Chapter from the book *WIMAX New Developments*
Downloaded from: http://www.intechopen.com/books/wimax-new-developments
Resource Management Framework for QoS Scheduling in IEEE 802.16 WiMAX Networks

Hua Wang and Lars Dittmann
Networks Technology and Service Platforms
Department of Photonics Engineering
Technical University of Denmark, Lyngby, Denmark
hwan@fotonik.dtu.dk, ladit@fotonik.dtu.dk

Abstract
IEEE 802.16, also known as WiMAX, has received much attention recently for its capability to support multiple types of applications with diverse Quality-of-Service (QoS) requirements. Beyond what the standard has defined, radio resource management (RRM) still remains an open issue, which plays an important role in QoS provisioning for different types of services. In this chapter, we propose a downlink resource management framework for QoS scheduling in OFDMA based WiMAX systems. Our framework consists of a dynamic resource allocation (DRA) module and a connection admission control (CAC) module. A two-level hierarchical scheduler is developed for the DRA module, which can provide more organized service differentiation among different service classes, and a measurement-based connection admission control strategy is introduced for the CAC module. Through system-level simulation, it is shown that the proposed framework can work adaptively and efficiently to improve the system performance in terms of high spectral efficiency and low outage probability.

Keywords: WiMAX OFDMA radio resource management QoS scheduling

1. Introduction
Over the last decade, the rapid growth of high-speed multimedia services for residential and small business customers has created explosive demand for last mile broadband access. Currently, most broadband access is offered through wired lines, such as xDSL, cable or T1 networks. However, there are still a large number of areas where wired infrastructures are difficult to be deployed because of technical or commercial reasons. Broadband Wireless Access (BWA) systems are gaining extensive interests from both industry and research communities due to the advantages of rapid deployment, lower maintenance and upgrade costs, and granular investment to match market growth (1). Among the emerging technologies for BWA, IEEE 802.16 based technology, also known as Worldwide Interoperability for Microwave Access (WiMAX), is one of the most promising and attractive alternatives for last mile broadband wireless access. As expected, IEEE 802.16 standard and its evolutions have been developed to deliver a variety of multimedia applications with different Quality-of-Service (QoS) requirements, such as throughput, delay, delay jitter, fairness and packet loss rate. The physical layer specifications and MAC signaling protocols have been well defined in the standard (2),
however, radio resource management (RRM), i.e., scheduling and call admission control, still remains as an open issue, which plays an important role in QoS provisioning for different types of service.

Orthogonal Frequency Division Multiple Access (OFDMA) is a physical layer specification for IEEE 802.16 systems. OFDMA builds on Orthogonal Frequency Division Multiplexing (OFDM), which is immune to intersymbol interference and frequency selective fading, as it divides the frequency band into a group of mutually orthogonal subcarriers, each having a much lower bandwidth than the coherence bandwidth of the channel. In multi-user environment, OFDMA provides another degree of freedom by enabling dynamic assignment of subcarriers to different users at different time instances, to take advantage of the fact that at any time instance channel responses are different for different users at different subcarriers (3). Thus, dynamic subcarrier assignment (DSA) and adaptive power allocation (APA) to multiple users can be employed to improve the system performance significantly.

Recently, radio resource management for OFDMA systems has attracted enormous research interests. Many scheduling algorithms have been proposed which can adapt to changes in users’ channel conditions and QoS requirements. In the literature, the resource allocation problem can be divided into two categories with different objectives. The objective of the first category is to minimize the total transmit power subject to individual data rate constraints, see (7)-(9). The objective of the second category aims at maximizing the overall (weighted) transmission rate subject to power constraints, see (10)-(12). In either case, the optimal resource allocation solutions are difficult to get due to high computational complexity. Instead, suboptimal solutions based on relaxation, problem splitting, or heuristic algorithms are proposed to reduce computational complexity (4). Such algorithms are often refereed to as loading algorithms.

In most loading algorithms, the QoS requirement of each user is usually defined in terms of a fixed data rate per frame. However, in practical communication systems, it is neither sufficient nor efficient to represent different QoS requirements by a fixed data rate per frame. The resource allocation problem for systems supporting both real-time (RT) and non-real-time (NRT) multimedia traffic becomes much more complicated when diverse QoS requirements have to be considered. The transmission of RT packets can be delayed as long as the delay constraint is not violated, and the transmission of NRT packets can be more elastic. Furthermore, most loading algorithms assume that users always have data to transmit, which is not the case in real systems. Instead, appropriate traffic models should be taken into account in the design of scheduling algorithms. Therefore, efficient packet-based scheduling algorithms are of interest. Many packet scheduling algorithms with different design objectives have been proposed in (13)-(22).

With respect to packet-based scheduling algorithms, most of the existing literature focuses on the design of one-level flat scheduler. In such approach, each connection is assigned a priority value based on some criterion and the connection with the highest priority value is scheduled for transmission. This approach has the advantage of low implementation complexity. However, due to different traffic patterns and diverse QoS requirements among different service classes, it is hard to well define a unified priority criterion that can work well for all service classes. Thus, it is desirable to individually design the scheduling algorithm for each service class and separate the resource allocation from the packet scheduling. The first paper proposing the idea of a two-level hierarchical scheduler is in (23). Performance comparisons between one-level and two-level schedulers are done in (24). In (25), Chang et al. proposed an adaptive hierarchical polling approach to minimize the average polling delay and band-
width used for polling. However, so far little work has been done in the design of an efficient bandwidth distribution algorithm for the aggregate resource allocator, which is critical on the overall performance of a two-level hierarchical scheduler and therefore should be carefully designed.

In this chapter, we present a downlink resource management framework for QoS scheduling in OFDMA based WiMAX Systems. The framework consists of a dynamic resource allocation (DRA) module and a connection admission control (CAC) module. DRA emphasizes on how to share the limited radio resource in terms of subchannels and time slots among subscriber stations with the objective of increasing the spectral efficiency while satisfying the diverse QoS requirements in each service class. CAC highlights how to limit the number of ongoing connections preventing the system capacity from being overused. The major contributions of this chapter include:

1. A two-level hierarchical scheduler is employed to split the resource allocation problem into two subproblems: a bandwidth distribution problem in the aggregate resource allocator and a scheduling problem in class schedulers. Yet there is sufficient coupling between the allocator and the schedulers as the allocator is aware of the performance of the schedulers.

2. A novel priority-based scheduling algorithm is proposed for rtPS and nrtPS class schedulers, which tightly couples the packet scheduling and subcarrier allocation together through an integrated cross-layer approach to take advantage of the inter-dependencies between the PHY and MAC layers.

3. An adaptive estimation-based bandwidth distribution scheme is proposed for the aggregate resource allocator. The proposed scheme first estimates the required amount of bandwidth in each class scheduler based on the backlogged traffic and the average modulation efficiency. Then an exponentially smoothed curve with respect to QoS satisfaction is applied to adjust the estimation in order to increase the spectral efficiency while maintaining a guaranteed QoS performance.

4. An effective measurement-based connection admission control policy is proposed for the CAC module, which takes the current state of the network and class priority into consideration when admission decisions are made.

Through the detailed system-level simulations, the study shows that the proposed resource management framework can significantly increase the spectral efficiency while ensuring the QoS requirements of each service class.

The rest of the chapter is organized as follows: We first give a brief introduction of IEEE 802.16 in Section 2. Then, the structure of the proposed downlink resource management framework is described in Section 3, followed by the design of hierarchical resource allocation algorithms and connection admission control policies in Section 4 and Section 5, respectively. In Section 6, simulation environments and results are outlined and discussed. Finally, conclusions are drawn in Section 7.

2. Overview of IEEE 802.16 Networks

IEEE 802.16/WiMAX technology supports both mesh and point-to-multipoint (PMP) networks (2). In the PMP mode, the network has a cellular structure where base station (BS) governs all the communications in the network and the subscriber stations (SSs) cannot communicate with each other directly. In contrast, in the mesh mode, traffics can be exchanged
directly between SSs. In this chapter, we only concentrate on the WiMAX PMP network. The physical layer of the IEEE 802.16 air interface operates either at 10-66 GHz for line-of-sight (LOS) communications or 2-11 GHz for non-line-of-sight (NLOS) communications, and it supports data rates in the range of 32-130 Mbps depending on the transmission bandwidth as well as the modulation and coding schemes used (5). Adaptive modulation and coding scheme (AMC) is supported in the standard. The design objective of AMC is to maximize the data rates by adjusting the transmission parameters according to time-varying channel conditions, while maintaining a prescribed target packet error rate (PER).

As specified in the standard, IEEE 802.16 employs OFDM in the physical layer. In particular, two different air interfaces based on OFDM can be used: WirelessMAN-OFDM and WirelessMAN-OFDMA. The first option employs fast Fourier transform (FFT) of size 256 (subcarriers). Time-division multiplexing (TDM) and time-division multiple access (TDMA) are used for downlink and uplink transmission respectively. The second option employs a larger FFT space (2048 and 4096 subcarriers) which are further grouped into subchannels. The subchannels are assigned to different subscriber stations and may employ different modulation and coding schemes to exploit frequency diversity as well as time diversity. The subchannels are also used for multiple access, namely, orthogonal frequency division multiple access (OFDMA). There are two approaches of allocating subcarriers to form a subchannel: distributed subcarrier permutation and adjacent subcarrier permutation. The two approaches are shown in Fig. 1. In distributed subcarrier permutation, a subchannel is formed with different subcarriers randomly distributed across the channel spectrum. This approach maximizes

![Fig. 1. Adjacent and distributed subcarrier allocation](image-url)
the frequency diversity and averages inter-cell interference. It is suitable for mobile environment where channel characteristics change fast. Both partial usage of subchannels (PUSC) and full usage of subchannels (FUSC) schemes employ distributed subcarrier permutation. In adjacent subcarrier permutation, a subchannel is formed by grouping adjacent subcarriers. This approach creates a 'loading gain' and is easy to use with beam-forming adaptive antenna system (AAS). It is suitable for stationary or nomadic environment where channel characteristics change slowly. The AMC scheme employs adjacent subcarrier permutation.

IEEE 802.16 standard supports both frequency-division duplex (FDD) and time-division duplex (TDD) transmission modes. For FDD scheme, distinct frequency channels are assigned for uplink and downlink transmissions. In contrast, TDD scheme uses a single frequency channel for uplink and downlink transmissions by dividing the MAC frame into uplink and downlink subframes. The length of these subframes are determined dynamically by the BS and are broadcasted to the SSs through downlink and uplink MAP messages (DL-MAP and UL-MAP) at the beginning of each frame.

Four types of services are defined in the standard, each of which has different QoS requirements (2):

- Unsolicited grant service (UGS): This type of service is designed to support real-time service flows, with strict delay requirement, which generate fixed-size data packets periodically, such as T1/E1.
- Real-time polling service (rtPS): This type of service is designed to support real-time service flows, with less stringent delay requirements, which generate variable-size data packets at periodic intervals, such as VoIP with silence suppression.
- Non-real-time polling service (nrtPS): This type of service is designed to support delay-tolerant data streams which are more bursty in nature, such as FTP. In general, the nrtPS can tolerate longer delays and is insensitive to delay jitter, but requires a minimum throughput.
- Best-effort service (BE): This type of service is designed for traffic with no QoS requirements, such as email, and therefore may be handled on a resource-available basis.

3. Downlink Resource Management Framework

3.1 Assumptions and Preliminaries
In this chapter, we only investigate the WiMAX PMP network with OFDMA-TDD operation. We assume that subscriber stations are stationary or nomadic users with slowly varying channel conditions. Adjacent subcarrier permutation strategy is employed to support AMC. In OFDMA, radio resource is partitioned in both frequency domain and time domain, which results in a hybrid frequency-time domain resource allocation. It provides an added dimension of flexibility in terms of higher granularity compared to OFDM/TDM systems.

We consider the downlink scenario of an infrastructure-based OFDMA system with U_s subcarriers and K users. At the physical layer, the time axis is divided into frames with fixed length, each of which consists of a downlink (DL) and an uplink (UL) subframe to support TDD operation. In each DL subframe, there are U_t time slots available for downlink transmissions, each of which may contain one or several OFDM symbols. To reduce the resource addressing space, channel coherence in frequency and time is exploited by grouping I_s adjacent subcarriers and I_t time slots to form a basic resource unit (BRU) for resource allocation. A BRU is the minimum resource allocation unit as shown in Fig. 2. The size of a BRU is adjusted so that the channel experiences flat fading in both frequency and time domain. Thus in each
Fig. 2. Frequency-time domain radio resource allocation in OFDMA systems

DL subframe, there are $S = U_s / I_s$ subchannels in frequency domain and $N = U_t / I_t$ slots in time domain, which corresponds to a total of $S \times N$ BRUs available in frequency-time domain for DL transmissions. Each BRU can be assigned to different users and be independently bit and power loaded. In principle, adaptive power allocation in each BRU can improve the system performance. However, some studies show that performance improvements are only marginal over a wide range of SNRs due to the statistical effects (3). Therefore, we assume that the total transmission power is equally distributed among all subchannels.

We further assume that in each frame the base station has perfect knowledge of channel state information (CSI) for each subchannel of each user. This can be obtained by piggybacking such information in each uplink packet, which is suitable for slowly varying channels. Based on CSI, adaptive modulation and coding scheme is employed to adjust the transmission mode dynamically according to the time-varying channel conditions. Multiple transmission modes are available, with each mode representing a pair of specific modulation format and a forward error correcting code. The transmission mode is determined by the instantaneous signal-to-noise ratio (SNR). To utilize the PHY layer resources more efficiently, fragmentation at the MAC layer is enabled. A separate queue with a finite queue length of L MAC protocol data units (PDUs) is maintained for each connection at the base station. We assume that the MAC PDUs are of fixed size, each of which contains d information bits.

3.2 Structure of the Resource Management Framework

The proposed downlink resource management framework consists of a dynamic resource allocation (DRA) module and a connection admission control (CAC) module. CAC is responsible for preventing the system capacity from being overused by limiting the number of ongoing connections. DRA aims at an efficient usage of the scarce radio resource, while maintaining
a guaranteed QoS performance among all admitted users. From a cross-layer perspective, resource management should be a joint optimization of a large number of variables ranging from application layer to physical layer. That is, which user should be scheduled for transmission in which BRU, under certain QoS constraints and time-varying channel conditions. However, this would lead to a very complex algorithm design since four types of services with different QoS requirements are defined in the standard. This approach would also lose flexibility if new traffic requirements or different optimization goals were to be considered. Therefore, we adopt a two-level hierarchical scheduler for the DRA module, a loosely cross-layer approach trying to strike a balance between flexibility and modularity. Then the resource allocation problem can be split into two subproblems, i.e., a bandwidth distribution problem in the aggregate resource allocator and a scheduling problem in class schedulers. Yet there is sufficient coupling between the allocator and the schedulers as the allocator is aware of the performance of the schedulers. An advantage of this two-level hierarchical resource allocation architecture is that the algorithms for the allocator and the schedulers can be developed independently of each other. As an example, if the scheduling algorithm of a class scheduler is changed from, let’s say, maximum SNR to proportional fairness, this will affect the way of BRU assignment in that class scheduler, but the bandwidth distribution algorithm in the aggregate resource allocator can be kept the same, as long as the design objective remains unchanged.

Fig. 3 depicts the proposed downlink resource management framework for IEEE 802.16 systems. When an application initiates a connection, it sends the connection request to the CAC module with connection type, traffic parameters, and QoS requirements. Then the CAC module interacts with the DRA module to get the current network state and commits admission
decisions. All arriving packets from the application layer are classified by the connection classifier according to their connection identifications (CID) and traffic types, and are sent to the corresponding service class and get queued. The DRA module is responsible for scheduling packets of all admitted connections. It consists of an aggregate resource allocator (ARA) and four class schedulers. The ARA distributes bandwidth to each class scheduler based on some criterion. Once the class scheduler receives bandwidth from the ARA, it schedules packets in its queues. In each class scheduler, because the incoming flows have similar traffic patterns and QoS requirements, the class scheduler has the freedom to independently choose its own scheduling algorithm which can best meet the QoS requirements. Therefore, this two-level hierarchical resource allocation module can have multiple scheduling criteria and better schedule packets in each service class than its one-level flat counterpart.

4. Hierarchical Resource Allocation

In this section, we first describe the scheduling algorithms employed in each class scheduler, then an adaptive estimation-based bandwidth distribution algorithm for the aggregate resource allocator is proposed.

4.1 Scheduling Algorithms for Class Schedulers

Class scheduler in each service class receives bandwidth from the ARA and involves in the allocation of subchannels and time slots among different users in its service queues. Scheduling algorithms designed for class schedulers should have the goal of maximizing the spectral efficiency with satisfied QoS performance. In this section, we apply the appropriate packet scheduling algorithm to each class scheduler.

4.1.1 Scheduling UGS connections

The scheduling of UGS connections is well defined by the standard. In UGS, the transmission mode at the PHY layer is fixed during the whole service time (2). The AMC is not employed for UGS connections. The time slots allocated for UGS connections per frame are fixed, based on their constant bit-rate requirements negotiated in the initial service access phase.

4.1.2 Scheduling rtPS and nrtPS connections

The rtPS connection is delay-sensitive and has strict delay requirement. The nrtPS connection can tolerate longer delays, but requires a minimum throughput. We propose a novel priority-based scheduling algorithm for rtPS and nrtPS class schedulers. The basic idea behind the proposed algorithm is that the transmission is scheduled in a packet-by-packet fashion based on its priority value. Specifically, at each scheduling interval, if a PDU was scheduled for transmission on a specific subchannel, it is assigned a priority value based on the instantaneous channel condition (PHY layer issue), as well as the QoS constraint (MAC layer issue). Then we can formulate the scheduling problem into a mathematical optimization problem with the objective to maximize the total achievable priority values.

We apply an extended EXP algorithm as our priority function for both rtPS and nrtPS connections. The EXP rule was proposed to provide QoS guarantees over a shared wireless link in terms of the average packet delay for RT traffic and a minimum throughput for NRT traffic (19).
For rtPS connections, if the i^{th} PDU from the k^{th} connection is scheduled for transmission on subchannel n, its priority is calculated as:

$$P(k, i, n) = a_k \cdot \frac{\mu_{k,n}(t)}{\bar{\mu}_k(t)} \cdot \exp \left(\frac{a_k W_{kj}(t) - \bar{aw}}{1 + \sqrt{aw}} \right)$$ (1)

where $\bar{aw} = \frac{1}{K} \sum_k a_k W_{k,1}(t)$, and $a_k = -\log \delta_k / T_{k,\text{max}}$. $W_{kj}(t)$ is the i^{th} PDU delay of connection k at time t, $T_{k,\text{max}}$ is the maximum allowable delay of connection k, δ_k is the maximum outage probability of connection k, $\mu_{k,n}(t)$ is the instantaneous channel rate with respect to the signal-to-noise ratio (SNR) and a predetermined target error probability if subchannel n is assigned to connection k at time t, and $\bar{\mu}_k(t)$ is the exponential moving average (EMA) channel rate of connection k with a smoothing factor t_c, calculated as:

$$\bar{\mu}_k(t) = (1 - \frac{1}{t_c})\bar{\mu}_k(t-1) + \frac{1}{t_c} \mu_k(t)$$ (2)

where $\mu_k(t) = \sum_n c_{k,n} \cdot \mu_{k,n}(t)$ is the total channel rate of connection k at time t. If subchannel n is assigned to connection k, $c_{k,n} = 1$, otherwise $c_{k,n} = 0$.

For nrtPS connections, the extended EXP algorithm is used in conjunction with a token bucket control to guarantee a minimum throughput (19). We associate each nrtPS with a virtual token bucket. Tokens in each bucket arrive at a constant rate $r_{k,\text{req}}$, which is the required minimum throughput of connection k. After a PDU is scheduled for transmission, the number of tokens in the corresponding token queue is reduced by the actual amount of data transmitted. The calculation of the priority for an nrtPS PDU is similar to Exp. (1), with the exception that $W_{kj}(t)$ in nrtPS is defined as the virtual waiting time of the i^{th} PDU from connection k:

$$W_{kj}(t) = \max \left\{ 0, \frac{Q_k(t) - (i - 1) \cdot d}{r_{k,\text{req}}} \right\} \quad k \in \text{nrtPS}$$ (3)

where $Q_k(t)$ is the number of tokens associated with connection k at time t, and d is the fixed size of a MAC PDU.

Let $u(k, i, n)$ be defined as a binary random variable indicating subchannel allocation. That is, $u(k, i, n) = 1$ means that the i^{th} PDU from connection k is allocated for transmission on subchannel n, and $u(k, i, n) = 0$ otherwise. Also let us define $m(k, i, n)$ be the number of time slots occupied on subchannel n if the i^{th} PDU from connection k is scheduled for transmission on subchannel n, calculated as:

$$m(k, i, n) = \left[\frac{d}{\mu_{k,n}(t)} \right]$$ (4)

where $\left[x \right]$ denotes the smallest integer larger than x.

Then, the scheduling problem can be mathematically formulated as follows:

$$\arg \max_{u(k,i,n)} \sum_{k=1}^{K} \sum_{i=1}^{L} \sum_{n=1}^{S} u(k,i,n) \cdot P(k,i,n)$$ (5)

subject to:

$$\sum_{k=1}^{K} \sum_{i=1}^{L} u(k,i,n) \cdot m(k,i,n) \leq N \quad \forall n$$ (6)
\[
\sum_{n=1}^{S} \mathbf{u}(k, i, n) \leq 1 \quad \forall k, i \quad (7)
\]
\[
\mathbf{u}(k, i, n) \in \{0, 1\} \quad \forall k, i, n \quad (8)
\]

where \(S \) denotes the total number of subchannels, \(N \) denotes the total number of time slots, \(K \) denotes the total number of connections, and \(L \) denotes the maximum queue size.

The first constraint ensures that the allocated bandwidth does not exceed the total available bandwidth in terms of time slots on each subchannel. The second constraint says that a PDU can only be transmitted via one subchannel. The instantaneous channel conditions and the QoS related parameters are embodied into the priority function \(P(k, i, n) \) with the objective of maximizing the total achievable priority values, thus improving the spectral efficiency while maintaining QoS guarantees.

The above optimization problem can be solved by determining the values of binary variable \(\mathbf{u}(k, i, n) \) through standard linear integer programming (LIP). The solution to the problem provides an optimal resource allocation. However, the computation complexity of the optimal solution is too high to be applied in practical systems. To reduce the computational complexity, we propose a suboptimal algorithm with low complexity.

In the suboptimal algorithm, we allocate radio resources on a packet-by-packet basis. The general idea is that, at each scheduling interval, the packet with the highest priority value from all queues is scheduled for transmission, and this procedure continues until either there is no radio resource left or there is no packet remaining unscheduled in the queue. A detailed description of the proposed scheduling algorithm is listed in pseudocode 1, where \(\Omega_k^b \) is the set of subchannels that are available for data transmission of connection \(k \), \(t_n \) is the number of residual time slots on subchannel \(n \), \(q_k \) is the current queue size of connection \(k \), and \(i_k \) is a pointer to the next PDU to be scheduled of connection \(k \).

1 The optimal solution of the LIP problem formulated in this chapter is obtained by using the General Algebraic Modeling System (GAMS).
Algorithm 1 Suboptimal Scheduling Algorithm for rtPS and nrtPS Class Schedulers

1: Set $t_n \leftarrow N$ for $\forall n$ [initialize t_n]
2: Set $i_k \leftarrow 1$ for $\forall k$ [initialize i_k]
3: Get q_k for $\forall k$ [get the queue size of connection k]
4: for $k = 1$ to K do
5: if $q_k > 0$ then
6: Set $\Omega^k_s \leftarrow \{1, \cdots, S\}$ [initialize Ω^k_s]
7: else
8: Set $\Omega^k_s \leftarrow \phi$ [set Ω^k_s to be null]
9: end if
10: end for
11: while $\exists x, \Omega^x_s \neq \phi$ do
12: for $k = 1$ to K do
13: while $\Omega^k_s \neq \phi$ do
14: Select $n \leftarrow \arg \max_{n \in \Omega^k_s} \mu_k, n(t)$ [assign the best subchannel from the available subchannel set]
15: if $t_n \geq \left\lceil \frac{d}{\mu_k, n(t)} \right\rceil$ then
16: Calculate $P(k, i_k, n)$ in Exp. (1)
17: BREAK
18: else
19: $\Omega^k_s \leftarrow \Omega^k_s - \{n\}$ [remove n from the available subchannel set if there is not enough capacity left]
20: CONTINUE
21: end if
22: end for
23: end while
24: Schedule the i_k-th PDU of connection k^* on subchannel n^*, where $(k^*, i_{k^*}, n^*) \leftarrow \arg \max_{k, i, n} P(k, i, n)$ [assign the best subchannel from the available subchannel set]
25: $t_{n^*} \leftarrow t_{n^*} - \left\lceil \frac{d}{\mu_{k^*, n^*}(t)} \right\rceil$ [update the residual time slots]
26: if $i_{k^*} = q_k$ then
27: $\Omega^k_s \leftarrow \phi$ [set Ω^k_s to be null when all pending PDUs of connection k^* have been scheduled for transmission]
28: else
29: $i_{k^*} \leftarrow i_{k^*} + 1$ [point to the next pending PDU]
30: end if
31: end while

It works as follows: If connection k has pending traffic in the queue, the proposed algorithm first pre-allocates the best subchannel n in terms of the instantaneous channel quality to connection k from its available subchannel set Ω^k_s (see Step 14). If there is not enough capacity left on the best subchannel n to accommodate one PDU from connection k’s queue, subchannel n will be removed from connection k’s available subchannel set, and the second best subchannel n' will be selected. This procedure continues until a best possible subchannel is pre-allocated to connection k (see Step 13-22). Otherwise, connection k is removed from the scheduling list. After the subchannel pre-allocation process for all connections is complete, the algorithm calculates the priority value of the head-of-line (HOL) PDU in each non-empty queue, and
schedule the PDU with the highest priority value for transmission on subchannel \(n^* \) (see Step 16 & 24). The scheduled PDU is removed from the corresponding queue and the consumed radio resources in terms of time slots are subtracted on subchannel \(n^* \) (see Step 25 & 26-30). Then it starts from the beginning and continues until either there is no radio resource left or there is no PDU pending in the queue. A detailed description of the proposed suboptimal algorithm is listed in pseudocode 1.

4.1.3 Scheduling BE connections
Since there are no QoS guarantees for BE connections, we simply apply the Proportional Fair (PF) algorithm to schedule BE traffic. The PF algorithm attempts to serve each user at its peak channel condition. Hence the PF algorithm can utilize the radio resource efficiently and give proportional fairness among users (20). At each scheduling point, the PF algorithm selects connection \(k \) for transmission on subchannel \(n \) as follows:

\[
(k, n) = \arg \max_k \mu_{kn}(t) \over \pi_{k}(t) \quad \forall n
\]

(9)

where \(\mu_{kn}(t) \) and \(\pi_k(t) \) are defined as the same in (1).

4.2 Scheduling Algorithm for the Aggregate Resource Allocator
The aggregate resource allocator (ARA) is responsible for distributing the total available bandwidth among class schedulers. If the ARA does not allocate enough bandwidth to the class scheduler, the QoS requirements in the corresponding service class may not be guaranteed. On the other hand, if the ARA allocates too much bandwidth to the class scheduler, the allocated radio resource may not be utilized efficiently or even be wasted. Therefore, the resource distribution algorithm of ARA is a critical factor on the performance of class schedulers and has to be carefully designed.

4.2.1 Conventional Bandwidth Distribution Algorithms
One possible solution is that the ARA distributes bandwidth among service classes following strict class priority, from highest to lowest, i.e., UGS, rtPS, nrtPS and BE. After all connections in high priority class have been served, connections in low priority class are scheduled for transmission. By doing so, the ARA can differentiate different service classes based on their class priority. The priority-based scheme is simple, but one disadvantage of this algorithm is that higher priority classes may starve the bandwidth for lower priority classes.

To overcome this problem, the ARA may partition the total bandwidth into several portions to satisfy proportional fairness among service classes. This method can prevent the starvation of low priority classes. There are static and dynamic bandwidth distribution schemes in this method. In the static scheme, the ARA distributes a fixed amount of bandwidth to each class scheduler at every scheduling interval. This approach has the advantage of simplicity and works well when the traffic pattern in each service class is regular and stable, which unfortunately is not always the case in data communications. Therefore, a dynamic bandwidth distribution scheme which can adapt to the traffic pattern and the performance of class schedulers is believed to be a better solution.

4.2.2 Proposed Adaptive Bandwidth Distribution Algorithm
The design objective of our proposed resource allocation algorithm is to adaptively allocate bandwidth to each service class in order to increase the spectral efficiency while satisfying the
diverse QoS requirements. In designing the proposed adaptive resource allocation algorithm, we have taken the following aspects into account: (i) the backlogged traffic; (ii) the average modulation efficiency; (iii) the QoS satisfaction. The general idea is that, in the scheduling interval, the ARA first estimates the amount of bandwidth required in each class scheduler based on the backlogged traffic and the average modulation efficiency. Then depending on the QoS performance in each class scheduler, the estimation is further increased or decreased to maintain the guaranteed performance.

We separate the bandwidth allocation of UGS class from the others as it has been defined by the standard. At the beginning of each frame, the ARA allocates a fixed amount of time slots \(N_{\text{UGS}} = \sum_{i \in \{\text{UGS}\}} \theta_i \) to UGS connections based on their constant bit-rate requirements negotiated in the initial service access phase, where \(\theta_i \) is the number of time slots required by UGS connection \(i \). Let \(N_{\text{total}} \) be the total number of time slots in each frame, then the residual time slots after serving UGS class \(N_{\text{rest}} = N_{\text{total}} - N_{\text{UGS}} \) are distributed among rtPS, nrtPS and BE classes, which employ AMC scheme at the PHY layer.

For rtPS class, since each packet has a rigid delay requirement, the total sum of the current queue size in rtPS class is an appropriate measure for the backlogged traffic \(B_{\text{rtPS}}(t) = \sum_{i \in \{\text{rtPS}\}} q_i(t) \), where \(q_i(t) \) is the number of bits in queue \(i \) at time \(t \). The average modulation efficiency \(\overline{\eta}_{\text{rtPS}}(t) \) is defined as the average number of bits carried per OFDM symbol over a sliding time window \(t_c \). \(\gamma \) is a QoS related parameter (i.e., maximum allowable delay in rtPS) representing the proportion of backlogged traffic that has to be transmitted within each frame. Then the estimated number of time slots required for rtPS class can be expressed as follows:

\[
E_{\text{rtPS}}(t) = \alpha(t) \cdot \frac{\gamma B_{\text{rtPS}}(t)}{\overline{\eta}_{\text{rtPS}}(t)}
\]

where \(\alpha(t) \) is a QoS-aware adjustment factor that is updated according to the performance of the class scheduler on a frame by frame basis. The basic idea is that when the class scheduler experiences good QoS satisfaction, the value of \(\alpha(t) \) is decreased to save bandwidth for other classes. Otherwise, the value of \(\alpha(t) \) is increased to guarantee the required QoS. Towards this end, an exponentially smoothed curve is applied to adjust the value of \(\alpha(t) \). The adjustment, which is \(|\Delta \alpha(t)| = |\alpha(t) - \alpha(t-1)| \), is minor if the QoS outage probability is around a predefined target threshold. Otherwise, \(|\Delta \alpha(t)| \) is exponentially increased to either increase or decrease the allocated bandwidth to the class scheduler, as illustrated in Fig. 4. The calculation of \(\Delta \alpha(t) \) is specified as follows:

\[
\Delta \alpha(t) = \begin{cases}
\xi_{\text{max}} \cdot \frac{\exp(\beta \cdot d(t)) - 1}{\exp(\beta \cdot D_{\text{max}}) - 1} & \text{if } P_r(t) \geq T_h \\
-\xi_{\text{max}} \cdot \frac{\exp(\beta \cdot d(t)) - 1}{\exp(\beta \cdot D_{\text{max}}) - 1} & \text{if } P_r(t) < T_h
\end{cases}
\]

where \(d(t) \) is the truncated difference between the current outage probability and the outage probability threshold:

\[
d(t) = \min\{|P_r(t) - T_h|, D_{\text{max}}\}
\]

where \(P_r(t) \) is the delay outage probability at time \(t \), \(T_h \) is the outage probability threshold, \(D_{\text{max}} \) is the truncated maximum value of \(|d(t)| \), \(\beta \) is a shape factor which is used to tune the adaptation degree, and \(\xi_{\text{max}} \) is the maximum value of \(|\Delta \alpha(t)| \). Term \(\exp(\beta \cdot d(t)) - 1/(\exp(\beta \cdot D_{\text{max}}) - 1) \) is a normalization function of \((P_r(t) - T_h) \). When \(P_r(t) \) is close to \(T_h \), the normalized value is close to zero. Otherwise it increases exponentially to one. The overall bandwidth estimation procedure for rtPS class can be described as follows:
Fig. 4. An exponentially smoothed curve with respect to QoS satisfaction is applied to adjust the estimated amount of bandwidth in the class scheduler

- **Step 1:** At each scheduling instant, calculate the backlogged traffic \(B_{rtPS}(t) \), the average modulation efficiency \(\pi_{rtPS}(t) \), and the current delay outage probability \(P_r(t) \). Update the value of \(\alpha(t) \):

\[
\alpha(t) = \begin{cases}
\min\{\alpha(t-1) + \Delta \alpha(t), \alpha_{\text{max}}\} & \text{if } P_r(t) \geq T_h \\
\max\{\alpha(t-1) + \Delta \alpha(t), \alpha_{\text{min}}\} & \text{if } P_r(t) < T_h
\end{cases}
\]

(12)

where \(\alpha_{\text{max}} \) and \(\alpha_{\text{min}} \) are the maximum and minimum values of \(\alpha(t) \), respectively.

- **Step 2:** Calculate the estimated bandwidth for rtPS class according to Exp. (10).

For nrtPS class, the bandwidth estimation procedure is the same as in rtPS class, except the definition of the backlogged traffic and the outage probability. Here we take the total number of virtual tokens associated with each queue as a measure for the backlogged traffic \(B_{nrtPS} = \sum_{i \in \{nrtPS\}} v_i(t) \), where \(v_i(t) \) is the number of virtual tokens in bucket \(i \) at time \(t \). \(P_r(t) \) in nrtPS is the throughput outage probability.

The proposed adaptive bandwidth distribution algorithm works as follows: At each scheduling instant, the ARA first allocates the amount of required bandwidth to UGS class \((N_{\text{UGS}}) \) and a minimum amount of bandwidth to BE class \((N_{\text{BE}}^{\text{min}}) \). Once the ARA has estimated the amount of required bandwidth for rtPS and nrtPS classes (i.e., \(E_{rtPS} \) and \(E_{nrtPS} \)), it checks the remaining bandwidth. If the remaining bandwidth is larger than the estimated sum of \(E_{rtPS} \) and \(E_{nrtPS} \), the ARA first allocates \(E_{rtPS} \) and \(E_{nrtPS} \) to rtPS and nrtPS class schedulers respectively. Then the residual bandwidth is distributed among rtPS, nrtPS and BE class schedulers proportional to their queue size \(Q_{rtPS}, Q_{nrtPS}, \) and \(Q_{BE} \). Otherwise, if the remaining bandwidth is smaller than the estimated sum of \(E_{rtPS} \) and \(E_{nrtPS} \), the ARA first allocates \(E_{rtPS} \) to rtPS class, then the residual bandwidth is allocated to nrtPS class. It is worth mentioning that in order to satisfy proportional fairness among class schedulers, each class scheduler is reserved a minimum amount of bandwidth. A detailed description of the proposed algorithm is listed in pseudocode 2.
Algorithm 2: Adaptive bandwidth distribution algorithm for the Aggregate Resource Allocator (ARA)

1: Set initial N_{total} at the beginning of each frame
2: $N_{\text{UGS}} \leftarrow \sum_{i \in \{\text{UGS}\}} \theta_i$
3: Set N_{BE}^{\min}
4: $N_{\text{residual}} \leftarrow N_{\text{total}} - N_{\text{UGS}} - N_{\text{BE}}^{\min}$
5: Estimate the number of time slots required in rtPS class scheduler E_{rtPS} by Exp. (10)
6: Estimate the number of time slots required in nrtPS class scheduler E_{nrtPS} by Exp. (10)
7: if $N_{\text{residual}} \geq (E_{\text{rtPS}} + E_{\text{nrtPS}})$ then
8: $N_{\text{residual}} \leftarrow N_{\text{residual}} - E_{\text{rtPS}} - E_{\text{nrtPS}}$
9: $N_{\text{BE}} \leftarrow E_{\text{rtPS}} + N_{\text{residual}} \cdot \frac{Q_{\text{rtPS}}}{Q_{\text{rtPS}} + Q_{\text{nrtPS}} + Q_{\text{BE}}}$
10: $N_{\text{nrtPS}} \leftarrow E_{\text{nrtPS}} + N_{\text{residual}} \cdot \frac{Q_{\text{rtPS}}}{Q_{\text{rtPS}} + Q_{\text{nrtPS}} + Q_{\text{BE}}}$
11: $N_{\text{BE}}^{\min} \leftarrow N_{\text{BE}}^{\min} + N_{\text{residual}} \cdot \frac{Q_{\text{BE}}}{Q_{\text{rtPS}} + Q_{\text{nrtPS}} + Q_{\text{BE}}}$
12: if $N_{\text{rtPS}} < N_{\text{min}}^{\text{rtPS}}$ or $N_{\text{nrtPS}} < N_{\text{min}}^{\text{nrtPS}}$ then
13: Adjust the values of $N_{\text{rtPS}}, N_{\text{nrtPS}}$ and N_{BE} so that $N_{\text{rtPS}} \geq N_{\text{min}}^{\text{rtPS}}$ and $N_{\text{nrtPS}} \geq N_{\text{min}}^{\text{nrtPS}}$
14: end if
15: else
16: $N_{\text{rtPS}} \leftarrow \min\{E_{\text{rtPS}}, N_{\text{residual}}\}$
17: $N_{\text{nrtPS}} \leftarrow N_{\text{residual}} - N_{\text{rtPS}}$
18: $N_{\text{BE}} \leftarrow N_{\text{BE}}^{\min}$
19: if $N_{\text{rtPS}} < N_{\text{min}}^{\text{rtPS}}$ or $N_{\text{nrtPS}} < N_{\text{min}}^{\text{nrtPS}}$ then
20: Adjust the values of N_{rtPS} and N_{nrtPS} so that $N_{\text{rtPS}} \geq N_{\text{min}}^{\text{rtPS}}$ and $N_{\text{nrtPS}} \geq N_{\text{min}}^{\text{nrtPS}}$
21: end if
22: end if

5. Connection Admission Control

Connection admission control is a key component of QoS provisioning for wireless systems supporting multiple types of applications. It aims at maintaining the delivered QoS to different users at the target level by limiting the number of ongoing connections in the system. In this chapter, we propose a measurement-based approach as our CAC policy, of which a CAC decision is made depending on the current resource utilization of the network. When a new connection request is initiated, it informs the CAC module of the connection type (i.e., rtPS or nrtPS), the traffic parameters (i.e., arrival rate and service rate), and the QoS requirements (i.e., maximum delay or minimum throughput). Then the CAC module estimates the required amount of bandwidth ΔN to accommodate the incoming connection and performs a CAC decision based on the following conditions.

For UGS connections, as the transmission mode and the number of time slots allocated per connection per frame are negotiated in the initial service access phase and are fixed during the whole service time, a simple threshold-based CAC is applied:

$$N_{\text{current}}^{\text{UGS}} + \Delta N_{\text{UGS}} \leq N_{\text{max}}^{\text{UGS}}$$

(13)

where $N_{\text{current}}^{\text{UGS}}$ is the number of time slots occupied by the ongoing UGS connections, and $N_{\text{max}}^{\text{UGS}}$ is the maximum number of time slots that can be allocated to the UGS class scheduler. If this condition is satisfied, the incoming connection is accepted; otherwise, it is rejected.
For rtPS and nrtPS connections, when a new connection arrives, the CAC module interacts with ARA in the DRA module and gets the current estimated bandwidth occupied by the ongoing rtPS and nrtPS connections, $E_{rtPS}(t)$ and $E_{nrtPS}(t)$, which are the exponential moving average of $E_{rtPS}(t)$ and $E_{nrtPS}(t)$ mentioned in Eqn. (10). If the sum of the estimated bandwidth used by the ongoing rtPS and nrtPS connections ($E_{rtPS}(t)$, $E_{nrtPS}(t)$) and the estimated bandwidth to be used by the incoming connection (ΔN_{rtPS} or ΔN_{nrtPS}) is larger than a predefined upper threshold, the incoming connection is rejected; otherwise, the connection is accepted with certain probability depending on the estimated bandwidth usage and the connection priority. Specifically, when the estimated bandwidth occupancy is high or the priority of the incoming connection is low, the acceptance probability is small, and vice versa. A detailed description of the proposed CAC algorithm for rtPS connections is listed in pseudocode 3, where N_{max}^{th} and N_{min}^{th} are the maximum and minimum capacity threshold respectively, and $\rho_{rtPS} \in (0, 1]$ is a parameter that is used to differentiate class priorities. The same CAC algorithm is applied for nrtPS connections.

Algorithm 3 Connection admission control algorithm for rtPS connections

1. if $E_{rtPS}(t) + E_{nrtPS}(t) + \Delta N_{rtPS} > N_{th}^{max}$ then
2. Reject the incoming connection
3. else if $E_{rtPS}(t) + E_{nrtPS}(t) + \Delta N_{rtPS} < N_{th}^{min}$ then
4. Accept the incoming connection with probability ρ_{rtPS}
5. else
6. Accept the incoming connection with probability $\rho_{rtPS} \cdot \frac{N_{th}^{max} - (E_{rtPS}(t) + E_{nrtPS}(t) + \Delta N_{rtPS})}{N_{th}^{max} - N_{th}^{min}}$
7. end if

For BE connections, they are always accepted since they do not impose any QoS constraints.

6. Simulation Results and Discussions

To evaluate the performance of the proposed downlink resource management framework for QoS scheduling in OFDMA based WiMAX networks, a system-level simulation is performed in OPNET.

6.1 System Model

We consider the downlink of a single-cell IEEE 802.16 system with OFDMA TDD operation. The cell radius is 2 km, where subscriber stations are randomly placed in the cell with uniform distribution. The total bandwidth is set to be 5 MHz, which is divided into 10 subchannels. The BS transmit power is set to 20W (43 dBm) which is evenly distributed among all subchannels. The duration of a frame is set to be 1 ms so that the channel quality of each connection remains almost constant within a frame, but may vary from frame to frame. The propagation model is derived from IEEE 802.16 SUI channel model (30). Path loss is modeled according to terrain Type A suburban macro-cell. Large-scale shadowing is modeled by log-normal distribution with zero mean and standard deviation of 8 dB. Small-scale shadowing is modeled by Rayleigh fading.

Table 1 summarizes the system parameters used in the simulation. We assume that all MAC PDUs are transmitted and received without errors and the transmission delay is negligible.
Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>OFDMA/TDD</td>
</tr>
<tr>
<td>Central frequency</td>
<td>3500 MHz</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>5 MHz</td>
</tr>
<tr>
<td>Number of subchannels</td>
<td>10</td>
</tr>
<tr>
<td>User distribution</td>
<td>Uniform</td>
</tr>
<tr>
<td>Beam pattern</td>
<td>Omni-directional</td>
</tr>
<tr>
<td>Cell radius</td>
<td>2 km</td>
</tr>
<tr>
<td>Frame duration</td>
<td>1 ms</td>
</tr>
<tr>
<td>BS transmit power</td>
<td>20 W</td>
</tr>
<tr>
<td>Thermal noise density</td>
<td>-174 dBm/Hz</td>
</tr>
<tr>
<td>Propagation model</td>
<td>802.16 SUI-5 Channel model</td>
</tr>
<tr>
<td>Maximum MAC PDU size</td>
<td>256 bytes</td>
</tr>
</tbody>
</table>

Table 1. A summary of system parameters

<table>
<thead>
<tr>
<th>Modulation scheme</th>
<th>Coding rate</th>
<th>bits/symbol</th>
<th>Target SNR for 1% PER (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPSK</td>
<td>1/2</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>QPSK</td>
<td>1/2</td>
<td>1</td>
<td>6.4</td>
</tr>
<tr>
<td>QPSK</td>
<td>3/4</td>
<td>1.5</td>
<td>8.2</td>
</tr>
<tr>
<td>16QAM</td>
<td>1/2</td>
<td>2</td>
<td>13.4</td>
</tr>
<tr>
<td>16QAM</td>
<td>3/4</td>
<td>3</td>
<td>16.2</td>
</tr>
<tr>
<td>64QAM</td>
<td>1/2</td>
<td>4</td>
<td>21.7</td>
</tr>
<tr>
<td>64QAM</td>
<td>3/4</td>
<td>4.5</td>
<td>24.4</td>
</tr>
</tbody>
</table>

Table 2. Modulation and coding schemes for 802.16 (27)

The modulation order and coding rate in AMC is determined by the instantaneous SNR of each user on each subchannel. We follow the AMC table shown in Table 2, which specifies the minimum SNR required to meet a target packet error rate, e.g., 1%.

6.2 Traffic Model

In the simulation, different types of traffic sources are generated: VoIP, videoconference, and Internet traffic. VoIP and videoconference are served in UGS class and rtPS class, respectively. Internet traffic is served in nrtPS class and BE class. Each user alternates between the states of idle and busy, which are both exponentially distributed, and generates one or several traffic types independently during the busy period. VoIP traffic is modeled as a two-state Markov ON/OFF source (16). A videoconference consists of a VoIP source and a video source (16). Internet traffic can be web browsing that requires large bandwidth and generates bursty data of variable size. We apply the Web browsing model for the Internet traffic (17). A summary of traffic parameters for different traffic types are listed in Table 3.

6.3 Performance Evaluation

Since the performance of fixed bandwidth allocation for UGS connections is well defined by the standard and BE connections do not have any specific QoS requirements, here we only focus on the performance evaluation of rtPS and nrtPS connections. The delay constraint for
Table 3. A summary of traffic parameters

<table>
<thead>
<tr>
<th>Type</th>
<th>Characteristics</th>
<th>Distribution</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>VoIP</td>
<td>ON period</td>
<td>Exponential</td>
<td>Mean = 1.34 sec</td>
</tr>
<tr>
<td>VoIP</td>
<td>OFF period</td>
<td>Exponential</td>
<td>Mean = 1.67 sec</td>
</tr>
<tr>
<td>VoIP</td>
<td>Packet size</td>
<td>Constant</td>
<td>66 bytes</td>
</tr>
<tr>
<td>VoIP</td>
<td>Inter-arrival time between packets</td>
<td>Constant</td>
<td>20 ms</td>
</tr>
<tr>
<td>Video</td>
<td>Packet size</td>
<td>Log-normal</td>
<td>Mean = 4.9 bytes, Std. dev. = 0.75 bytes</td>
</tr>
<tr>
<td>Video</td>
<td>Inter-arrival time between packets</td>
<td>Normal</td>
<td>Mean = 33 ms, Std. dev. = 10 ms</td>
</tr>
<tr>
<td>Web</td>
<td>Reading time between sessions</td>
<td>Exponential</td>
<td>Mean = 5 sec</td>
</tr>
<tr>
<td>Web</td>
<td>Number of packets within a packet call</td>
<td>Geometric</td>
<td>Mean = 25 packets</td>
</tr>
<tr>
<td>Web</td>
<td>Inter-arrival time between packets</td>
<td>Geometric</td>
<td>Mean = 0.0277 sec</td>
</tr>
<tr>
<td>Web</td>
<td>Packet size</td>
<td>Truncated Pareto</td>
<td>$k = 81.5$ bytes, $\alpha = 1.1$, $m = 2$ M bytes</td>
</tr>
</tbody>
</table>

The outage probabilities for both rtPS and nrtPS classes should be less than 3%.

6.3.1 Effectiveness of the proposed resource management framework

We start the analysis by evaluating the effectiveness of the proposed downlink resource management framework when both rtPS and nrtPS classes are employed. We first set up a scenario with a fixed number of 45 SSs, each of which has a connection pair consisting of a rtPS connection and a nrtPS connection. Fig. 5 shows the performance of the rtPS class scheduler over time, where the first subplot indicates the estimated and the granted bandwidth to rtPS class scheduler, the second and third subplots depict packet delay and delay outage probability respectively. It is clearly shown in the figure that the estimated bandwidth adaptively and closely follows the pattern of the delay outage probability. This is in accordance with our expectation and can be explained as follows: In designing the bandwidth distribution algorithm of the ARA, the proposed algorithm first pre-estimates the required amount of bandwidth based on the backlogged traffic and the average modulation efficiency. Then an adjustment of pre-estimation is performed with respect to QoS satisfaction (e.g., delay outage probability in rtPS class). Specifically, when the class scheduler experiences good QoS satisfaction, i.e., the delay outage probability is below the threshold, the amount of the estimated bandwidth is decreased to save for other classes. Otherwise, the amount of the estimated bandwidth is increased to guarantee the required QoS. We can see from the figure that the delay outage probability fluctuates around the threshold. One advantage of the proposed bandwidth distribution algorithm is that instead of allocating the available bandwidth to each class scheduler in a static manner, the proposed algorithm adaptively allocates a "necessary" amount of bandwidth to each class scheduler to intentionally keep its outage probability around a predefined threshold, which is 3% in our case. Similar phenomenon can be observed in Fig. 6, where
Fig. 5. Performance of rtPS class scheduler over time (estimated bandwidth & granted bandwidth, packet delay, and delay outage probability), with 45 SSs

Fig. 6. Performance of nrtPS class scheduler over time (estimated bandwidth & granted bandwidth, and minimum throughput outage probability), with 45 SSs
Fig. 7. CAC performance for rtPS and nrtPS connections over time, with 45 SSs

the first subplot indicates the estimated and the granted bandwidth to nrtPS class scheduler and the second subplot depicts the throughput outage probability. Again, the estimated bandwidth shows a strong correlation with the throughput outage probability in nrtPS class. Furthermore, the curve of the granted bandwidth in both rtPS and nrtPS classes follows the pattern of the estimated bandwidth, but is higher than the estimated bandwidth. This is because in the proposed bandwidth distribution algorithm, when the available bandwidth is larger than the estimated sum of E_{rtPS} and E_{nrtPS}, the ARA first allocates E_{rtPS} and E_{nrtPS} to rtPS and nrtPS class schedulers respectively. Then the residual bandwidth is distributed among rtPS, nrtPS and BE class schedulers proportional to their queue size. To summarize, the proposed two-level hierarchical scheduler can distribute the available bandwidth among class schedulers and schedule packets in each service class efficiently and adaptively.

Fig. 7 shows the performance of CAC for rtPS and nrtPS classes over time, where the first subplot indicates the sum of the estimated bandwidth for rtPS and nrtPS classes, the second subplot depicts the connection rejection probability for rtPS and nrtPS classes, and the third subplot shows the number of ongoing rtPS and nrtPS connections. It is obvious from the figure that the CAC decision of an incoming connection attempt depends on the current state of the network (i.e., the total amount of bandwidth used by the ongoing connections plus the estimated bandwidth to be used by the incoming connection). The rejection probability is proportional to the resource usage by the ongoing connections. The number of ongoing rtPS and nrtPS connections are inverse-proportional to the CAC rejection probability as expected. Furthermore, both the acceptance probability and the number of ongoing connections for rtPS class are relatively higher than those for nrtPS class. This is because rtPS connections are given a higher priority value than nrtPS connections in our scenario, which results in higher acceptance probability. In general, the simulation results confirmed that the proposed
measurement-based CAC strategy can effectively limit the number of ongoing rtPS and nrtPS connections, thus preventing the system capacity from being overused.

6.3.2 Comparisons of different bandwidth distribution algorithms in ARA

Since the bandwidth distribution algorithm in ARA is critical on the performance of class schedulers, next we evaluate and compare the performance of the proposed adaptive estimation-based bandwidth distribution scheme with two other conventional bandwidth distribution schemes, e.g., strict priority-based scheme and static scheme. For comparisons, the CAC module in the framework is disabled so that all connection requests will be accepted. Some of the parameters used in the proposed adaptive scheme are set as follows: $\gamma = 0.02$, $\beta = 80$, $T_h = 0.03$, $D_{max} = 0.015$, $\xi = 0.02$, $\alpha_{min} = 0.5$, and $\alpha_{max} = 1.5$. In the static scheme, the proportions of the total available bandwidth allocated to rtPS and nrtPS class schedulers are set to be 50% and 50%, respectively.

Fig. 8 shows the average packet delay in rtPS class versus the number of SSs under different bandwidth distribution schemes. The average packet delay of the proposed adaptive scheme and the priority-based scheme remains almost constant regardless of the number of SSs in the system, while in the static scheme, the average packet delay increases sharply when the number of SSs is above 45. Similar phenomenon can be observed for the delay outage probability shown in Fig. 9. From Fig. 8 & 9, we can obviously see that both the priority-based scheme and the proposed adaptive scheme can meet the QoS requirements in rtPS class in terms of the average packet delay and the delay outage probability. On the other hand, the static scheme can not adapt to the traffic load, thus is not suitable for load varying systems.
Fig. 9. Delay outage probability in rtPS under different bandwidth distribution schemes in the ARA

Fig. 10. Normalized spectral efficiency in rtPS under different bandwidth distribution schemes in the ARA
The advantage of the proposed adaptive scheme over the priority-based scheme is depicted in Fig. 10, which shows the normalized spectral efficiency, defined as the ratio between the achieved modulation order and the highest modulation order, in rtPS class under different bandwidth distribution schemes. It is shown that the normalized spectral efficiency of the adaptive scheme is about two times than that of the priority-based scheme. This is because in the priority-based scheme, the ARA distributes the available bandwidth to each class scheduler following strict class priorities (e.g., rtPS→nrtPS in our scenario). Therefore, high priority class may get more bandwidth than it is actually needed. As a consequence, much of the allocated bandwidth is utilized with low spectral efficiency. However, in the proposed adaptive scheme, the ARA only allocates a "necessary" amount of bandwidth to each class scheduler with the objective to keep its outage probability around a predefined threshold, so that the performance of the class scheduler can be maximized. By doing so, the channel and QoS aware class scheduler has more chance to serve a user in good channel condition without sacrificing the QoS requirement (as we can see in Fig. 8 that the average packet delay in the adaptive scheme is higher than that of the priority-based scheme, but is well kept below a threshold), thus significantly increases the spectral efficiency. We also notice in Fig. 10 that the spectral efficiency of the static scheme becomes higher than the adaptive scheme when the number of SSs is more than 44. This is because in the static scheme, the ARA allocates a fixed amount of bandwidth to each class scheduler. While in the adaptive scheme, the bandwidth is allocated dynamically according to the actual needs. When the number of SSs is less than 44, the bandwidth allocated to rtPS class scheduler in the static scheme is more than needed, thus the allocated bandwidth is utilized with low spectral efficiency. However, when the number of SSs is more than 44, the bandwidth allocated to rtPS class scheduler in the static scheme is less than the adaptive scheme, which results in a higher modulation efficiency due to the scheduling mechanism of EXP algorithm.

Fig. 11 shows the throughput in nrtPS class versus the number of SSs under different bandwidth distribution schemes. When the system is underloaded (the number of SSs is less than 34), the throughput in all three schemes increases proportional to the number of SSs. On the other hand, there is a big difference among different schemes when the system is overloaded. The throughput of the priority-based scheme is significantly lower than the other two schemes. Specifically, in the priority-based scheme, the throughput is inverse proportional to the number of SSs. In the static scheme, the throughput increases proportional to the number of SSs when there are less than 42 SSs. After that point, the throughput remains on a steady level regardless of the number of SSs. While in the adaptive scheme, the throughput keeps increasing proportional to the number of SSs when there are less than 52 SSs. After that point, the throughput decreases as the number of SSs increases. It can be explained as follows: In the adaptive scheme, the ARA tries to balance the bandwidth distribution among different class schedulers to increase the spectral efficiency while satisfying the QoS requirements. When the system is unsaturated, i.e., the total available bandwidth is larger than the estimated sum (the number of SSs is less than 52), the ARA first allocates the estimated amount of bandwidth to each class scheduler, then the residual bandwidth is distributed among all class schedulers according to their queue size. Therefore, the throughput in each service class increases proportional to the number of SSs. When saturation occurs, i.e., the total available bandwidth is smaller than the estimated sum (the number of SSs is larger than 52), the ARA allocates the estimated amount of bandwidth to the class schedulers from high priority to low priority, which means that rtPS class gets the estimated amount of bandwidth first, followed by nrtPS class. Thus the throughput in service class with low priority (nrtPS) decreases as the band-
Fig. 11. Average throughput in nrtPS under different bandwidth distribution schemes in the ARA

Fig. 12. Throughput outage probability in nrtPS under different bandwidth distribution schemes in the ARA
width balancing scheme favors service class with high priority (rtPS) when congestion occurs. However, in the priority-based scheme, nrtPS class experiences severe bandwidth starvation due to the reason that much of the bandwidth allocated to rtPS class is utilized with low spectral efficiency, thus the residual bandwidth allocated to nrtPS class is not sufficient to serve nrtPS connections. While in the static scheme, the amount of bandwidth allocated to each class is fixed, therefore the throughput in each class reaches a steady level when the system is overloaded.

Fig. 12 shows the throughput outage probability in nrtPS class versus the number of SSs under different bandwidth distribution schemes. It is obvious that the proposed adaptive scheme outperforms over the other two schemes. The maximum number of supportable SSs under a predefined 3% outage probability in priority-based, static and adaptive scheme are 34, 44 and 50 respectively.

6.3.3 Comparisons of different scheduling algorithms in class schedulers

In the results discussed so far, we have seen that the proposed adaptive bandwidth distribution scheme for the ARA has better performance than the priority-based scheme and static scheme. In order to evaluate the performance of the proposed priority-based scheduling algorithm for rtPS and nrtPS class schedulers, we have included the simulation results of two other conventional scheduling algorithms, e.g., maximum SNR and proportional fair (PF). For comparisons, the static bandwidth distribution scheme is employed in the ARA. The proportions of the total available bandwidth allocated to rtPS and nrtPS class schedulers are set to be 60% and 40%, respectively. The CAC module is disabled so that all connection requests will be accepted.

Fig. 13 shows the average packet delay in rtPS class versus the number of SSs under different scheduling algorithms. When the number of SSs is below 48, the average packet delay of the proposed priority-based scheme increases marginally and it is well kept below the maximum allowable delay, which is 50 ms in our scenario. After that point, the system is overloaded and the average packet delay increases sharply. Similar phenomenon of the proposed scheme can be observed for the delay outage probability shown in Fig. 14. However, the average packet delay of the PF scheme and the MAX-SNR scheme is much larger compared to our proposed scheme, which consequently results in a higher delay outage probability when the number of SSs is below 48. Furthermore, it can be seen from Fig. 14 that when the number of SSs is above 48, the delay outage probability of the proposed scheme increases rapidly to one, which means that the system is overloaded and almost no rtPS connections can maintain the required delay constraint. On the other hand, some rtPS connections in the PF and MAX-SNR schemes can still maintain the required delay constraint as the delay outage probabilities in these two schemes increase steadily with respect to the number of SSs. This is because in the proposed scheme, it not only takes the instantaneous channel conditions, but also the delay requirement into consideration when scheduling packets. rtPS connections with larger packet delay are assigned higher priorities in an effort to average out the packet delay among all rtPS connections. As a result, each rtPS connection will have similar average packet delay regardless of its channel conditions. When the system is overloaded, congestion occurs and all rtPS connections will experience bandwidth starvation, which results in a sharp increase of the average packet delay and the delay outage probability. However, in the PF and MAX-SNR schemes, the scheduler selects a connection for transmission only based on instantaneous channel conditions. As a consequence, connections with good channel conditions will always experience very short delay at the cost of bandwidth starvation for connections with poor
Fig. 13. Average packet delay in rtPS under different scheduling algorithms, with static bandwidth distribution in the ARA

Fig. 14. Delay outage probability in rtPS under different scheduling algorithms, with static bandwidth distribution in the ARA
Fig. 14 shows the delay outage probability in rtPS class versus the number of SSs under different scheduling algorithms. It is obvious that the proposed scheme outperforms over the other conventional schemes. The maximum number of supportable SSs under a predefined 3% outage probability in PF, MAX-SNR and the proposed scheme are 38, 38, and 48 respectively.

Fig. 15 shows the throughput in nrtPS class versus the number of SSs under different scheduling algorithms. The throughput of the MAX-SNR scheme achieves the highest value among all schemes. It increases proportional to the number of SSs when there are less than 50 SSs. After that point, the throughput remains on a steady level regardless of the number of SSs. While in the PF scheme, the throughput is significantly lower than the other schemes. It can be explained as follows: In the MAX-SNR scheme, the scheduler simply selects the connection with the best CSI for transmission. When the number of SSs increases, the scheduler has more chance to serve a SS in good channel conditions (multi-user diversity gain) which results in a high throughput. That’s why the spectral efficiency of the MAX-SNR scheme increases with respect to the number of SSs as shown in Fig. 17. In the proposed scheme, both the CSI and the QoS constraints are taken into account to guarantee the required QoS performance (i.e., a minimum throughput of 100Kbps for each nrtPS connection). When the system is underloaded (the number of SSs is less than 50), the bandwidth is large enough to satisfy the QoS requirements of all connections and the scheduling criterion mainly concerns with the CSI of channel conditions. Therefore, the delay outage probability in the PF and MAX-SNR schemes increases much more smoothly compared to the proposed scheme when the number of SSs is above 48.

Fig. 15. Average throughput in nrtPS under different scheduling algorithms, with static bandwidth distribution in the ARA.
each connection. As a result, the throughput as well as the spectral efficiency increases proportional to the number of SSs. However, when the system is overloaded (the number of SSs is above 50), the bandwidth is not sufficient to satisfy the QoS requirements of all connections. Thus congestion occurs and the throughput reaches a steady level. When congestion occurs, the proposed algorithm tends to put more weight on the QoS constraint than the CSI in an effort to provide equal opportunities of QoS satisfaction among all nrtPS connections. In other words, the throughput of each nrtPS connection in the proposed scheme decreases proportionally to the number of SSs when the system is overloaded. That explains a sharp increase of the throughput outage probability shown in Fig. 16. In the PF scheme, the throughput is relatively low due to the reason that the spectral efficiency is significantly lower than the MAX-SNR and the proposed schemes.

Fig. 16 shows the throughput outage probability in nrtPS class versus the number of SSs under different scheduling algorithms. It is obvious that the proposed scheme outperforms over the other conventional schemes. The maximum number of supportable SSs under a predefined 3% outage probability in PF, MAX-SNR and the proposed scheme are 34, 34, and 50 respectively.

Fig. 17 depicts the normalized spectral efficiency under different scheduling algorithms. It can be seen that the MAX-SNR scheme achieves the highest spectral efficiency due to the reason that in the MAX-SNR, the connection with the best CSI is selected for transmission. The proposed scheme can also achieve a relatively high spectral efficiency as it takes both the channel condition as well as the QoS constraints into account when scheduling packets. While
the spectral efficiency in the PF scheme is relatively low compared to the MAX-SNR and the proposed schemes. From the above figures, we can also see that the performance of the proposed suboptimal scheme is close to the optimal scheme, but with considerably low computation complexity.

7. Conclusions

This chapter addresses the problem of downlink radio resource management in OFDMA-based WiMAX systems. Specifically, we have proposed a downlink resource management framework which consists of a DRA module and a CAC module. We developed a two-level hierarchical scheduler for the DRA module, which is comprised of an aggregate resource allocator and four class schedulers. The advantage of this two-level hierarchical resource allocation architecture is that the algorithms for the allocator and the schedulers can be developed independently, yet there is still sufficient coupling between them as the allocator is aware of the performance of the schedulers. A priority-based scheduling algorithm for rtPS and nrtPS class schedulers and an adaptive bandwidth distribution algorithm for the aggregate resource allocator are proposed. A measurement-based admission control strategy is proposed for the CAC module, which works cooperatively with the DRA module when admission decisions are made. Simulation results show that the proposed framework can work efficiently and adaptively to various kinds of traffic loads, and can satisfy the diverse QoS requirements in each service class with high spectral efficiency.
8. References

www.intechopen.com

WiMAX (Worldwide Interoperability for Microwave Access) is a wireless broadband access network named by industry group called the WiMAX forum formed in June 2001. It is Wireless MAN with IEEE 802.16 family standards. Loosely, WiMAX is a standardized wireless version of Ethernet that enables the last mile, intended primarily as an alternative to wire technologies (such as Cable Modems, DSL and T1/E1 links) to provide broadband access to customer premises. Mission of the WiMAX forum is to promote and certify compatibility and interoperability of broadband wireless products. This book touches most of the above issues in form of 22 individuals’ papers containing research work in WiMAX domain in particular. WiMAX has two important standards/usage models: a fixed usage model IEEE 802.16-2004 for Fixed Wireless Broadband Access (FWBA) and a portable usage model IEEE 802.16e-2005, which is mainly concentrated on Mobile Wireless Broadband Access (MWBA). Both are released as standards and amendments are available in form of drafts. Higher data rate transmissions (@ 100 Mbps) are achieved in IEEE 802.16-2004 WiMAX through LOS communications which incorporate a stationary transmitter and receiver but IEEE 802.16e supporting NLOS communication is much complicated and little less bit rate is achieved. 2-11 GHz licensed band is the range of frequencies with TDD and FDD supports. The book will provide a wide horizon to visualize the WiMAX technology and its developments leading towards 4G systems. It will provide a good platform to the researchers with clues to the innovative ideas in WiMAX domain. I wish all the best to the authors and readers of this book in their successful research of WiMAX technology.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
