, and also affords interesting flexibil-
ity capabilities which allow, for instance, ESIDE-Depian’s dynamical enabling and disabling
of expert modules. Figure 3 details the individual knowledge models and how do they fit to
conform the general one.

4. Integration of Misuse and Anomaly Detection

The internal design of ESIDE-Depian is principally determined by its dual nature. Being both
a misuse and anomaly detection system requires answering to sometimes clashing needs and
demands. In other words, it must be able to simultaneously offer efficient response against
both well-known and zero-day attacks. The Bayesian network, according to the ability to ex-
trapolate its knowledge and apply it to not-previously seen cases, is the ideal tool for these
zero-day attacks. Still, we have to integrate detection of already registered threads and pro-
vide an efficient methodology to update and to continuously adapt to changes. ESIDE-Depian
achieves this objectives in two ways. First, it incorporates Snort to the training of the Bayesian
network. Second, already in working-time, Snort’s opinion is passed to the experts so they
can take this additional information into account.
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Fig. 3. ESIDE-Depian Final Knowledge Representation Model.

4.1 Snort-driven Automated Learning
The obtaining of the knowledge model in an automated manner can be achieved in an unsu-
pervised or supervised way. In the training phase, Snort provides information regarding the
legitimacy or malice of the network packets. Specifically, Snort’s main decision about a packet
is added to the set of detection parameters, receiving the name of attack variable. In this way,
it is possible to obtain a complete sample of evidences, including, in the formal aspect of the
sample, both protocol fields as well as Snort labelling information.
Therefore, it combines knowledge about normal behaviour and also knowledge about well-
known attacks, or, in other words, information necessary for misuse detection and for
anomaly detection.

4.2 Snort-labelled Network Traffic
Initial designs of ESIDE-Depian considered including Snort’s opinion at the same level as
experts’ verdict in the naive Bayesian network but experiments showed that it biased the
result too much. Therefore, we chose an strategy similar to the one used in the Bayesian
network training (described in the previous section). Hence, already in real time, every packet
gets Snort’s opinion added as the badness variable mentioned before. In this way, experts
know again the decision of Snort in beforehand and can act in consequence according to their
knowledge model. Figure 2 illustrates how Snort is integrated within the different modules
that conform ESIDE-Depian.

5. Evaluation and results

5.1 Header Parameter Analysis

www.intechopen.com



Bayesian Networks for Network Intrusion Detection 237

4.1 Snort-driven Automated Learning

4.2 Snort-labelled Network Traffic

5. Evaluation and results

In order to asses the performance of ESIDE-Depian both as misuse and as anomaly detector,
we have performed different kinds of experiments. Since Snort analyses only superficially
the body of each packet, we have been forced to divide these tests into header-based and
packet-body-based attacks in order to evaluate all of them more efficiently.

5.1 Header Parameter Analysis
Three are the Bayesian experts involved in this series of tests (though this does not mean that
only one expert deals with the analysis; the naive Bayesian network considers all of them
before obtaining the final verdict): TCP-IP, UDP-IP and ICMP-IP experts. The methodology
applied intends to, first, demonstrate that the initial reference knowledge has been acquired,
and second, that this reference knowledge has been superseded and exceed. In other words,
we initially test the misuse detection capability and then, the anomaly detection ability.
The acquisition of the initial reference knowledge is performed already in the training phase.
The BN is fed with a traffic sample basically based on the attack-detection rules battery pro-
vided by Snort. Therefore, the training acquaints the BN with either kind of traffic simul-
taneously, good and bad. Still, due to the disparity in the amount of packets belonging to
one or another (see Table 1), traces containing attacks have to be fed several times (in the so-
called presentation cycles) in order to let the BN learn to evaluate them properly. Table 1)
summarises the results of testing the initial (Snort) reference knowledge acquisition. To this
end, the BN was fed with a new sample traffic merging normal one extracted from a one hour
capture at the University of Deusto and also malicious packets (crafted with the tool PackIt).

Traffic type TCP UDP ICPM

Reference knowledge
699,560/42 5,130/11 1,432/95

good/bad traffic ratio
Presentation cycles required 2943 2 2

Snort’s hits 38 0 450

Analysed packets 100,000 10,000 5,000
Attacks detected by Snort 5 1 600

Attacks detected
5 (100%) 1 (100%) 600 (100%)

by ESIDE-Depian

Table 1. Misuse Detection Tests Analysing Packets Headers.

ESIDE-Depian shows the same performance as Snort in these tree different traffic sorts. The
high number of presentation cycles required by the TCPIP expert to grasp the initial reference
knowledge is due to the very high good/bad traffic ratio, much lower in the cases of UDP
and ICMP. Therefore, we can conclude that gaining the reference knowledge was completed
successfully. Regarding going beyond this reference knowledge (i.e. the ability of ESIDE-
Depian to find zero-day attacks) we have created artificial anomalies along to the proposal of
Lee et al. (2001). In this way, table 2 shows some of the TCP-IP packets that we inserted in the
traffic (crafted to this end again with PackIt).
Snort was not able to detect any of them, whereas ESIDE-Depian achieved a 100% of success.
Table 2 shows 15 packets labelled as potential negatives, this is, packets marked as positive
(i.e., attack) by ESIDE-Depian but not by Snort. All of them correspond to the artificial anoma-
lies we inserted and ESIDE-Depian was able to find the 100% of them. Table 3 shows some of
the modified packets for the UDP-IP traffic tests
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Examples of Anomalies

packit -nnn -s 10.12.206.2

-d 10.10.10.100 -F SFP -D 1023

packit -nnn -s 10.12.206.2

-d 10.10.10.100 -F A -q 1958810375

packit -nnn -s 10.12.206.2

-d 10.10.10.100 -F SAF

Anomaly detection results

Potential false positives (anomalous packets) 15
Anomaly detection rate 100%

Table 2. Anomaly Detection Tests for TCP-IP Traffic.

Examples of Anomalies

packit -t udp -s 127.0.0.1

-d 10.10.10.2 -o 0x10 -n 1

-T ttl -S 13352 -D 21763

packit -t udp -s 127.0.0.1

-d 10.10.10.2 -o 0x10 -n 0

-T ttl -S 13353 -D 21763

packit -t udp -s 127.0.0.1

-d 10.10.10.2 -o 0x50 -n 0

-T ttl -S 13352 -D 21763

Anomaly detection results

Potential false positives (anomalous packets) 2
Anomaly detection rate 100%

Table 3. Anomaly Detection Tests for UDP-IP Traffic.

Again, in UDP-IP traffic Snort did not discover any anomaly, as expected. The 2 false positives
reflected in table 3 belong again to the artificial anomalies fed by us (and crafted with PackIt).
Table tbl:table4 summarises the results obtained with ICMP-IP traffic. Similarly to the previ-
ous cases, Snort failed to detect any of the attacks, whereas the 45 false positives that appear
in table 4 are exactly the anomalies introduced by us in the traffic sample.

5.2 Connection Tracking and Payload Analysis
With the goal of evaluating these analysis capabilities of ESIDE-Depian in mind, we have
followed a different strategy than in the case of header parameters: Snort is mainly focused
on the analysis of the latter and covers the payload inspection by applying a set of regular
expressions that do not provide any useful information to the Bayesian network (basically
because it presents a different morpho-syntactical structure).
Moreover, the dynamic nature of the data these experts focus on, forces this change. There-
fore, we have generated a brand new traffic sample to be used in the training phase. Then,
only for test purposes, we have created yet another different one with some of its packet se-
quences modified by means of the tool NetDude (since PackIt only allows to change packets,
not sequences).
Table 5 summarises the results achieved by ESIDE-Depian for the tests focused on the connec-
tion tracking and payload analysis.

6. Problems and solutions
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5.2 Connection Tracking and Payload Analysis

Examples of Anomalies

packit -i eth0 -t icmp -n 666

-s 3.3.3.3 -d 10.10.10.2

packit -i eth0 -t icmp -K 0

-s 3.3.3.3 -d 10.10.10.2

packit -i eth0 -t icmp -K 17

-C 0 -d 10.10.10.2

Anomaly detection results

Potential false positives (anomalous packets) 45
Anomaly detection rate 100%

Table 4. Anomaly Detection Tests for ICMP-IP Traffic.

Analysis Type Connection Tracking Payload Analysis

Analysed network packets 226,428 2,676
Attacks contained in sample 29 158
ESIDE-Depian hits 29 158

Table 5. Connection Tracking and Payload Analysis Results.

6. Problems and solutions

This section gives account of the main problems that emerged during the design and test
phase. More accurately, they were:

• Integration of Snort: The first difficulty we faced was to find an effective way of inte-
grating Snort in the system.

Our first attempt placed the verdict of Snort at the same level as those of the Bayesian
experts in the Naive classifier. This strategy failed to capture the real possibilities of
Bayesian networks since it simply added the information generated by Snort at the end
of the process, more as a graft than a real integrated part of the model.

The key aspect in this situation was letting the Bayesian network absorb Snort’s knowl-
edge to be able to actually replace it. Therefore, in the next prototype we recast the role
of Snort as a kind of advisor, both in training and in working time.

In this way, the Bayesian experts use Snort’s opinion on the badness of incoming packets
in the learning procedure and afterwards (as described in section 4) and manage to
exceed Snort’s knowledge (Penya & Bringas, 2008).

• Different parameter nature: The next challenge consisted on the different nature of
the parameters that ESIDE-Depian has to control. Whereas TCP, UDP and ICMP are
static and refer exclusively to one packet (more accurately to its header), the connection
tracking and payload analysis experts are dynamic and require the introduction of the
time notion.

In this way, the connection tracking expert checks if packets belong to an organised
sequence of an attack (Estevez-Tapiador et al., 2003), so time is needed to represent
predecessor and successor events. In a similar vein, the payload analysis expert must
model state transitions between symbols and tokens that appear on it.
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Therefore, in the same way that different tests had to be performed, we had to pre-
pare an special traffic sample tailored to the kind of traffic those expert should focus to
inspect

• Disparity between good and bad traffic amount: Another problem to tackle was the
composition of the traffic sample used to train the first group of experts (TCP, UDP,
ICMP).

In order to help the acquisition of the initial reference knowledge in the training phase,
the BN is fed with a traffic sample basically based on the attack-detection rules battery
provided by Snort. Therefore, the training acquaints the BN with either kind of traffic
simultaneously, good and bad.

Nevertheless, due to the disparity in the amount of packets belonging to one or another,
traces containing attacks have to be fed several times (in the so-called presentation cy-
cles) in order to let the BN learn to evaluate them properly.

• Task parallelisation: Bayesian networks require many computational resources.
Hence, several of the tasks to be performed were designed in a parallel way to acceler-
ate it. For instance, the structural learning was devoted concurrently in 60 computers.
In this way, the traffic sample (about 900.000 packets) was divided in blocks of 10.000
of packets that were processed with the PC-Algorithm. In addition, already on real-
time, each expert was placed in a different machine not only to divide the amount of
resources consumed but also to prevent from having a single point of failure.

• False positives and false negatives: Finally, we coped with a usual problem related to
anomaly detection systems: false positives (i.e. packets marked as potentially danger-
ous when they are harmless). In fact, minimising false positives is one of the pending
challenges of this approach (Lundin, 2004).

Nevertheless, the double nature of ESIDE-Depian as anomaly and misuse detector re-
duces the presence of false positives to a minimum. False negatives, on the contrary,
did threaten the system and, in this way, in the experiments accomplished in ESIDE-
Depian, security was prioritized above comfort, so quantitative alarm-thresholds were
set upon the production of the minimum false negatives, in spite of the false positive
rates.

It is possible to find application domains, e.g., anti-virus software, in which false posi-
tive numbers are the target to be optimized, in order not to saturate the final user or the
system administrator. Also in these cases ESIDE-Depian is able to manage the detection
problem, simply by the specific setting up of the mentioned thresholds.

7. Related Work

Different approaches to develop network misuse detectors include expert systems (Alípio
et al., 2003), intent-specification languages (Doyle et al., 2001), intelligent agent systems
(Helmer et al., 2003) or rule-induction systems (Kantzavelou & Katsikas, 1997) (in (Kabiri &
Ghorbani, 2005) the reader can obtain a detailed analysis of related work in this area).
Research in network anomaly detection has applied several well-known Artificial Intelligence
paradigms such as support-vector machines (Mukkamala et al., 2005) or diverse data-mining-
based approaches Lazarevic et al. (2003). Still, there is only one attempt to bring these two
strands of work together.

8. Conclusions
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7. Related Work

More specifically, in Valdes & Skinner (2000), they achieve to combine anomaly and misuse but
its analysis of network packets is too superficial to yield any good results in real life. In par-
ticular, despite the brilliant main contribution about integrating misuse-based and anomaly-
based detection in one inherently unified and compact knowledge representation model, this
work presents several shortcomings that prevent it from being applied in real scenarios: on
the one hand, this approach only considers 7 detection parameters
Popular protocols as UDP connection-less protocol or the very-very problematic ICMP proto-
col are not taken into consideration. On the other hand, Bayesian Networks’ full capabilities
are not really used. Thus, one of the most important topics provided by the Bayesian ap-
proach, the structural learning concept, is not definitively applied. Instead, they propose the
Naive approach, which assumes the (unrealistic) hypothesis that there is no statistical depen-
dence among the collection of detection parameters.
Finally, time notion does not play any role in the analysis model, even under the focus
achieved over the TCP target protocol, which is, of course, connection-oriented and, so,
chronological dependence among events is sure to appear.

8. Conclusions

As the use of Internet grows beyond all boundaries, the number of menaces rises to become
subject of concern and increasing research. Against this, Network Intrusion Detection Systems
(NIDS) monitor local networks to separate legitimate from dangerous behaviours. According
to their capabilities and goals, NIDS are divided into misuse detection systems (which aim
to detect well-known attacks) and anomaly detection systems (which aim to detect zero-day
attacks). So far, no system to our knowledge combines advantages of both without any of
their disadvantages. Moreover, the use of historical data for analysis or sequential adaptation
is usually ignored, missing in this way the possibility of anticipating the behaviour of the
target system.
ESIDE-Depian, a Bayesian-networks-based misuse and anomaly detection system. In another
work, we detailed the composition of the Bayesian network, its training methodology and
showed general performance results. Here we have focused on evaluating the integration
of misuse and anomaly detection. To this end, we have adopted Snort (a well-known mis-
use detector) as misuse detector trainer so the Bayesian Network of five experts is able to
react against both misuse and anomalies. The Bayesian experts are devoted to the analysis
of different network protocol aspects and obtain the common knowledge model by means of
separated Snort-driven automated learning process
Since ESIDE-Depian has passed the experiments brilliantly, it is possible to conclude that
ESIDE-Depian using of Bayesian Networking concepts allows to confirm an excellent basis
for paradigm unifying Network Intrusion Detection, providing not only stable Misuse De-
tection but also effective Anomaly Detection capabilities, with one only flexible knowledge
representation model and a well-proofed inference and adaptation bunch of methods.
On the other hand, the Bayesian approach also enables to implement powerful features over
it, such as Dynamic-Bayesian-Network-based full representation of time, in order to accom-
plish totally-characterised connection tracking and low level chronological event correlation,
or explanation tracking of the inferred cause-effect reasoning processes. Furthermore, con-
trary to other approaches such as Neural Networks, Bayesian networks allow administrative
managing of inner information structures, so specific relationships among packet detection
parameters and final conclusion can be explained, in a white-box manner. Moreover, it is
not only possible to recover reasoning information, but also to act on both Bayesian network
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structures and conditional probability parameters, in order to adjust the whole behaviour of
the Network Intrusion Detection System to special needs or configurations.
Besides, dynamic regulation of knowledge representation model can be accomplished by us-
ing the sensibility analysis proposed by Castillo et al. (1996), so as to avoid denial of service at-
tacks, automatically enabling or disabling expert modules by means of one combined heuristic
measure which considers specific throughputs and representative features. In addition, it is
also possible to perform model optimization, to obtain the minimal set of representative pa-
rameters, and also the minimal set of edges among them, with the subsequent increase of the
general performance.
Moreover, approximate evidence propagation methods can also be applied, in order to im-
prove inference and adaptation time of response. Current expert models only consider exact
inference, but it is possible to find methods which provide fast responses, with only a small
and affordable loss of accuracy.
In addition, Bayesian knowledge representation models present one further interesting capa-
bility in current Intrusion Detection state of art, the possibility to provide an ad-hoc method
for IDS evaluation. Bayesian concept provides simulation of learned knowledge correspond-
ing samples, so it is an ideal environment for artificial anomaly generation.
At last, also unifying of Host and Network Intrusion Detection paradigms can be accom-
plished at low level through the Dynamic Bayesian Network concept. Specifically, both sorts
of event (i.e., basically, operating system syscalls and network packets) can be characterized
in one single representation model, with a dynamic approach that can obtain, for example, the
posterior probability of an exploitation of one specific host service due to one specific network
packet (e.g. an Unix exec syscall from a shellcode inside a packet payload). Besides, not only
inference can be afforded, but even prediction of next event, due
Future work will focus on further research on exploiting the aforementioned omni-directional
inference capability of Bayesian networks to the prediction of the next event, as well as on
comparing ESIDE-Depian to other cutting-edge intrusion detection systems.
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