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1. Introduction     

Nowadays, the emerging wireless communication applications require increasing levels of 
performance and speech processing systems working in noise adverse environments. These 
systems often benefit from using voice activity detectors (VADs) which are frequently used 
in such application scenarios for different purposes. Speech/non-speech detection is an 
unsolved problem in speech processing and affects numerous applications including robust 
speech recognition (Karray & Martin, 2003), (Ramírez et al., 2003), discontinuous 
transmission (ETSI, 1999), (ITU, 1996), estimation and detection of speech signals (Krasny, 
2000), real-time speech transmission on the Internet (Sangwan et al., 2002) or combined 
noise reduction and echo cancellation schemes in the context of telephony (Basbug et al., 
2003). The speech/non-speech classification task is not as trivial as it appears, and most of 
the VAD algorithms fail when the level of background noise increases.  
During the last decade, numerous researchers have developed different strategies for 
detecting speech on a noisy signal (Sohn et al., 1999), (Cho & Kondoz 2001) and have 
evaluated the influence of the VAD effectiveness on the performance of speech processing 
systems (Bouquin-Jeannes & Faucon, 1995) (see also the preceding chapter about VAD). 
Most of them have focussed on the development of robust algorithms with special attention 
on the derivation and study of noise robust features and decision rules (Woo et al., 2000), (Li 
et al., 2002), (Marzinzik & Kollmeier, 2002), (Sohn et al., 1999). The different approaches 
include those based on energy thresholds (Woo et al., 2000), pitch detection 
(Chengalvarayan, 1999), spectrum analysis (Marzinzik & Kollmeier, 2002), zero-crossing rate 
(ITU, 1996), periodicity measures (Tucker, 1992) or combinations of different features (ITU, 
1996), (ETSI, 1999). 
In this Chapter we show three methodologies for VAD: i) statistical likelihood ratio tests 
(LRTs) formulated in terms of the integrated bispectrum of the noisy signal. The integrated 
bispectrum is defined as a cross spectrum between the signal and its square, and therefore a 
function of a single frequency variable. It inherits the ability of higher order statistics to 
detect signals in noise with many other additional advantages (Górriz, 2006a), (Ramírez et 
al, 2006); ii) Hard decision clustering approach where a set of prototypes is used to 
characterize the noisy channel. Detecting the presence of speech is enabled by a decision 
rule formulated in terms of an averaged distance between the observation vector and a 
cluster-based noise model; and iii) an effective method employing support vector machines 
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(SVM) , a paradigm of learning from examples based in Vapkik-Chervonenkis theory 
(Vapnik, 1995). The use of kernels in SVM enables to map the data, via a nonlinear 
transformation, into some other dot product space (called feature space) in which the 
classification task is settled. 

2. Relevant Feature Vectors for VAD 

In this section we show some standard and novel Feature Vectors (FVs) for VAD. After the 
framing procedure, that is processing the input signal in short time frames, these FVs are 
computed in the feature extraction stage. Usually, the features are extracted using 
overlapping frames, which results in correlation between consecutive frames, and smoothes 
the spectral change from frame to frame. Feature extraction attempts to present the content 
of the speech signal compactly, such that the characteristic information of the signal is 
preserved. Then, the VAD decision is made using information provided by the features in 
the decision-making module. 

2.1 Feature Vector based on Power Spectrum 

Let x(n) be a discrete zero-mean time signal. In the framing stage the input signal x(n) 
sampled at 8 kHz is decomposed into 25-ms overlapped frames with a 10-ms window shift. 
The current frame consisting of 200 samples is zero padded to 256 samples and power 
spectral magnitude X( ) is computed through the discrete Fourier transform (DFT).  Finally, 
the filterbank reduces the dimensionality of the feature vector to a suitable representation 
for detection including broadband spectral information. Thus, the signal is passed through a 
K-band filterbank which is defined by: 
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This feature in combination with long term information is usually adopted as feature vector, 
i.e. the one used in the clustering based VAD (Górriz et al., 2006b). In addition, it also 
provides the definition of other feature vector, the subband SNRs (that is used in the SVM 
approach), which includes the environmental level of noise and can be computed as: 
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where NB denotes the subband power spectral magnitude of the residual noise that is 
extracted from the noisy channel using the approach presented in section 3.1. 

2.2 Feature Vector based on HOS 

The bispectrum of a discrete-time zero-mean signal x(t) is defined as the 2-D discrete time 
Fourier transform: 
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where C3x is the third-order cumulant of the input signal (third order moment of a zero-
mean signal). Note that, from the above definition the third-order cumulant can be 
expressed as: 
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Let denote y(t)= x2(t)-E{x2(t)}, the cross correlation between y(t) and x(t) is defined to be: 
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so that its cross spectrum is given by: 
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and the reverse transformation is also satisfied:  
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If we compare Eq. (4) with Eq. (7) we obtain: 
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The integrated bispectrum is defined as a cross spectrum between the signal and its square, 
and therefore a function of a single frequency variable. Hence, its computation as a cross 
spectrum leads to significant computational savings, but more important is that the variance 
of the estimator is of the same order as that of the power spectrum estimator. On the other 
hand, Gaussian processes have vanishing third order moments so that the bispectrum and 
integrated bispectrum functions are zero as well, preserving their detection ability. From 
figure 1 it can be clearly concluded that higher order statistics or polyspectra provide 
discriminative features for speech/non-speech classification (Górriz et. al, 2005). 
Given a finite data set {x(1), x(2), ..., x(N)} the integrated bispectrum is normally estimated 
by splitting the data set into blocks. Thus, the data set is divided into KB non-overlapping 
blocks of data each of size MB samples so that N= KBMB. Then, the cross periodogram of the 
ith block of data is given by 
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where Xi( ) and Yi( )) denote the discrete Fourier transforms of x(t) and y(t) for the ith 
block. Finally, the estimate is obtained by averaging KB blocks: 
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Figure 1. Third order statistics of a: left) noise only signal, right) speech signal corrupted by 
car noise.

3. Modelling the Noise subspace. 

In the VAD problem, the background noise is usually assumed to be stationary over longer 
period of time than the speech signal. This enables to develop a smoothed noise model 
during a initialization period, and the estimation of noise statistics during non-speech 
periods for noise model update. Of course updating the noise parameters requires the 
information provided by the VAD decision in the previous frames (i.e. the non-speech 
periods). Then, the decision-making module can be divided to two separate parts: a primary 
decision, which makes the actual decision for the frame and a secondary decision, which 
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monitors the updating of the noise parameters. These parameters or noise model are related 
to the feature vectors used in the VAD algorithm, the decision-making module compares 
them with the actual FV to detect the current speech/non-speech period. 

3.1 Spectral Noise Model 

Assuming that the first N overlapped frames are nonspeech frames the noise level in the kth 
band, NB(k) can be estimated as the median of the set {NB(0, k),..., NB(N-1,k)}. In order to 
track non stationary noisy environments, the noise spectrum NB(k) is updated during non-
speech periods by means of a 1st order IIR filter on the smoothed spectrum Xs(k), that is:
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where Xs(k) is obtained averaging over consecutive frames and adjacent spectral bands, i.e. 
two consecutive frames and two adjacent bands, l is the frame index and  is selected 
empirically. This update is applied to non-speech periods exclusively where Xs(k) provides 
the instant noise characterization. 

3.2 Clustering Based Model 

Recently, cluster analysis has been applied to a set of noise spectral FVs to obtain a soft 
model for VAD (Górriz et al., 2006b). Given an initial set of noise FVs {NB(j,k)} with j=1,…,N, 
we apply  hard decision-based clustering  to assign them to a prespecified number of 
prototypes C<N, labelled by an integer  i=1,…,C. This allocation is achieved in such a way 
that the similarity measure is minimized in terms of the squared Euclidean distance between 
noise energy vectors: 
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and is defined as: 
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where (j)=i denotes a many-to-one mapping, that assigns the jth observation to the ith 
prototype and 
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is the mean vector associated with the ith prototype (the sample mean for the ith prototype. 
Thus, the loss function is minimized by assigning N noise spectral observations to C noise 
prototypes in such a way that within each prototype the average dissimilarity of the 
observations is minimized. Once convergence is reached, N K-dimensional pause frames are 
efficiently modelled by C K-dimensional noise prototype vectors (see figure 2). We call this 
set of clusters C-partition or noise prototypes since, in this scenario, the word “cluster” is 
assigned to different classes of labelled data, that is K is fixed to 2, i.e. we define two clusters: 
“noise” and “speech” and the cluster “noise” consists of C prototypes (Górriz et al., 2006b). 
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Figure 2. 20 noise log-energy frames, computed using NFFT=256 and averaged over 50 
subbands and clustering approach to the latter set of frames using hard decision C-means 
(C=4 prototypes). 

4. Novel methodologies for VAD 

The VAD decision is done in the decision-making module of the VAD algorithm, according 
to the decision rule. This section addresses the problem of voice activity detection 
formulated in terms of a classical binary hypothesis testing framework: 
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There are several ways of defining this decision rule which selects between both hypotheses, 
depending of the application where the VAD decision is employed. In the following, we 
show the most representative methodologies presented by the authors in several works over 
the past few years: i) multiple observation likelihood ratio tests (MO-LRT)  for VAD over the 
integrated bispectrum (IBI) FV ii) the clustering distance based VAD using spectral FVs and 
iii)  Support Vector Machines for solving a binary classification problem using subband 
SNRs as FVs. 

4.1 Integrated Bispectrum based MO-LRT VAD 

In a two-hypothesis test, the optimal decision rule that minimizes the error probability is the 
Bayes classifier. Given an observation vector y to be classified, the problem is reduced to 
selecting the class (H0 or H1) with the largest posterior probability P(Hi|y). From the Bayes 
rule a statistical LRT  can be  defined by: 
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where the observation vector y is classified as H1 if L(y) is greater than P(H0)/P(H1)
otherwise it is classified as H0. The LRT first proposed by Sohn (Sohn et al., 1999) for VAD, 
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which was defined on the power spectrum, is generalized and extended to the case where 
successive observations. The proposed multiple-observation likelihood ratio test (MO-LRT) 
formulates the decision for the central frame of a (2m+1)-observation buffer {yl-m, ..., yl-1, yl,
yl+1, ..., yl+m}: 
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where l denotes the frame being classified as speech (H1) or non-speech (H0). Note that, 
assuming statistical independence between the successive observation vectors, the 
corresponding log-LRT: 
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is recursive in nature and if each term of equation (18) is defined as (k) the latter equation 
can be recursively calculated as: 
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The so called multiple observation LRT (MO-LRT) reports significant improvements in 
robustness as the number of observations increases. Assuming the integrated bispectrum 
{Syx( ): } as the FV y and to be independent zero-mean Gaussian variables in presence and 
absence of speech with variances 1 and 0 , resp. we obtain that the ratio of likelihoods can 
be expressed as: 
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where the a priori and a posteriori variance ratios are defined as: 
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In order to evaluate the decision function the computation of variances under both 
hypotheses must be properly established. This is discussed further in (Ramírez et al., 2006) 
where a complete derivation of them is obtained in terms of the power spectrum of the noise 
(computed using the model presented in section 3.1) and the clean signal. 
Figure 3 shows an example of the operation of the contextual MO-LRT VAD on an utterance 
of the Spanish SpeechDat-Car database (Moreno et al., 2000). The figure shows the decision 
variables for the tests defined by equation 20 and, alternatively, for the test with the second 
log-term in equation 20 suppressed (approximation) when compared to a fixed threshold η=
1.5. For this example, MB= 256 and m= 8. This approximation reduces the variance during 
non-speech periods. It can be shown that using an 8-frame window reduces the variability 
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of the decision variable yielding to a reduced noise variance and better speech/non-speech 
discrimination. On the other hand, the inherent anticipation of the VAD decision contributes 
to reduce the number of speech clipping errors. 

Figure 3. Operation of the MO-LRT VAD defined on the integrated bispectrum. 

4.2 Long Term C-Means VAD 

The speech/pause discrimination may be described as an unsupervised learning problem. 
Clustering is an appropriate solution for this case where the data set is divided into groups 
which are related ``in some sense''. Despite the simplicity of clustering algorithms, there is 
an increasing interest in the use of clustering methods in pattern recognition (Anderberg et 
al., 1973), image processing (Jain & Flynn, 1996) and information retrieval (Rasmussen, 
1992). Clustering has a rich history in other disciplines such as machine learning, biology, 
psychiatry, psychology, archaeology, geology, geography, and marketing. Cluster analysis, 
also called data segmentation has a variety of goals. All of these are related to grouping or 
segmenting a collection of objects into subsets or “clusters” such that those within each 
cluster are more closely related to one another than objects assigned to different clusters. 
Cluster analysis is also used to form descriptive statistics to ascertain whether or not the 
data consists of a set of distinct subgroups, each group representing objects with 
substantially different properties. Consider noise model proposed in section 3.2 and let Ê(l) 
be the decision feature vector at frame l that is defined on the MO window as follows: 

{ } mlmljjElE B +−=≡ ,,;)(max)(ˆ   (22) 

where EB(j) is defined in section 2.1 and the function max is applied in each frequency band 
k. The selection of this envelope feature vector, describing not only a single instantaneous 
frame but also a (2m+1) entire neighbourhood, is useful as it detects the presence of voice 
beforehand (pause-speech transition) and holds the detection flag, smoothing the VAD 
decision (as a hangover based algorithm in speech-pause transition (Marzinzik & Kollmeier, 
2002), (Li et al., 2002). 
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In the LTCM-VAD (Górriz et al., 2006b) the presence of the second ”cluster” (speech frame) 
is detected if the following ratio holds: 
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where <ÑB(i)>=(1/C) Ci=1ÑB(i)=(1/C) Ci=1 Nj=1 ijNB(j) is the averaged noise prototype 
center defined in terms of the noise model presented in section 3.2 and  is the decision 
threshold.
In order to adapt the operation of the proposed VAD to non-stationary and noise 
environments, the set of noise prototypes are updated according to the VAD decision 
during non-speech periods (not satisfying equation 23) in a competitive manner (only the 
closer noise prototype ÑB(l) at time l is moved towards the current feature vector Ê(l)):
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where  is a normalized constant. Its value is close to one for a soft decision function (i.e. we 
selected in simulation =0.99), that is, uncorrected classified speech frames contributing to 
the false alarm rate will not affect the noise space model significantly. 

4.3 SVM enabled VAD 

SVMs have recently been proposed for pattern recognition in a wide range of applications 
by its ability for learning from experimental data (Vapnik, 1995). The reason is that SVMs 
are much more effective than other conventional parametric classifiers. In SVM-based 
pattern recognition, the objective is to build a function f: RN  ±1 using training data that is, 
N-dimensional patterns xi and class labels yi:
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so that f will correctly classify new examples (x,y). The use of kernels in SVM enables to map 
the data into some other dot product space (called feature space) F via a nonlinear 
transformation : RN F and perform the linear SVM algorithm (Vapnik, 1995) in F. The 
kernel is related to the  function by k(xi,xj)= ( (xi) (xj)). In the input space, the 
hyperplane corresponds to a nonlinear decision function whose form is determined by the 
kernel. Thus, the decision function can be formulated in terms of a nonlinear function as: 
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where the parameters i are the solution of a quadratic programming problem that are 
usually determined by the well known Sequential Minimal Optimization (SMO) algorithm 
(Platt, 1999). Many classification problems are always separable in the feature space and are 
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able to obtain better results by using RBF kernels instead of linear and polynomial kernel 
functions (Clarkson & Moreno, 1999). 
The feature vector used in the SVM approach is the subband SNR described in section 2.1 
but also including long term information: the long-term spectral envelope (LTSE) (Ramírez 
et al., 2006b) including contextual information of the speech signal is computed by:  = 
max{Xj( m), where j=l-L,…,l-1, l, l+1,…,l+L} and its dimensionality is reduced to a wide K-
band spectral representation as in section 2.1. 
An optional denoising process is applied to the input signal which consist of: i) Spectrum 
smoothing, ii) Noise estimation., iii) Wiener Filtering (WF) design and iv) Frequency domain 
filtering (Ramirez et al, 2006b). Once the SVM model is trained (i.e using the LIBSVM 
software tool (Chang & Lin, 2001); a training set consisting of 12 utterances of the AURORA 
3 Spanish SpeechDat-Car (SDC) was used), we obtain the relevant support vectors and 
parameters in the classification of noise and speech features which enable to build the non-
linear decision function shown in equation 26. The evaluation of the latter function is 
computational expensive, however evaluation methods have been also proposed (Ramírez 
et al. 2006b) in order to speed up the VAD decision. The method is based on a off-line 
computation of the decision rule over an input space grid and storing it in an N-dimensional
look-up table.  Finally, given a feature vector x we look for the nearest point in the grid 
previously defined and then perform a table look-up to assign a class (speech or non-
speech) to the former feature vector. 
Fig. 4..left shows the training data set in the 3-band input space. It is shown that the two 
classes can not be separated without error in the input space. Fig. 4.right shows the SVM 
decision rule that is obtained after the training process. Note that, i) the non-speech and 
speech classes are clearly distinguished in the 3-D space, and ii) the SVM model learns how 
the signal is masked by the noise and automatically defines the decision rule in the input 
space. Fig. 4. right also suggests a fast algorithm for performing the decision rule defined by 
equation 26 that becomes computationally expensive when the number of support vectors 
and/or the dimension of the feature vector are high. Note that all the information needed 
for deciding the class a given feature vector x belongs resides in figure 4.right. Thus, the 
input space can be discretized over the different components of the feature vector x.

Figure 4.  Classification rule in the input space after training a 3-band SVM model. left) 
Training data set, right) SVM classification rule. 
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5. Experimental Section. 

Several experiments are commonly conducted in order to evaluate the performance of VAD 
algorithms. The analysis is mainly focussed on the determination of the error probabilities 
or classification errors at different SNR levels (Marzinzik & Kollmeier, 2002) and the 
influence of the VAD decision on the performance of speech processing systems (Bouquin-
Jeannes & Faucon, 1995). Subjective performance tests have also been considered for the 
evaluation of VADs working in combination with speech coders (Benyassine et al., 1997). 
This section describes the experimental framework and the objective performance tests 
conducted in this paper to evaluate the proposed algorithms.  

5.1 Receiver operating characteristics (ROC) curves 

The ROC curves are frequently used to completely describe the VAD error rate. They show 
the tradeoff between speech and non-speech detection accuracy as the decision threshold 
varies. The AURORA subset of the original Spanish SpeechDat-Car database (Moreno et al., 
2000) was used in this analysis. This database contains 4914 recordings using close-talking 
and distant microphones from more than 160 speakers. The files are categorized into three 
noisy conditions: quiet, low noisy and highly noisy conditions, which represent different 
driving conditions with average SNR values between 25dB and 5dB. The non-speech hit rate 
(HR0) and the false alarm rate (FAR0= 100-HR1) were determined for each noise condition 
being the actual speech frames and actual speech pauses determined by hand-labelling the 
database on the close-talking microphone. 

Figure 5.  Classification rule in the input space after training a 3-band SVM model. left) 
Training data set, right) SVM classification rule. 

Figure 5 shows the ROC curves of the proposed IBI-MO-LRT VAD and other frequently 
referred algorithms (Woo et al., 2000), (Li et al., 2002), (Marzinzik & Kollmeier, 2002), (Sohn 
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et al., 1999) for recordings from the distant microphone in high noisy conditions. The 
working points of the G.729, AMR and AFE standard VADs are also included. The efficient 
MO-LRT IBI VAD exhibits a shift of the ROC curve when the number of observations (m)
increases as shown in figure 5. The method shows clear improvements in detection accuracy 
over standardized VADs and over a representative set of recently published VAD 
algorithms  such us (Woo et al., 2000), (Li et al., 2002), (Marzinzik & Kollmeier, 2002), (Sohn 
et al, 1999). 
The AURORA-2 database (Hirsch & Pearce, 2000) is also an adequate database for this 
analysis since it is built on the clean TIdigits database that consists of sequences of up to 
seven connected digits spoken by American English talkers as source speech, and a selection 
of eight different real-world noises that have been artificially added to the speech at SNRs of 
20dB, 15dB, 10dB, 5dB, 0dB and -5dB. These noisy signals have been recorded at different 
places (suburban train, crowd of people (babble), car, exhibition hall, restaurant, street, 
airport and train station), and were selected to represent the most probable application 
scenarios for telecommunication terminals. In the discrimination analysis, the clean TIdigits 
database was used to manually label each utterance as speech or non-speech on a frame by 
frame basis for reference. Figure 6 provide comparative results of this analysis and compare 
the proposed LTCM VAD to standardized algorithms including the ITU-T G.729 (ITU, 
1996), ETSI AMR (ETSI, 1999) and ETSI AFE (ETSI, 2002) and recently reported (Sohn et al., 
1999), (Woo et al., 2000), (Li et al., 2002), (Marzinzik & Kollmeier, 2002) VADs in terms of 
speech hit-rate (HR1) for clean conditions and SNR levels ranging from 20 to -5 dB. Note 
that results for the two VADs defined in the AFE DSR standard (ETSI, 2002) for estimating 
the noise spectrum in the Wiener filtering (WF) stage and non-speech frame-dropping (FD) 
are provided. The results shown in these figures are averaged values for the entire set of 
noises. Table 1 summarizes the advantages provided by LTCM VAD over the different VAD 
methods in terms of the average speech/non-speech hit-rates (over the entire range of SNR 
values). Thus, the proposed method with a mean of 97.57% HR1 and a mean of 47.81% HR0 
yields the best trade-off in speech/non-speech detection. 

Figure 6.  right) Speech hit rates (HR1) of standard VADs as a function of the SNR for the 
AURORA-2 database. Left) Speech hit rates (HR1) of other VADs as a function of the SNR 
for the AURORA-2 database. 
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 G729 
AMR

1
AMR2 AFE(WF) AFE(FD) LTCM

HR0(%) 31.77 31.31 42.77 57.68 28.74 47.81 

HR1(%) 93.00 98.18 93.76 88.72 97.70 97.57 

Sohn Woo Li Marzinzik LTCM

HR0(%) 43.66 55.40 57.03 52.69 47.81 

HR1(%) 94.46 88.41 83.65 93.04 97.57 

Table 1. Average speech/non-speech hit rates for SNRs between clean conditions and -5 dB. 
Comparison to standardized VADs, and other VAD methods. 

Figure 7 shows the ROC curves of the proposed SVM VAD, after a training process that  
consists of 12 utterances of the AURORA 3 Spanish SpeechDat-Car (SDC), using for varying 
L and K= 4 (number of subbands). It is shown that increasing the time span up to 8 frames 
also leads to a shift-up and to the left of the ROC curve. The optimal parameters for the 
proposed VAD are then K= 4 subbands and L= 8 frames. The results show significant 
improvements in speech/non-speech detection accuracy over standard VADs and over a 
representative set of VAD algorithms. These improvements are obtained by including 
contextual information in the feature vector and defining a non-linear decision rule over a 
wide band spectral representation of the data which enables a SVM-based classifier to learn 
how the speech signal is masked by the acoustic noise present in the environment. 
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Figure 7.  Influence of the time span L on the ROC curves. Comparison to standard and 
recently published VAD methods (High: high speed, good road, 5 dB average SNR). 
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5.2 Speech recognition experiments 

Although the ROC curves are effective for VAD evaluation, the influence of the VAD in a 
speech recognition system was also studied. Many authors claim that VADs are well 
compared by evaluating speech recognition performance (Woo et al., 2000) since non-
efficient speech/non-speech classification is an important source of the degradation of 
recognition performance in noisy environments (Karray & Martin, 2003). There are two clear 
motivations for that: i) noise parameters such as its spectrum are updated during non-
speech periods being the speech enhancement system strongly influenced by the quality of 
the noise estimation, and ii) frame-dropping (FD), a frequently used technique in speech 
recognition to reduce the number of insertion errors caused by the noise, is based on the 
VAD decision and speech misclassification errors lead to loss of speech, thus causing 
irrecoverable deletion errors. This section evaluates the VAD according to the objective it 
was developed for, that is, by assessing the influence of the VAD in a speech recognition 
system. 
The reference framework (base) considered for these experiments is the ETSI AURORA 
project for distributed speech recognition (ETSI, 2000). The recognizer is based on the HTK 
(Hidden Markov Model Toolkit) software package (Young et al., 1997). The task consists of 
recognizing connected digits which are modeled as whole word HMMs (Hidden Markov 
Models) with 16 states per word, simple left-to-right models and 3-gaussian mixtures per 
state (diagonal covariance matrix). Speech pause models consist of 3 states with a mixture of 
6 Gaussians per state. The 39-parameter feature vector consists of 12 cepstral coefficients 
(without the zero-order coefficient), the logarithmic frame energy plus the corresponding 
delta and acceleration coefficients. For the AURORA-3 SpeechDat-Car databases, the so 
called well-matched (WM), medium-mismatch (MM) and high-mismatch (HM) conditions 
are used. These databases contain recordings from the close-talking and distant 
microphones. In WM condition, both close-talking and hands-free microphones are used for 
training and testing. In MM condition, both training and testing are performed using the 
hands-free microphone recordings. In HM condition, training is done using close-talking 
microphone recordings from all the driving conditions while testing is done using the 
hands-free microphone at low and high noise driving conditions. Finally, recognition 
performance is assessed in terms of the word accuracy (WAcc) that considers deletion, 
substitution and insertion errors. 
Table 2 shows the recognition performance for the Spanish SpeechDat-Car database when 
WF and FD are performed on the base system (ETSI, 2000) using the IBI-MO-LRT and 
LTCM VADs. Our VADs outperform all the algorithms used for reference yielding relevant 
improvements in speech recognition. Note that, this particular database used in the 
AURORA 3 experiments have longer non-speech periods than the AURORA 2 database and 
then, the effectiveness of the VAD results more important for the speech recognition system 
(Ramírez et al., 2006), (Górriz et al., 2006b). This fact can be clearly shown when comparing 
the performance of the proposed VADs to Marzinzik VAD (Marzinzik & Kollmeier, 2002). 
The word accuracy of the VADs is quite similar for the AURORA 2 task. However, the 
proposed VADs yield a significant performance improvement over Marzinzik VAD 
(Marzinzik & Kollmeier, 2002) for the AURORA 3 database (Górriz et al., 2006b), (Ramírez 
et al., 2006). 
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Base Woo Li Marzinzik Sohn G729

WM 92.94 95.35 91.82 94.29 96.07 88.62

MM 83.31 89.30 77.45 89.81 91.64 72.84

HM 51.55 83.64 78.52 79.43 84.03 65.50

Ave. 75.93 89.43 82.60 87.84 90.58 75.65

AMR1 AMR2 AFE LTCM IBI-LRT 

WM 94.65 95.67 95.28 96.41 96.39 

MM 80.59 90.91 90.23 91.61 91.75 

HM 62.41 85.77 77.53 86.20 86.65 

Ave. 74.33 90.78 87.68 91.41 91.60 

Table 1. Average speech/non-speech hit rates for SNRs between clean conditions and -5 dB. 
Comparison to standardized VADs, and other VAD methods. 

6. Conclusion 

This paper showed three different schemes for improving speech detection robustness and 
the performance of speech recognition systems working in noisy environments. These 
methods are based on: i) statistical likelihood ratio tests (LRTs) formulated in terms of the 
integrated bispectrum of the noisy signal. The integrated bispectrum is defined as a cross 
spectrum between the signal and its square, and therefore a function of a single frequency 
variable. It inherits the ability of higher order statistics to detect signals in noise with many 
other additional advantages; ii) Hard decision clustering approach where a set of prototypes 
is used to characterize the noisy channel. Detecting the presence of speech is enabled by a 
decision rule formulated in terms of an averaged distance between the observation vector 
and a cluster-based noise model; and iii) an effective method employing support vector 
machines (SVM) , a paradigm of learning from examples based in Vapkik-Chervonenkis 
theory. The use of kernels in SVM enables to map the data, via a nonlinear transformation, 
into some other dot product space (called feature space) in which the classification task is 
settled. 
The proposed methods incorporate contextual information to the decision rule, a strategy 
that has reported significant improvements in speech detection accuracy and robust speech 
recognition applications. The optimal window size was determined by analyzing the 
overlap between the distributions of the decision variable and the error rate. The 
experimental analysis conducted on the well-known AURORA databases has reported 
significant improvements over standardized techniques such as ITU G.729, AMR1, AMR2 
and ESTI AFE VADs, as well as over recently published VADs. The analysis assessed: i) the 
speech/non-speech detection accuracy by means of the ROC curves, with the proposed 
VADs yielding improved hit-rates and reduced false alarms when compared to all the 
reference algorithms, and ii) the recognition rate when the VADs are considered as part of a 
complete speech recognition system, showing a sustained advantage in speech recognition 
performance.
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