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1. Introduction

The development of controllers for intelligent agents given a simple task is relatively straight-
forward and even basic techniques can be used to develop such controllers. However, as
agents are given multiple tasks, using basic techniques for developing effective controllers
quickly becomes impractical. Since each task may require distinct state information local to
that task only, the resulting state space for the agent overall is simply too large to effectively
cover. Furthermore, since each task places different demands on the agent, an effective con-
troller must find the correct balance to achieve it’s overall task. While each of these difficulties
presents significant problems individually, their combination can make the development of
agent controllers for these complex tasks impractical.
The potential avenues of investigation for this problem are vast and the literature on the sub-
ject covers the spectrum of algorithms and perspectives. This chapter’s focus is on composite
tasks that are the result of a combination of, in general, Concurrent, Interfering, and Non-
Episodic (CINE) simple, or primitive, tasks. An example of a primitive task is COLLISION-
AVOIDANCE. For our agents, COLLISIONAVOIDANCE is an abstract task that takes two inputs
(relative direction to nearest obstacle and estimated time to contact with that obstacle assum-
ing current speed) and provides two outputs (desired direction and desired speed). As such,
it is simple enough that subdividing it further would not produce coherent subtasks, hence
it is considered primitive. Note, however, that other formulations of COLLISIONAVOIDANCE

that include lower-level information (such as the data from individual sensors or regarding
all obstacles sensed) or actions (such as motor control values for individual components of
the system) could be usefully subdivided into more primitive tasks such as TRACKOBSTACLE

or PANCAMERA. If we combine COLLISIONAVOIDANCE with another simple task such as
GOALSEEK, we arrive at a composite task. It is a composite task because the component tasks
are coherent in and of themselves. Composite tasks composed of CINE primitive tasks have
received comparatively little attention and are, for reasons discussed below, potentially one
of the more difficult areas of focus. In contrast, many approaches focus on complex tasks that
are composed of a series of sequential primitive tasks.
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The challenge of correctly balancing CINE tasks, in addition to the complexity of the state
and action spaces, must be addressed for the development of effective controllers for com-
binations of CINE tasks to be practical. Due to the variety of challenges, it is possible that
a number of techniques must be combined to find an acceptable solution. As the complex-
ity of the combined state and action space is a major challenge, it makes sense to consider
state and/or action abstraction. For example, to coordinate the combination of COLLISION-
AVOIDANCE and GOALSEEK it is important to know if a collision is imminent. If it is, the
agent should probably try to avoid it.1 If it isn’t, the agent should head for the goal. If the
answer is somewhere in between, the agent might give similar importance to both COLLI-
SIONAVOIDANCE and GOALSEEK. Further, to determine if a collision is likely to occur soon,
it isn’t necessary to know whether the nearest obstacle is on the right or the left, only whether
it is in front of the agent or off to either side. So state abstraction (in the form of ignoring
right/left information) could reduce the amount of information used to decide the relative
importance of COLLISIONAVOIDANCE and GOALSEEK. However, even if not all information
is needed for all decisions, information cannot be simply discarded.2 To continue the example,
if the decision is that COLLISIONAVOIDANCE is at least somewhat important on this timestep,
the agent will need to know which way to turn to avoid the obstacle.
The preceding example contained an explicit instance of state abstraction (using only the mag-
nitude of the angle to the obstacle while ignoring its sign) but also an implicit instance of action
abstraction. Note that the decision as to which way to turn was abstracted into determining
how imminent a collision appears, then deciding how much importance to assign to each of
the subtasks, then determining which way to turn. Such action abstraction is not necessary,
however. In contrast, it would be possible to directly calculate turning angle as a function of
obstacle and goal directions and distances.
Temporal abstraction, in the form of creating sequences of tasks, is also used in some systems
to deal with composite tasks (Rohanimanesh & Mahadevan, 2002). However, such temporal
abstraction will not work when the tasks are interfering as in our present research.
One approach that promotes the use of state and action abstraction while still allowing access
to the unabstracted states and actions is the use of a hierarchical controller. A hierarchical
controller leverages the hierarchical nature of the composite task by using smaller controllers
responsible for each primitive task in the lowest level of the hierarchical controller and meta-
controllers in the higher levels of the hierarchical controller to coordinate the lower-level con-
trollers. Since low-level controllers are only responsible for a single primitive task, they do
not need access to the full state space of the composite task, thus avoiding the combinatorial
complexity of the composite task’s state space. Furthermore, high-level meta-controllers are
able to use state and action abstraction to simplify the state space since they merely coordinate
the lower-level controllers that produce control actions instead of producing control actions
themselves.

2. Adaptive Fuzzy Behavior Hierarchies

An example of a hierarchical approach to agent control, and the one used for the work de-
scribed here, is an adaptive fuzzy behavior hierarchy (Tunstel, 2001). The hierarchy is orga-

1 Only “probably” because if the goal is extremely close, the agent may prefer to reach the goal rather
than avoid the obstacle.

2 Some authors do deal with cases in which some variables are irrelevant and may be simply ignored by
the controller with no loss of performance. We are assuming that all variables are relevant at least on
some timesteps.
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Fig. 1. Primitive behaviors (denoted βi) are organized into a hierarchy and adaptively
weighted by composite behaviors (denoted Bm) as described by Tunstel (2001) and redrawn
here. The half-filled circles denote the weights and threshold values used to modulate behav-
iors.

nized using two types of behaviors. Behaviors responsible for accomplishing simple, primi-
tive tasks are called primitive behaviors (see Figure 1). Primitive behaviors reside at the lowest
level of the hierarchy and are responsible for producing low-level control actions for the agent.
Since each primitive behavior is responsible for a single primitive task, inputs to the behavior
consist of only state information relevant to the associated primitive task.
Following the formulation of Tunstel (2001), let X and U be, respectively, the sets of all possible
input and output values, or universes of discourse, for a primitive behavior with a ruleset of
size M. Individual rules within the ruleset have the following form:

IF x is Ãi THEN u is B̃i (1)

where x represents the linguistic variables describing primitive task state information, such
as direction or distance, and u represents linguistic variables describing motor command ac-
tions, such as steering direction and speed, Ãi and B̃i represent the fuzzy linguistic values
corresponding to the variables x and u. The antecedent proposition “x is Ãi” can be replaced
with a compound antecedent using a conjunction or disjunction of propositions. The conse-
quent “u is B̃i” could also be replaced with a compound consequent. An an example of a
low-level rule in a primitive behavior responsible for steering towards a goal could be:

IF goalDir is LEFT THEN steerDir is LEFT (2)

The output fuzzy set of each primitive behavior can be combined in a similar manner to
produce a single output. However, since primitive behaviors often have conflicting goals,
their actions often also conflict. A method of assigning different activation levels to different
primitive behaviors could address these conflicts and allow an agent to accomplish its over-
all composite task. In an adaptive fuzzy behavior hierarchy, this is accomplished by means
of behavior modulation in which the activation levels of primitive behaviors are adjusted, or
adapted, based on the current overall state of the agent. These activation levels are referred
to as degrees of applicability (DOA) and are assigned to primitive behaviors by a high-level
composite behavior. Composite behaviors are only responsible for modulating other behaviors,
either primitive or composite, and do not produce low-level control commands. For example,
a composite behavior that is responsible for modulating a COLLISIONAVOIDANCE primitive
behavior and a GOALSEEK primitive behavior could determine that since a collision is not im-
minent, the GOALSEEK behavior is more applicable and should have a HIGH activation, while
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the COLLISIONAVOIDANCE behavior should have a LOW activation. Composite behaviors are
also implemented using fuzzy rulesets, but, since they produce outputs specifying activation
levels and use different output fuzzy linguistic variables and values, their consequents differ
from those found in primitive behaviors. Fuzzy rules within a composite behavior have the
basic form:

IF x is Ãi THEN α is D̃i (3)

where Ãi is defined as in Equation 1, α is the scalar activation level of a given behavior, and
D̃i represents the fuzzy linguistic values (e.g. LOW, MEDIUM, HIGH) corresponding to the ac-
tivation levels which are used to modulate a behavior. If a behavior is not explicitly given
an activation level, it is automatically given a default activation of 0 and does not contribute
to the overall output of the controller. Furthermore, threshold values can be used to provide
cutoff points for a modulated behavior’s activation (Tunstel, 1999). Just as with primitive be-
haviors, the output of a composite behavior is a fuzzy set. However, when defuzzified, the
crisp values provide the current activation levels of lower-level behaviors, and not motor con-
trol commands. Using fuzzy rulesets to produce activation levels results in smooth transitions
between different sets of activation levels in response to the changing state of the agent.
The activation level αp of a modulated behavior p is used to calculate the weighted contribu-
tion of the behavior to the overall controller’s output. The output of each primitive behavior
can now be combined using their respective activation levels to weight their overall contribu-
tion to the action generated by the controller. The output of the entire behavior hierarchy is
calculated as follows:

β̃H =

⊎

p∈P

αp · β̃p (4)

where β̃H is the output of the entire behavior hierarchy, P is the set of all primitive behaviors,
β̃p is the output of the behavior p, and

⊎
is the arithmetic sum of the fuzzy sets over all the

primitive behaviors. The fuzzy output values are then defuzzified using the discrete form of
Center-of-Sums defuzzification (Driankov et al., 1996).
Since composite behaviors only modulate lower-level behaviors using state information, com-
posite behaviors do not require lower-level behaviors to provide any information to aid in the
modulation process. This is in contrast to other behavior coordination mechanisms which, for
example, may require low-level behaviors to indicate the utility of a specific action (Pirjanian
& Matarić, 2001). The only restriction that an adaptive fuzzy behavior hierarchy places on
modulated behaviors is that primitive behaviors produce a fuzzy set as output since fuzzy
inferencing is used to combine their outputs into a single action.
It is important to note that since a composite behavior does not produce low-level control
actions, it may not need the full joint state space of the composite task to provide effective
behavior modulation. For example, it is possible that the direction of the closest collision is ir-
relevant when determining the modulation for a COLLISIONAVOIDANCE primitive behavior.
It may be that only the estimated time until the collision is important. As a result, it may be
possible to reduce the state information used by the modulation process in a composite be-
havior that provides comparable performance. A reduced state set such as this would provide
significant benefits not only in reducing the complexity of the composite behavior’s ruleset,
but also in the effort required to develop the ruleset itself.
Although there are a number of ways to reduce the agent’s state space (de Oliveira et al., 2003;
Guyon & Elisseeff, 2003; Guyon et al., 2006; Raymer et al., 2000; Yang & Honavar, 1998), in the
work presented here we use the approach where state information is converted into a more
abstract form. This approach can result in either (1) fewer state variables or (2) no change in
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Fig. 2. The behavior hierarchies for the CA-GS and CA-GS-RA single-agent composite tasks
are shown.

the number of state variables but simpler extracted variable sets. For example, a composite
behavior may not need to know the exact relative direction to an object and only requires the
magnitude of the direction for effective control. In this example, the original direction state
variable is extracted to a more simple representation where both SMALL_LEFT and SMALL_-

RIGHT are abstracted to the same SMALL value. Since primitive tasks are, by definition, simple
and straightforward, one can easily determine abstractions that may be beneficial
Although adaptive fuzzy behavior hierarchies have been shown to provide effective control,
their implementation, as described by Tunstel, limits their application to two-level hierarchies.
We have addressed this limitation by extending the architecture to properly function with
hierarchies of arbitrary size (Eskridge & Hougen, 2009).

3. Problem Domains

For this work, a number of autonomous agent navigation problem domains were used. In
each domain, an agent was given a complex task composed of N primitive tasks. In general,
the primitive tasks used were active concurrently, interfered with one another, and were non-
episodic (CINE). The only exception was the GOALSEEK task which terminated when an agent
reached the goal location.
The composition of these N primitive tasks forms a composite task for which the agent should
take an action at each timestep that maximizes the summed expected reward of each primitive
task. An important aspect of this combination of primitive tasks is that an action that max-
imizes the reward for one primitive task could result in a penalty for another primitive task
and, therefore, cause interference between the primitive tasks. While each primitive task had
a (relatively) small state space, the state space for the composite task was the cross product
of the state space for each primitive task: S = S1 × S2 × . . . × SN . When this combined state
space, referred to as the joint state space, was combined with the low-level action space, the
resulting complexity made the traditional development of an effective controller impractical
in some instances.

3.1 Single Agent Problem Domains

In the first single-agent composite task, an agent navigated towards a goal location while
avoiding any obstacles in its path. This composite task, denoted CA-GS, was the combina-
tion of the COLLISIONAVOIDANCE and GOALSEEK primitive tasks. In the fuzzy behavior
hierarchy for the CA-GS composite task, primitive behaviors were created at the lowest level
for the COLLISIONAVOIDANCE and GOALSEEK primitive tasks (see Figure 2(a)). A composite
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Fig. 3. The FLOCKING composite behavior composes the ALIGNMENT, COHESION, and SEPA-
RATION primitive behaviors by using weights, denoted as half-filled circles.

behavior for the CA-GS composite task was then created at the level above the primitive be-
haviors and was responsible for weighting the primitive behaviors properly, given the current
state of the agent with respect to the composite task as a whole.
In the second single-agent composite task, a third primitive task was added to the previous
two. In this new primitive task, denoted RUNAWAY, the agent must avoid approaching too
close to “hazardous” objects in the environment. The hazardous objects were not physical
objects like obstacles with which the agent could collide, but instead represented areas that
could be dangerous to the agent like areas of high-traffic or with difficult terrain. In COLLI-
SIONAVOIDANCE, a penalty was only assessed if the agent actually collided with an obstacle.
However, in RUNAWAY, an agent was penalized for simply being near hazards. The exact
value of the penalty was dependent on the the distance to and strength of each hazard in
the environment (a higher strength indicated a greater hazard). The new composite task was
denoted CA-GS-RA. The fuzzy behavior hierarchy for the CA-GS-RA composite task was
similar to that of the CA-GS hierarchy with the addition of the RUNAWAY primitive behavior
(see Figure 2(b)).

3.2 Multi-Agent Problem Domains

In the first multi-agent composite task, a team of homogeneous agents must move together as
a single unit, or flock, without explicit communication. This composite task, denoted FLOCK-
ING, approximated the movement of flocks of birds or schools of fish (Reynolds, 1987; 1999)
and was a combination of the ALIGNMENT, COHESION, and SEPARATION primitive tasks. In
the ALIGNMENT primitive task, the agents were given the task of steering in the same direc-
tion and at the same speed as the rest of the team. In the COHESION primitive task, the agents
were given the task of steering towards the other agents in the team in an effort to remain
close to the team. Lastly, in the SEPARATION primitive task, the agents were given the task of
steering away from other agents on the team which were “too close” in an effort to maintain
a safe, minimum separation and prevent crowding. Agents relied only on the state informa-
tion provided by sensors and did not communicate. Note that the goals of the ALIGNMENT

and SEPARATION primitive tasks are diametrically opposed. Therefore, for FLOCKING to be
successful, a policy that was able to effectively balance the two was necessary.
In the fuzzy behavior hierarchy for the FLOCKING composite task, primitive behaviors were
created at the lowest level for the ALIGNMENT, COHESION, and SEPARATION primitive tasks
(see Figure 3). A composite behavior for the FLOCKING composite task was then created
at the level above the primitive behaviors and was responsible for weighting ALIGNMENT,
COHESION, and SEPARATION properly, given the current state of the composite task.
In the next multi-agent composite task, we added the primitive task of COLLISIONAVOID-
ANCE to the FLOCKING composite task. In this task, each agent was tasked with avoiding
collisions with other agents and with obstacles in the environment in addition to performing

ALIGNMENT COHESION SEPARATION COLLISION
AVOIDANCE

FLOCKING-CA

ALIGNMENT COHESION

FLOCKING

SEPARATION COLLISION
AVOIDANCE

FLOCKING-CA
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Alignment Cohesion

Flocking
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ALIGNMENT COHESION SEPARATION COLLISION
AVOIDANCE

FLOCKING-CA

(a) 2-level hierarchy

ALIGNMENT COHESION

FLOCKING

SEPARATION COLLISION
AVOIDANCE

FLOCKING-CA

(b) 3-level hierarchy

Fig. 4. The two alternatives for implementing the FLOCKING-CA composite behavior are
shown. In the first, the FLOCKING-CA composite behavior composes the ALIGNMENT,
COHESION, SEPARATION, and COLLISIONAVOIDANCE primitive behaviors. In the second,
FLOCKING-CA composes the FLOCKING composite behavior with the COLLISIONAVOID-
ANCE primitive behavior.

FLOCKING. The COLLISIONAVOIDANCE primitive task did not differentiate between colli-
sions with other agents or obstacles. This new composite task, denoted FLOCKING-CA, pre-
sented the option of adding a new composite behavior, and, therefore, another level to the
hierarchy (see Figure 4). Since the COLLISIONAVOIDANCE behavior was ignorant of the con-
cept of a team and teammates, an argument can be made that it should be considered sepa-
rately from the FLOCKING primitive behaviors. The use of an additional composite behavior
at a higher level in the hierarchy not only simplified the action space of the FLOCKING-CA
composite task, but it also had the potential to simplify the state space if the full joint state
space of the composite task was not necessary for effective control. Furthermore, this hier-
archical decomposition enabled existing policies for the FLOCKING task to be reused for the
FLOCKING-CA task.
To further increase the complexity, the GOALSEEK primitive task was added to the previous
composite task to create the FLOCKING-CA-GS composite task. While the COLLISIONAVOID-
ANCE primitive task could have actually assisted the task of FLOCKING by providing another
means of avoiding collisions between members of the team in addition to the SEPARATION

task, the addition of the GOALSEEK complicated the FLOCKING task. As with the FLOCKING-
CA task, the clear separation between the FLOCKING composite task and the COLLISION-
AVOIDANCE and GOALSEEK primitive tasks offered the potential for creating a separate com-
posite behavior for coordinating the respective behaviors.
In the last multi-agent composite task, the RUNAWAY primitive task was added to the
FLOCKING-CA-GS composite task to create the FLOCKING-CA-GS-RA composite task. As
with the previous two composite tasks, a separate composite behavior which coordinated the
FLOCKING composite task and the COLLISIONAVOIDANCE, GOALSEEK, and RUNAWAY prim-
itive behaviors was possible. While the same potential benefits existed, the large number of
primitive tasks which must be coordinated had the potential to exaggerate the results. As is
described in Section 6, it was at this point that the complexity of the composite task’s joint
state space became too large for traditional methods of developing effective controllers to be
practical and alternative methods were required. The use of this composite task represented
the upper limit of complexity used in this work.
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(a) 2-level hierarchy

ALIGNMENT COHESION

FLOCKING

SEPARATION COLLISION
AVOIDANCE

FLOCKING-CA-GS

GOALSEEK

(b) 3-level hierarchy reusing one composite behavior
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SEPARATION COLLISION
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GOALSEEK
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(c) 3-level hierarchy reusing two composite behaviors

Fig. 5. Three alternatives for implementing the FLOCKING-CA-GS composite behavior are
shown. Each is similar to the corresponding hierarchy for the FLOCKING-CA composite task
with the addition of the GOALSEEK primitive behavior

4. Development of Controllers

A standard approach to such complex tasks is to combine primitive tasks into a single com-
posite task. A policy is then developed for the entire composite task, effectively developing
a single policy responsible for addressing each primitive task and the coordination between
them (see Figure 7(a)). The problem with this monolithic approach is that development of
even the simplest composite task can be impractical due to the curse of dimensionality.

4.1 Modular Reinforcement Learning

Humphrys (1996) and Karlsson (1997) independently describe a reinforcement learning algo-
rithm that is appropriate for the CINE types of problems under study here. In this algorithm,
commonly referred to as modular reinforcement learning (Bhat et al., 2006; Sprague & Ballard,
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(a) 2-level hierarchy
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(b) 3-level hierarchy reusing one composite behavior
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(c) 3-level hierarchy reusing two composite behaviors

Fig. 6. Three alternatives for implementing the FLOCKING-CA-GS-RA composite behavior
are shown. Each is similar to the corresponding hierarchy for the FLOCKING-CA-GS compos-
ite task with the addition of the RUNAWAY primitive behavior

2003), a policy for each active primitive task is learned simultaneously using the state informa-
tion and rewards local only to the task (see Figure 7(b)). At each time step, the policy for each
subtask provides the action selection mechanism with a utility value for each possible action.
This utility value is calculated using the value of taking a particular action from a given state,
referred to as a Q-value, and is often simply the Q-value itself. These utilities are then used
by the action selection mechanism to choose the action that the agent will take. The approach
used in this work to choose the action, called the “greatest mass,” simply chooses the action
with the highest utility, or sum of Q-values, across all the primitive task policies (Karlsson,
1997).
Q-learning should not be used in learning the primitive task policies since it is off-policy and
assumes the optimal policy will be followed (Watkins & Dayan, 1992). One cannot assume
that the optimal policy will be followed for modular reinforcement learning since primitive
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(a) Monolithic Reinforcement Learning
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(c) Composite Reinforcement Learning

Fig. 7. A comparison of the different algorithms discussed in this work is shown using the
COLLISIONAVOIDANCE-GOALSEEK composite task. The shaded tasks are where policy learn-
ing occurs in each algorithm. The half-filled circles denote the weights used to compose ac-
tions from primitive task policies for composite reinforcement learning.

task policies must share control of the agent (Russell & Zimdars, 2003; Sprague & Ballard,
2003). As a result, an on-policy learning method, such as the Sarsa algorithm, should be
used (Rummery & Niranjan, 1994).

4.2 Composite Reinforcement Learning

As will be discussed in Section 6.4, experiments demonstrate that modular reinforcement
learning does not perform well in the CINE tasks under study in this chapter. In light of
this result, we introduce a modified reinforcement learning approach called composite rein-
forcement learning (see Figure 7(c)) which can be used to learn effective control policies for
composite tasks built using CINE primitive tasks. Composite reinforcement learning lever-
ages the architecture of the adaptive fuzzy behavior hierarchy to significantly improve the
rate at which effective control policies are learned. Unlike modular reinforcement learning,
composite reinforcement learning does not attempt to learn policies for the primitive tasks
simultaneously. Instead, composite reinforcement learning learns an effective control policy
for a given composite behavior only and reuses existing implementations of lower-level be-
haviors. These reused lower-level behaviors are viewed as black boxes and are modulated
by the policy being learned. Therefore, instead of learning low-level motor control actions,
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composite reinforcement learning learns high-level modulation (i.e., weighting) actions on
the lower-level behaviors. The reinforcement learning algorithm itself is largely unmodified
except that the concept of an action has changed. The policy’s actions are now weighting ac-
tions and after the policy’s action has been taken, the lower-level behaviors are executed and
the overall action of the agent is computed. The composite task policy being learned then
determines the total reward and updates the relevant Q-value.
Note that the Q-values used by the learned policy are associated only with the modulation
actions and not with the actions taken by the lower-level behaviors. While this means that the
maximum performance of the learned policy is dependent on the performance of the lower-
level behaviors in their associated tasks, in practice this appears to not present problems (see
Section 6) and offers many benefits over other approaches, such as modular reinforcement
learning.
One of the most significant benefits is the abstraction of the action space into high-level “meta-
actions.” As a result, the reinforcement learner is not required to learn the entire composite
task from scratch. Rather, it only needs to learn how to best coordinate lower-level behaviors
to accomplish the composite task. In a related benefit, existing behaviors can potentially be
reused without modification by the learned policy and without specific requirements on their
implementation method. Composite reinforcement learning does not require reused behav-
iors provide any information to aid in the learning or control process (e.g., Q or utility values).
As a result, individual behaviors can be developed in isolation, simplifying the development
process, using the method most appropriate for the task.
Furthermore, since the action space has been abstracted away from low-level motor control
actions, it may be possible to aggressively abstract the agent’s state for use in the composite
behavior without the corresponding performance penalties commonly associated with per-
ceptual aliasing (Whitehead, 1992). This is especially significant in light of our interest in di-
rectly comparing the effects of state and action abstraction on a controller’s performance and
learning rate. Note that this abstraction of the state only occurs in the composite behaviors;
primitive behaviors still access the unabstracted state associated with the relevant primitive
task to produce control actions.
While the idea of abstracting the action space into meta-actions is not novel and many hi-
erarchical reinforcement learning approaches use it extensively (Dietterich, 2000; Konidaris
& Barto, 2007; Rohanimanesh et al., 2004), our formulation of an action is novel. Since most
approaches focus on episodic and non-interfering tasks, meta-actions in these approaches rep-
resent temporally extended sequences of actions. When a meta-action is executed, the meta-
action assumes control of the agent either for the entire sequence of actions or until an event
causes the high-level policy to re-examine the agent’s state. In contrast, the meta-actions used
by composite reinforcement learning are taken every timestep and represent the coordination
of lower-level behaviors for that timestep only. In general, no one behavior is given complete
control of the agent’s actions.

5. Experiments

To evaluate the effects of state and action abstraction on the process of developing controllers
for composite tasks, a series of experiments were performed in which controllers were auto-
matically developed for each primitive and composite task using reinforcement learning and
grammatical evolution (see Section 3). Experimental runs were evaluated using two different
metrics. The first metric used was the best generalized performance of the agent controllers.
This generalized performance was determined by executing agent controllers in environments
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that were different than the ones used in their development. The controller’s performance was
the mean undiscounted, total reward of the agent in all the environments. The second metric
used was the computational effort used to develop the controllers and used the number of
updates to the Q-values as the measure.

5.1 Evaluation Environments

For each composite task, forty environments were randomly generated. Agents were given
random positions and orientations within a specified region of the environment. If a goal
location was required, it was randomly placed within a specified distance interval from the
agent(s). If obstacles were required, a random number of obstacles were generated and given
random positions in an area surrounding the agent(s) and goal location. The same procedure
was followed for hazardous objects, if required. These forty environments were organized
into ten folds of four environments each for use in cross-validation (Cohen, 1995). Eight folds
were used as a training set, one fold was used as a validation set, and a final fold was used as
a testing set. Both validation and testing sets were used to evaluate the generalizability of the
learned controller.
Each experiment consisted for forty individual runs initialized with a different random seed.
Four experimental runs for each of the ten folds were performed. The same set of environ-
ments was shared between all experiments for a given primitive or composite task, while
folds had different sets of training, validation, and testing environments. For example, all
experiments using the two-dimensional CA-GS composite task shared the same set of envi-
ronments, regardless of how the controller was developed or the architecture it used.
Agents were given a maximum of 1,500 time steps in each environment which constituted a
single training episode. This was ample time for even the most risk-averse agent(s) to reach
the goal location, if applicable, or to gain sufficient experience in the environment. While most
of the primitive tasks used are non-episodic (the exception being the GOALSEEK primitive
task), training was broken into episodes as a consequence of the nature of the evaluation
environments and the primitive tasks themselves. Since the environments were unbounded,
it was possible that in exploring the state space, agents could wander away from the finite
number of obstacles or the other agents on the team and never have a realistic opportunity to
return to the more “interesting” states of the environment. Furthermore, since much of this
work is intended to operate on real robots, agent collisions warranted early termination of
a training episode. Training episodes also ended early when an agent or the team of agents
reached the goal location since the GOALSEEK task is inherently episodic.

5.2 State Space Abstraction

Since it is possible that composite behaviors in fuzzy behavior hierarchies do not require the
full state space for effective coordination of lower-level behaviors, four different levels of ab-
straction of the agent’s state space were used when learning composite behaviors. These were
used to evaluate how abstractions affected both the rate at which effective composite behav-
iors were learned and their quality. Table 1 details the effects of each abstraction level on the
state information for a composite behavior using the GOALSEEK primitive task.

Full This state space represents the original, joint state space of all the primitive tasks used in
the composite task without any abstraction and acts as a baseline for comparison.

Large In this state space, state information describing directions, such as SMALL_LEFT or
SMALL_RIGHT, are abstracted away into variables which denote the absolute value
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Abstraction Level State Information States Total States

Full

Goal arrival time 5

175Goal direction Θ 7

Goal direction Φ 5

Large

Goal arrival time 5

125Goal direction |Θ| 5

Goal direction |Φ| 5

Small Goal seek priority 5 5

Table 1. The different state abstractions used in the development of a composite behavior
using the GOALSEEK primitive task are shown.

of the angle, such as SMALL. State information not describing a direction remains un-
changed.

Small In this state space, state information is abstracted into a single dynamic priority which
is calculated using all the relevant state information local to each primitive task. This
dynamic priority represented the task’s determination of its applicability to the agent’s
current state. For example, using this state space, the CA-GS-RA composite behavior
would only use dynamic priorities for the primitive behaviors COLLISIONAVOIDANCE,
GOALSEEK, and RUNAWAY to determine how to weight its sub-behaviors. While this
level of abstraction may appear to be too extreme, we have previously shown that rule-
sets using dynamic priorities can be developed which have similar performance to those
using the Full state space (Eskridge & Hougen, 2006).

Minimal In this state space, the dynamic priorities from the Small state space were again
used. However, instead of using the dynamic priorities for every primitive behavior,
only the priorities of behaviors directly weighted by a composite behavior were used.
For example, the FLOCKING-CA composite behavior would only use the dynamic pri-
orities of the FLOCKING and COLLISIONAVOIDANCE sub-behaviors.

Note that these abstractions were only used by composite behaviors. Since primitive behav-
iors were responsible for producing low-level control actions, they still required the unab-
stracted state space relevant to their primitive task. Furthermore, since monolithic controllers
were also responsible for producing low-level control actions, they required the unabstracted
joint state space of the overall composite task.

5.3 Reward Functions

The reward functions for each primitive task as used in the development of composite tasks
are shown in Table 2. Except for the terminal events of a collision or reaching the goal location,
each reward was given per timestep. The reward values were developed with the maximum
number of timesteps in mind and ensured that the total undiscounted reward did not create
a bias towards controllers which “minimized the pain” by causing a collision as quickly as
possible. While some portions of the reward function were not required (e.g., the goal dis-
tance penalty), they make the reward function more “dense” and act as progress estimators
by allowing learning to make the most of each experience (Matarić, 1997; Smart & Kaelbling,
2002). While the addition of these unrequired components may have biased policies away
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Primitive Task Description Value

COLLISIONAVOIDANCE Collision event -150

GOALSEEK
Goal reached event 150

Goal distance penalty −0.03 × Dist

RUNAWAY RunAway strength penalty −0.06 × Str

ALIGNMENT Velocity heading difference penalty −0.02 × ∆Dir

COHESION Position error penalty −0.04 × Dist

SEPARATION Separation strength penalty −0.02 × Str

Table 2. The reward functions used in developing controllers for composite tasks for each
primitive task are shown. Note that while most rewards were given at each timestep, rewards
for the terminal events of a collision and reaching the goal location are one-time rewards.

from the best solution, the benefit of allowing learning to make the most of each learning ex-
perience outweighed the potential problems in complex tasks such as the ones discussed in
this chapter.
For the FLOCKING composite task, a survival reward of 0.09 was given for each timestep in
which the agents were active, in addition to the rewards given by the primitive tasks them-
selves. This served to explicitly reward the agents for avoiding collisions with other agents
and continuing to flock. In single agent environments, the agent merely needed to reach the
goal for the reward to be given. In multi-agent environments, the reward for reaching the goal
location was only awarded if the mean position of the team was within a specified distance to
the goal. This served to explicitly reward agents that reached the goal with the other agents
in the team and not agents that left their team to reach the goal faster.
Due to the complexity of the tasks and the randomness of the environments, an optimal per-
formance value for each task would be prohibitive to calculate. As a result, the performance
of learned controllers cannot be compared to the performance of an optimal controller. How-
ever, based on an understanding of the experimental configuration and experience with the
tasks themselves, we can identify the approximate mean performance values one would ex-
pect from an effective controller.

5.4 Reinforcement Learning Configuration

The Sarsa reinforcement learning algorithm was used to learn policies for primitive and com-
posite tasks. To speed learning, the replacing eligibility traces version of Sarsa, referred to
as Sarsa(λ), was used (Sutton & Barto, 1998). The parameters used are shown in Table 3.
Since the state-action space for many of the experiments performed precluded tabular storage
of the state-action values, or Q-values, neural networks were used to approximate Q-values.
The neural networks consisted of a single hidden layer in which the number of nodes was
a function of the number of input nodes. Unlike previous work, we found that a relatively
large number of hidden nodes (1.5 times the number of input nodes) were required for poli-
cies operating in our environments (Rummery & Niranjan, 1994). Previous work in the field
has concluded that using a single network to approximate all the Q-values can result in unin-
tentional modifications of the Q-values for actions other than the one chosen by the learning
algorithm (Lin, 1993; Rummery & Niranjan, 1994). As a result, a separate network for each
action was used in an effort to isolate the Q-values of each action.
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Parameter Value

Learning rate (α) 0.01

Discount factor (γ) 0.99

TD decay (λ) 0.25

Exploration (ǫ) 0.01

NN weight range [−0.25 : 0.25]

NN momentum 0.01

NN hidden nodes 1.5 × Ninput

Table 3. Reinforcement learning parameters

The effects of a multi-agent environment further complicates learning as it makes the environ-
ment non-stationary (Claus & Boutilier, 1998). To simplify the process as much as possible,
we chose to use the naïve approach in which all agents used and updated the same set of
Q-values, or, more specifically, the same set of neural networks approximating Q-values. Ex-
periments have shown that this form of cooperation does not impede learning and can even
improve the learning rate (Crites & Barto, 1998; Tan, 1993).
While there are techniques for using fuzzy logic with reinforcement learning (Berenji, 1992;
Er & Zhou, 2006; Glorennec & Jouffe, 1997; Jouffe, 1998), experience has shown that such
modifications can increase the time needed to learn effective policies. Since fuzzy logic is not
required to implement the behaviors (Tunstel, 2001), it was not used for behaviors developed
using reinforcement learning. However, primitive behaviors that were developed manually
and reused for development of composite behaviors did use fuzzy logic. While there are
plans to use fuzzy logic with reinforcement learning (see Section 7), we were able to gather
conclusive results without its use.

6. Results and Analysis

Figures showing the results of experimental runs reflect the mean performance of controllers
on the validation set of environments. As stated in Section 5.1, environments were organized
into ten folds for use with cross-validation. Each experiment consisted of four runs for each
of the ten fold combinations for a total of 40 runs.

6.1 Developing Single-Agent, Composite Task Controllers

Figures 8 and 9 depict the results of learning for the CA-GS and CA-GS-RA composite tasks,
respectively. For controllers developed using the Full and Large abstraction levels, composite
reinforcement learning was able to achieve high performance within just a few updates for
both tasks. However, the Small abstraction level was unable to converge to an effective pol-
icy in either task, although effective policies were learned. While monolithic reinforcement
learning was able to learn an effective policy, results of a randomized two-way ANOVA test
demonstrates that there was a statistically significantly difference between the rate at which
effective controllers were learned between monolithic and composite reinforcement learning
at the 95% confidence level. Modular reinforcement learning was unable to converge to an ef-
fective policy. It was able to achieve moderate success early and learned a number of effective
policies, but was unable to converge to one.

www.intechopen.com



Autonomous Agents16

-50

 0

 50

 100

 150

 0  25  50  75

M
ea

n 
R

ew
ar

d 
pe

r E
pi

so
de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full)
CompositeRL (Large)
CompositeRL (Small)

Fig. 8. Reinforcement learning results on the validation set environments for the CA-GS com-
posite task are shown.
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Fig. 9. Reinforcement learning results on the validation set environments for the CA-GS-RA
composite task are shown.

6.2 Developing Multi-Agent, Composite Task Controllers

Figure 10 depicts the results of using reinforcement learning to learn a policy for the FLOCK-
ING composite task. Controllers developed using the adaptive fuzzy behavior hierarchy
and composite reinforcement learning had statistically significantly higher performance than
those developed using either monolithic or modular reinforcement learning at the 95% con-
fidence level. Furthermore, controllers using the Small abstraction level did not exhibit the
poor performance previously seen in the single agent tasks. In fact, controllers using the Small

abstraction level had statistically significantly better performance than all other controllers in
the testing set environments at the 99% confidence level as determined by the paired Student’s
t-test using the Bonferroni adjustment.
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Fig. 10. Reinforcement learning results on the validation set environments for the FLOCKING

composite task are shown.
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Fig. 11. Reinforcement learning results on the validation set environments for the FLOCKING-
CA composite task are shown. Due to storage constraints, results for monolithic reinforce-
ment learning experimental runs used fewer checkpoints than other experimental runs.

Figure 11 depicts the results of using reinforcement learning to learn a policy for the
FLOCKING-CA composite task. Again, controllers that used the adaptive fuzzy behavior
hierarchy were learned faster than those that didn’t use the hierarchy and had higher per-
formance. Note, that these controllers used the three-level hierarchy depicted in Figure 5(c).
Controllers developed using modular reinforcement learning performed statistically signifi-
cantly better than those developed using monolithic reinforcement learning at the 99% con-
fidence level, but were unable to generalize to the full range of environments present in the
validation or testing sets.
Not shown in the figure are the results for controllers using a two-level adaptive fuzzy behav-
ior hierarchy. Even with the use of the adaptive fuzzy behavior hierarchy, the significantly
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Fig. 12. Reinforcement learning results on the validation set environments for the FLOCKING-
CA-GS composite task in two dimensions are shown. The “3” denotes controllers using a
three-level behavior hierarchy. The results of controllers using two-level hierarchies are not
shown to improve clarity.

larger action space of the 2-level hierarchy negated any benefits that the hierarchy offered.
While the hierarchy and the reuse of existing primitive behaviors meant that it did not need
to learn the low-level actions needed to accomplish FLOCKING-CA, the size of the state-action
space was simply too large to quickly find an effective policy. Furthermore, the increased
complexity resulted in almost a four-fold increase in the wall-clock time required to learn and
update Q-values for the two-level hierarchies over that of the three-level hierarchies.
Figure 12 depicts the results of using reinforcement learning to learn a policy for the
FLOCKING-CA-GS composite task. Just as in the previous experiments, controllers learned
using composite reinforcement learning and using the adaptive fuzzy behavior hierarchy had
a statistically significantly higher “best-of-run” performance than monolithic reinforcement
learning at the 99% confidence level as monolithic reinforcement learning was even unable to
learn how to simply avoid a collision. Controllers developed using modular reinforcement
learning were able to gain some traction in learning an effective controller, but were unable
to converge to an effective policy. Note that just as in the single-agent composite tasks, con-
trollers developed using the Small abstraction level performed statistically significantly worse
than other controllers developed using the adaptive fuzzy behavior hierarchy, including those
using the Minimal abstraction level which also uses adaptive priorities.
This is the first set of results in which a difference between controllers using the different ab-
straction levels can be observed. Results of two-way randomized ANOVA tests show that
controllers using the Minimal abstraction level were able to more statistically significantly
achieve consistently higher performance than controllers using the other abstraction levels at
the 95% confidence level. However, controllers using the Full abstraction level were able to
learn a policy at some point during learning that had statistically significantly better perfor-
mance than controllers using the Minimal abstraction level at the 99% confidence level.
Figure 13 depicts the results of using reinforcement learning to learn a policy for the
FLOCKING-CA-GS-RA composite task. These results detail, for the first time, a clear separa-
tion in the performance of controllers using the various abstraction levels. Randomized two-
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Fig. 13. Reinforcement learning results on the validation set environments for the FLOCKING-
CA-GS-RA composite task in two dimensions are shown.

way ANOVA tests show that, like the FLOCKING-CA-GS composite task, controllers using
the Minimal abstraction level were able to more statistically significantly achieve consistently
higher performance than controllers using the other abstraction levels at the 95% confidence
level, but there was no statistically significant difference in the “best-of-run” testing fitness
between controllers using the different abstraction levels. Controllers using the Full abstrac-
tion level had a higher mean reward per episode than controllers using the Small abstraction
level at the 95% confidence level. Monolithic and modular reinforcement learning were not
used to learn controllers due to their consistent poor performance in the simpler, multi-agent
composite tasks.

6.3 Analysis

These results demonstrate that controllers using adaptive fuzzy behavior hierarchies signifi-
cantly outperformed controllers with other architectures in terms of performance, rate of de-
velopment, or both. While there are many reasons for this improvement, we believe that the
central reason for this improvement is the action abstraction that adaptive fuzzy behavior hier-
archies provide. Note that in the CA-GS-RA task, the action space for monolithic controllers
consisted of only two variables: the change in speed and the change of direction. However, for
controllers using composite behaviors, the action space of the composite behavior consisted
of three variables: the weights for the COLLISIONAVOIDANCE, GOALSEEK, and RUNAWAY

primitive behaviors. Despite this increased action space, controllers using composite behav-
iors were developed significantly faster and with significantly better performance. This is due
to the fact that although the action space of the composite behavior was larger, it consisted
of high-level, abstracted “meta-actions” instead of the more complex, low-level control ac-
tions. As has been previously discussed, although other approaches also use the concept of
“meta-actions,” the action abstraction used in this chapter is fundamentally different since the
primitive tasks used were, in general, concurrent, interfering, and non-episodic.
We can conclude that action abstraction is more useful than state abstraction by comparing the
performance of controllers used for the complex, multi-agent composite tasks. In these tasks,
the controller could be designed with a hierarchy that used a single composite behavior or a
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hierarchy that made use of multiple composite behaviors in different hierarchical levels. An
example is the three alternatives for implementing the FLOCKING-CA-GS composite behav-
ior shown in Figure 5. Results show that even with significant state abstraction, controllers
using the two-level hierarchy shown in Figure 5(a) were only able to achieve mediocre per-
formance due to the sheer size of the action space. However, effective controllers using the
three-level hierarchy shown in Figure 5(c) were able to be developed without any abstraction
of the agent’s state. It is important to also note that using reinforcement learning to learn con-
trollers using the two-level hierarchy in the FLOCKING-CA-GS task took significantly more
computational time than those using the three-level hierarchy. This is due to the fact that in
the Sarsa algorithm, the Q-value for each of the 3,125 possible actions must be calculated at
each time step. Over the course of the entire experimental run, this resulted in almost a four
fold increase in the wall clock time required to develop controllers using a two-level hierarchy
over those using a three-level hierarchy.
A surprising result is that for many of the composite tasks evaluated, there was no statistically
significant difference between controllers using the various state abstraction levels with the
exception of the Small abstraction level. While the use of abstraction can significantly reduce
the size of the state space, the possibility of over-abstracting the state space and negatively
impacting the controller’s performance exists. However, in general, this was not observed.
Not reflected in these results is the computational effort required to develop the primitive
behaviors used by the controllers using adaptive fuzzy behavior hierarchies. The primitive
behaviors used in these experiments were manually developed and were designed to be effec-
tive, but not optimal. Since the primitive tasks associated with these behaviors are relatively
simple, the process of manually creating these rulesets was straightforward. However, if man-
ually creating the behaviors is impractical, results show that effective policies for the single-
agent behaviors can be easily learned. Even when the the computational effort of creating
the primitive behaviors is included, developing controllers that use adaptive fuzzy behavior
hierarchies is still far more beneficial and practical than the other approaches evaluated.
The performance of controllers developed with composite reinforcement learning and using
the Small abstraction level are of particular interest as it may indicate that we have over-
abstracted the state space. In many of the tasks used, an effective policy could be learned using
the Small abstraction level, but reinforcement learning was unable to converge to an effective
policy. While there are a number of potential reasons for this lack of convergence, we do not
believe this is an inherent problem with the dynamic priorities used by the Small abstraction
level since reinforcement learning converged to effective policies for the FLOCKING task using
the Small abstraction level. There were a number of composite tasks for which controllers
using the Small abstraction level provided effective control. We believe the root cause of the
problem lies with the dynamic priority generated for the GOALSEEK primitive task. In each
composite task using GOALSEEK, the development of controllers using the Small abstraction
level was unable to converge.
To evaluate our hypothesis, we altered the Small abstraction level by replacing the GOALSEEK

adaptive priority with the GOALSEEK state information from the Full abstraction level (i.e.,
the arrival time at and direction to the goal location) and performed a number of the experi-
ments again. The results of these experiments using the altered Small abstraction level were
compared to the results using the original Small abstraction level. The results for the single-
agent composite tasks are shown in Figure 14. Controllers that did not use the GOALSEEK

adaptive priority were learned faster, had higher performance, or both when compared to
controllers which did use the priority. Although not shown, the performance of controllers
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Fig. 14. Results on the validation set environments for the CA-GS and CA-GS-RA composite
tasks comparing different approaches for the Small abstraction level.

using the modified Small abstraction level were comparable to the performance of the con-
trollers learned using the other abstraction levels. This indicates that the GOALSEEK adaptive
priority was somehow the contributing factor to the low performance in the previous experi-
ments. Exactly why the GOALSEEK adaptive priority causes such problems is unknown and
worthy of future investigation.

6.4 Discussion

As these results demonstrate, neither monolithic or modular reinforcement learning produce
effective controllers as the complexity of the composite task increases. For monolithic re-
inforcement learning, the reason for this inability to gain traction on the problem is that it
simply cannot cope with the complexity of the state space. However, this simple explanation
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does not work for modular reinforcement learning since it was explicitly designed to han-
dle such complexity. While the exact reason for modular reinforcement learning’s inability to
produce effective control policies is unknown and the subject of future research, our work has
illuminated a number of problem areas that could affect its use in developing controllers for
the type of tasks under study in this chapter.
First, modular reinforcement learning makes the implicit assumption that rewards are consis-
tent across all the primitive tasks which complicates the process of learning the policies for
the primitive tasks (Bhat et al., 2006). While the construction of the composite task’s reward
function is designed to promote specific traits in the composite task’s policy (e.g., a risk-averse
policy versus a risk-taking policy), the unintended consequence is that the policies of the prim-
itive tasks show the effects of these traits. This is due to the fact that, in modular reinforcement
learning, all learning takes place in the policies of the primitive tasks. As a result, the policy
for a given primitive task could potentially only be useful in the composite task for which it
was originally learned.
A further potential problem, as modular reinforcement learning is currently implemented, is
that it requires that the policies for primitive tasks provide the learned Q-value for a given
action. Therefore, it is unable to reuse polices developed using methods other than reinforce-
ment learning. While it is possible, in general, to learn the Q-values for an existing policy
offline, this method can produce the same bias in the Q-values that the use of Q-learning pro-
duces since the Q-values must reflect the shared control of the agent. Even though alternative
methods could be used to provide utility values without the use of Q-values (Pirjanian &
Matarić, 2001), modular reinforcement learning still depends on control decisions flowing up
from the low-level policies. As a result, there is no scaling advantage to extending beyond a
two-level hierarchy where learning occurs at the lowest level since the top level merely uses a
simple heuristic to combine the lower-level results.
In light of these difficulties, the success of composite reinforcement learning in these experi-
ments is even more significant. It was the only approach which was consistently able to pro-
duce effective controllers. Furthermore, it was the only approach which was able to produce
effective controllers for the complex FLOCKING-CA-GS-RA task.

7. Conclusion

The most significant result of these experiments is that, in the problem domains used in this
chapter, the abstraction of an agent’s action space provided more tangible benefits in the de-
velopment of agent controllers than abstraction of an agent’s state space. In a direct compar-
ison, controllers that used significant action abstraction and no state abstraction had higher
performance and were developed faster than controllers that made extensive use of state
abstraction and moderate action abstraction. This is due to the fact that action abstraction
changed the focus of the controller from one of low-level control to one of high-level coor-
dination. This change in focus not only made the development of controllers for complex
composite tasks more practical, but in many of the tasks, it also allowed the controller to have
higher performance.
One aspect that is fundamental to the improved performance and rate of development of con-
trollers using adaptive fuzzy behavior hierarchies was the ability to reuse existing primitive
and composite behaviors. The ability to reuse, without modification, behaviors developed
for one task in another task allowed for the development of controllers in individual pieces.
The benefits of this approach are apparent when compared to the other approaches evaluated
in these experiments which attempted to develop a controller all at once. As a result of this
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reuse, controllers for complex composite tasks that were once impractical to develop can now
be developed with reasonable effort.
The results of the experiments shown in this work demonstrate that while the use of modular
reinforcement learning has been successful in more constrained problem domains, it was un-
able to consistently produce effective control policies in the problem domains used here. For
the problem domains used, the prospect of simultaneously learning effective policies for each
primitive task proved to be too complicated. In contrast, composite reinforcement learning
was the only approach that was consistently able to produce effective control policies. As dis-
cussed above, we believe that this was due to the use of action abstraction and the ability to
reuse existing primitive behaviors, regardless of their implementation.
The most immediate opportunity for future work is a more in-depth investigation of the er-
ratic behavior of using the Small abstraction level with the GOALSEEK primitive task. The
next opportunity for future work is to use fuzzy reinforcement learning to learn composite
behavior policies instead of the discrete Sarsa approach (Jouffe, 1998). The use of fuzzy rein-
forcement learning offers the potential for faster learning since the agent’s state is no longer
confined to a single discrete value. Lastly, the results of the current work can be used to de-
velop more complex controllers in a variety of ways. One way is to directly use adaptive
fuzzy behavior hierarchies to create far more complicated behavior hierarchies. Since our ul-
timate focus is in the development of agent controllers for use in complex, multi-agent tasks,
the results of this work provide significant contributions in making the development of such
controllers practical.
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