Chapter from the book *Petri Net, Theory and Applications*
Downloaded from:
http://www.intechopen.com/books/petri_net_theory_and_applications

Interested in publishing with InTechOpen?
Contact us at book.department@intechopen.com
A Linear Logic Based Approach to Timed Petri Nets

Norihiro Kamide
Waseda Institute for Advanced Study, 1-6-1 Nishi Waseda, Shinjuku-ku, Tokyo, Japan

1. Introduction

1.1 Relationship between Petri net and linear logic

Petri nets were first introduced by Petri in his seminal Ph.D. thesis, and both the theory and the applications of his model have flourished in concurrency theory (Reisig & Rozenberg, 1998a; Reisig & Rozenberg, 1998b). The relationships between Petri nets and linear logics have been studied by many researchers (Engberg & Winskel, 1997; Farwer, 1999; Hirai, 2000; Hirai 1999; Ishihara & Hiraish, 2001; Kamide, 2004, Kamide, 2006; Kanovich, 1995; Kanovich 1994; Larchey-Wendling & Galmiche, 1998; Larchey-Wendling & Galmiche, 2000; Lilius, 1992; Martín-Oliet & Meseguer, 1991; Okada, 1998; Tanabe, 1997). A category theoretical investigation of such a relationship was given by Martín-Oliet and Meseguer (Martín-Oliet & Meseguer, 1991), purely syntactical approach using Horn linear logic was established by Kanovich (Kanovich, 1995; Kanovich 1994), a naive phase linear logic for a certain class of Petri nets was given by Okada (Okada, 1998), a linear logical view of object Petri nets were studied by Farwer (Farwer, 1999), and various Petri net interpretations of linear logic using quantale models were obtained by Ishihara and Hiraishi (Ishihara & Hiraish, 2001), Engberg and Winskel (Engberg & Winskel, 1997), Larchey-Wendling and Galmiche (Larchey-Wendling & Galmiche, 1998; Larchey-Wendling & Galmiche, 2000), and Lilius (Lilius, 1992).

Petri net interpretations using Kripke semantics for various fragments and extensions of intuitionistic linear logic were studied by Kamide (Kamide, 2004; Kamide, 2006c). In (Kamide, 2004), Petri net interpretations of various fragments of a spatio-temporal soft linear logic were discussed. In (Kamide, 2006c), Petri nets with inhibitor arcs, which were first introduced by Kosaraju (Kosaraju, 1973) to show the limitation of the usual Petri nets, were described using Kripke semantics for intuitionistic linear logic with strong negation. The approaches using Kripke semantics can obtain a very simple correspondence between Petri net and linear logic.

1.2 Relationship between timed Petri net and temporal linear logic

A number of formalizations of timed Petri nets (Bestuzheva and Rudnev, 1994; Wang, 1998) can be considered since time can be associated with tokens, transitions, arcs and places. In the existing linear logic based approaches including the present paper’s one, time was associated to tokens (or markings). In fact, to express the fireability of transitions by
multisets of tokens in Petri nets, it seems to be a natural extension to do it by multisets of
timed tokens in timed Petri nets.
Temporal linear logic based methods for timed Petri nets were introduced and studied by
Tanabe (Tanabe, 1997) and Hirai (Hirai, 1999; Hirai, 2000). In (Tanabe, 1997), a relationship
between a timed Petri net and a temporal linear logic was discussed based on quantale
models with the soundness theorem for this logic. In (Hirai, 1999; Hirai 2000), a reachability
problem for a timed Petri net was solved syntactically by extending Kanovich’s result
(Kanovich, 1994) with an extended temporal intuitionistic linear logic.
In the present paper, a kind of temporal linear logic, called linear-time linear logic, is used to
describe timed Petri nets with timed tokens. This logic is formalized using a natural “linear-
time” formalism which is widely used in the standard linear-time temporal logic based on
the classical logic rather than linear logics.

1.3 Linear-time temporal logic
Linear-time temporal logic (LTL) has been studied by many researchers, and also been used as
a base logic for verifying and specifying concurrent systems (Clarke et al., 1999; Emerson,
because of the virtue of the “linear-time” formalism (Vardi, 2001). LTL is thus known as one
of the most useful modal logics based on the classical logic. Sequent calculi for LTL and its
neighbors have been introduced by extending the sequent calculus LK for the classical logic
(Kawai, 1987; Baratella and Masini, 2004; Paech, 1988; Pliuškevičius, 1991; Szabo, 1980;
Szalas, 1986). A sequent calculus Ltω for LTL was introduced by Kawai, and the cut-
eliminination and completeness theorems for this calculus were proved (Kawai, 1987). A 2-
sequent calculus 2Sω for LTL, which is a natural extension of the usual sequent calculus,
was introduced by Baratella and Masini, and the cut-elimination and completeness
theorems for this calculus were proved based on an analogy between LTL and Peano
arithmetic with ω-rule (Baratella and Masini, 2004). A direct equivalence between Kawai’s
Ltω and Baratella and Masini’s 2Sω was shown by Kamide introducing the functions that
preserve cut-free proofs of these calculi (kamide, 2006b). In the present paper, (intuitionistic)
linear logic-based versions of Ltω and 2Sω are considered.

1.4 Temporal linear logic
Linear logic, which was originally introduced by Girard (Girard, 1987), is known as a
resource-aware refinement of the classical and intuitionistic logics, and useful for obtaining
more appropriate specifications of concurrent systems (Okada, 1998; Troelstra, 1992). In
order to handle both resource-sensitive and time-dependent properties of concurrent
systems, combining linear logics with temporal operators has been desired, since the
[classical] linear logic (as a basis for temporal logics) is more expressive and appropriate
than the classical logic. For this purpose, temporal linear logics have been proposed by Hirai
(Hirai, 2000), Tanabe (Tanabe, 1997), and Kanovich and Ito (Kanovich & Ito, 1998). Hirai’s
intuitionistic temporal linear logic (Hirai, 2000) is known as useful for describing a timed
Petri net (Hirai, 1999) and a timed linear logic programming language (Tamura et al., 2000).
Extensions of Hirai’s logic were proposed by Kamide (Kamide, 2004; Kamide, 2006a) as
certain spatio-temporal linear logics combined with the idea of handling spatiality in
Kobayashi, Shimizu and Yonezawa’s modal (spatial) linear logic (Kobayashi et al., 1999).
Tanabe’s temporal linear logic (Tanabe, 1997) is used as a base logic for timed Petri net
specifications. Kanovich and Ito’s temporal linear logics (Kanovich & Ito, 1998) are a result of combining linear logic with linear-time temporal operators.

1.5 Linear-time linear logic
Linear-time (temporal) linear logics and their usefulness have already been presented by Kanovich and Ito (Kanovich & Ito, 1998). Classical and intuitionistic linear-time linear logics were introduced as cut-free sequent calculi, and the strong completeness theorems for these logics were shown using the algebraic structure of time phase semantics. Although in (Kanovich & Ito, 1998), the phase semantic methods for both classical and intuitionistic cases were intensively investigated, other semantic methods and their applications to concurrency theory for the intuitionistic case have yet to be studied sufficiently.

In this paper, an intuitionistic linear-time temporal linear logic, called also here linear-time linear logic, is introduced as cut-free sequent calculi based on the ideas of Kawai’s LT (Kawai, 1987) and Baratella and Masini’s 2S (Baratella & Masini, 2004). It is shown that the logic based on these calculi derives intuitive linear-time, informational and Petri net interpretations using Kripke semantics with the completeness theorem. The Kripke semantics presented is introduced based on the existing Kripke semantics by Došen (Došen, 1988), Kamide (Kamide, 2003), Kobayashi, Shimizu and Yonezawa (Kobayashi et al., 1999), Hodas and Miller (Hodas & Miller, 1994), Ono and Komori (Ono & Komori, 1985), Urquhart (Urquhart, 1972) and Wansing (Wansing, 1993a; Wansing, 1993b).

1.6 Organization of this paper
This paper is organized as follows.
In Section 2, the linear-time linear logic is introduced as two cut-free Gentzen-type sequent calculi LT and 2LT, and show their equivalence using the method posed in (Kamide, 2006b). The sequent calculi LT and 2LT are regarded as the linear logic based versions of Kawai’s LT and Baratella and Masini’s 2S, respectively.
In Section 3, Kripke semantics with a natural timed Petri net interpretation is introduced for LT, and the completeness theorem w.r.t. the semantics is proved as the main result of this paper. The completeness theorem is the basis for obtaining a natural relationship between LT and a timed Petri net.
In Section 4, a timed Petri net with timed tokens is introduced as a structure, and the correspondence between this structure and Kripke frame for LT is observed. An illustrative example for verifying the reachability of timed Petri nets is also addressed based on LT.
In Section 5, this paper is concluded, and some remarks are given.

2. Linear-time linear logic
2.1 LT
Before the precise discussion, the language used in this paper is introduced. Formulas are constructed from propositional variables, 1 (multiplicative constant), → (implication), ∧ (conjunction), * (fusion), ! (exponential), temporal operators X (next) and G (globally). Lower-case letters p, q, ... are used for propositional variables, Greek lower-case letters α, β,

1 For a historical overview of Kripke semantics for modal substructural logics, see. e.g. (Kamide, 2002).
... are used for formulas, and Greek capital letters Γ, Δ, \ldots are used for finite (possibly empty) multisets of formulas. For any $\gamma \in \{I, X, G\}$, an expression $\#\Gamma$ is used to denote the multiset $\{\gamma\gamma\mid \gamma \in \Gamma\}$. The symbol \equiv is used to denote equality as sequences (or multisets) of symbols. The symbol ω or N is used to represent the set of natural numbers. An expression i^{α} for any α, an expression i^{α} is used to denote the multiset $X^{i}\alpha$. The symbol \equiv is used to denote equality as sequences (or multisets) of symbols. The symbol \equiv or N is used to represent the set of natural numbers. An expression \equiv means \equiv and \equiv means \equiv if Δ is empty. Lower-case letters i, j and k are used to denote any natural numbers. A sequent is an expression of the form $\Gamma \Rightarrow \gamma$ (the succedent of the sequent is not empty). It is assumed that the terminological conventions regarding sequents (e.g. antecedent, succedent etc.) are the usual ones. If a sequent S is provable in a sequent system L, then such a fact is denoted as $L \Rightarrow S$ or $\Rightarrow S$. The parentheses for \Rightarrow is omitted since \Rightarrow is associative, i.e. $\Rightarrow (\alpha \Rightarrow (\beta \Rightarrow \gamma)) \Rightarrow (\alpha \Rightarrow (\beta \Rightarrow \gamma))$ and $\Rightarrow (\alpha \Rightarrow (\beta \Rightarrow \gamma))$. In the following, the linear-time linear logic LT is introduced as a sequent calculus. This is regarded as a linear logic version of Kawai’s LT (Kawai, 1987).

Definition 1 (LT) The initial sequents of LT are of the form:

$$X^i \alpha \Rightarrow X^i \alpha \Rightarrow X^i \mathbf{1}.$$

The cut rule of LT is of the form:

$$\frac{\Gamma \Rightarrow \gamma}{\Gamma, \Delta \Rightarrow \gamma}$$

(cut).

The logical inference rules of LT are of the form:

$$\frac{\Gamma \Rightarrow X^i \alpha}{\Gamma \Rightarrow X^i \alpha}$$

(1we)

$$\frac{\Gamma \Rightarrow X^i \alpha}{\Gamma \Rightarrow X^i \beta}$$

(2le)

$$\frac{\Gamma \Rightarrow X^i \alpha}{\Gamma \Rightarrow X^i \beta}$$

(2le1)

$$\frac{\Gamma \Rightarrow X^i \alpha}{\Gamma \Rightarrow X^i \beta}$$

(2le2)

$$\frac{\Gamma \Rightarrow X^i \alpha}{\Gamma \Rightarrow X^i \beta}$$

(2right)

$$\frac{\Gamma \Rightarrow X^i \alpha}{\Gamma \Rightarrow X^i \beta}$$

(2right)
It is remarked that (Gright) has infinite premises. It is noted that the cases for \(i = k = 0 \) in LT derive the usual inference rules for the intuitionistic linear logic. Although a proof is not given in this paper, the following cut-elimination theorem can be proved by a phase semantic method (Kamide, 2007).

Theorem 2 (Cut-elimination for LT) The rule (cut) is admissible in cut-free LT.

An expression \(\alpha \leftrightarrow \beta \) means the sequents \(\alpha \Rightarrow \beta \) and \(\beta \Rightarrow \alpha \). Then, the following sequents are provable in LT for any formulas \(\alpha, \beta \) and any \(i \in \omega \):

\[
X^i 1 \Rightarrow 1, \\
X^i (\alpha \circ \beta) \Rightarrow X^i \alpha \circ X^i \beta \quad (\circ \in \{\to, \land, \ast\}), \\
X^i \alpha \Rightarrow !X^i \alpha, \\
!G \alpha \Rightarrow G \alpha, \\
G \alpha \Rightarrow X \alpha, \\
G \alpha \Rightarrow \alpha, \\
G \alpha \Rightarrow G G \alpha, \\
G \alpha \Rightarrow X G \alpha, \\
!\alpha, !G (\alpha \to X \alpha) \Rightarrow !G \alpha.
\]

The last sequent above corresponds to the linear logic version of the temporal induction axiom: \(\alpha \Rightarrow (G (\alpha \to X \alpha) \to G \alpha) \) and an LT-proof of this sequent is as follows.

\[
\vdots \\
\{ \alpha, !G (\alpha \to X \alpha) \Rightarrow X^k \alpha \}_{k \in \omega} \quad \text{(Gright)} \\
\vdash \alpha, !G (\alpha \to X \alpha) \Rightarrow G \alpha \quad \text{(left)} \\
\vdash !\alpha, !G (\alpha \to X \alpha) \Rightarrow G \alpha \quad \text{(right)}
\]

where \(\vdash \alpha, !G (\alpha \to X \alpha) \Rightarrow X^k \alpha \) for any \(k \in \omega \) is shown by mathematical induction on \(k \) as follows. The base step, i.e. \(k = 0 \) is obvious using (!we). The induction step can be shown using (!co) as follows.

\[
\text{ind.hyp.} \\
\vdash \alpha, !G (\alpha \to X \alpha) \Rightarrow X^k \alpha \\
\vdash \alpha, !G (\alpha \to X \alpha), X^k (\alpha \to X \alpha) \Rightarrow X^{k+1} \alpha \quad \text{(!left)} \\
\vdash \alpha, !G (\alpha \to X \alpha), G (\alpha \to X \alpha) \Rightarrow X^{k+1} \alpha \quad \text{(left)} \\
\vdash \alpha, !G (\alpha \to X \alpha), !G (\alpha \to X \alpha) \Rightarrow X^{k+1} \alpha \quad \text{(!co)}.
\]

2.2 2LT

A 2-sequent calculus 2LT for the linear-time linear logic is introduced below. This calculus is a linear logic version of Baratella and Masini’s 2-sequent calculus 2S\(_\omega\) (Baratella & Masini, 2004). The language of 2LT and the notations used are almost the same as those of LT.

Definition 3 An expression \(\alpha^i \) (\(\alpha \) is a formula and \(i \in \omega \)) is called an indexed formula. Let \(\gamma \) be an indexed formula and \(\Gamma \) be finite (possibly empty) multiset of indexed formulas. Then an expression \(\Gamma \Rightarrow^2 \gamma \) is called a 2-sequent.

An expression \(\Gamma^i \) is used to denote the multiset of \(i \)-indexed formulas.
Definition 4 (2LT) The initial sequents of 2LT are of the form:

\[\alpha^i \Rightarrow \alpha^i \Rightarrow \Rightarrow \Gamma, \Delta \Rightarrow \Rightarrow \gamma. \]

The cut rule of 2LT is of the form:

\[
\frac{\Gamma \Rightarrow \alpha^i, \alpha^i, \Delta \Rightarrow \gamma}{\Gamma, \Delta \Rightarrow \gamma} \quad \text{(cut2)}.
\]

The logical inference rules of 2LT are of the form:

\[
\frac{\Gamma \Rightarrow \alpha^i, \beta^i, \Delta \Rightarrow \gamma}{\Gamma, \Delta \Rightarrow \gamma} \quad \text{(→left2)}
\]

\[
\frac{\alpha^i, \Gamma \Rightarrow \beta^i}{\Gamma \Rightarrow \alpha^i \rightarrow \beta^i} \quad \text{(→right2)}
\]

\[
\frac{\alpha^i, \Gamma \Rightarrow \gamma}{\alpha \Lambda \beta^i, \Gamma \Rightarrow \gamma} \quad \text{(Λleft12)}
\]

\[
\frac{\beta^i, \Gamma \Rightarrow \gamma}{\alpha \Lambda \beta^i, \Gamma \Rightarrow \gamma} \quad \text{(Λleft22)}
\]

\[
\frac{\Gamma \Rightarrow \alpha^i}{\Gamma \Rightarrow \alpha \Lambda \beta^i} \quad \text{(Λright2)}
\]

\[
\frac{\alpha^i, \beta^i, \Gamma \Rightarrow \gamma}{\alpha \Lambda \beta^i, \Gamma \Rightarrow \gamma} \quad \text{(→left2)}
\]

\[
\frac{\Gamma \Rightarrow \alpha^i, \Delta \Rightarrow \gamma}{\Gamma, \Delta \Rightarrow \gamma} \quad \text{(→right2)}
\]

\[
\frac{\alpha^i, \Gamma \Rightarrow \beta^i}{\beta^i, \Gamma \Rightarrow \alpha^i} \quad \text{(→left2)}
\]

\[
\frac{\Gamma \Rightarrow \alpha^i, \Gamma \Rightarrow \gamma}{\Gamma \Rightarrow \langle \alpha \rangle^i, \Gamma \Rightarrow \gamma} \quad \text{(⟨α⟩left2)}
\]

\[
\frac{\Gamma \Rightarrow \alpha^i, \Gamma \Rightarrow \gamma}{\langle \alpha \rangle^i, \Gamma \Rightarrow \gamma} \quad \text{(⟨α⟩right2)}
\]

\[
\frac{\alpha^i \Gamma \Rightarrow \gamma}{\Gamma \Rightarrow \alpha^i \Gamma \Rightarrow \gamma} \quad \text{(→left2)}
\]

\[
\frac{\alpha^i \Gamma \Rightarrow \gamma}{\langle \alpha \rangle \Gamma \Rightarrow \gamma} \quad \text{(⟨α⟩right2)}
\]

\[
\frac{\langle \alpha \rangle \Gamma \Rightarrow \gamma}{\langle \alpha \rangle \Gamma \Rightarrow \gamma} \quad \text{(⟨α⟩right2)}
\]

\[
\frac{\alpha^i + k \Gamma \Rightarrow \gamma}{\langle \alpha \rangle^i \Gamma \Rightarrow \gamma} \quad \text{(Gleft2)}
\]

\[
\frac{\alpha^i + k \Gamma \Rightarrow \gamma}{\langle \alpha \rangle^i \Gamma \Rightarrow \gamma} \quad \text{(Gright2)}
\]

An expression \(L \vdash \Gamma \Rightarrow \gamma \) is used to denote the fact that \(\Gamma \Rightarrow \gamma \) is provable in a 2-sequent calculus \(L \).

Definition 5 Let \(\mathcal{L}_1 \) be the set of formulas of LT and \(\mathcal{L}_2 \) be the set of indexed formulas of 2LT.

A function \(f \) from \(\mathcal{L}_1 \) to \(\mathcal{L}_2 \) is defined by \(f(\langle X \rangle \alpha) := \langle X \rangle^i \alpha \) for any formula \(\alpha \).

A function \(g \) from \(\mathcal{L}_2 \) to \(\mathcal{L}_1 \) is defined by \(g(\langle X \rangle^i \alpha) := \langle X \rangle \alpha \) for any formula \(\alpha \).

It is remark that \(f(g(\langle X \rangle \alpha)) = \alpha \) and \(g(f(\langle X \rangle \alpha)) = \langle X \rangle \alpha \) hold for any formula \(\alpha \).

Theorem 6 (Equivalence between LT and 2LT) (1) for any 2-sequent \(\Gamma \Rightarrow \gamma \), if 2LT \(\vdash \Gamma \Rightarrow \gamma \), then LT \(\vdash g(\Gamma) \Rightarrow g(\gamma) \). (2) for any sequent \(\Gamma \Rightarrow \gamma \), if \(LT \vdash (\text{cut}) \vdash \Gamma \Rightarrow \gamma \), then 2LT \(\vdash (\text{cut2}) \vdash \Gamma \Rightarrow \gamma \).

Proof We show only (1) by induction on a proof \(P \) of \(\Gamma \Rightarrow \gamma \) in 2LT. We show only the following case.
Case (Xleft): The last inference of \(P \) is of the form:

\[
\frac{\alpha^{i+1}, \Sigma \Rightarrow^2 \gamma}{(X\alpha)^i, \Sigma \Rightarrow^2 \gamma} \quad (\text{Xleft}).
\]

By the hypothesis of induction, we obtain \(LT \models g((X\alpha)^i), g(\Sigma) \Rightarrow g(\gamma) \), and hence obtain \(LT \models g((X\alpha)^i), g(\Sigma) \Rightarrow g(\gamma) \) by \(g(\alpha^{i+1}) = X^{i+1} \alpha = X^i(X\alpha) = g((X\alpha)^i) \). Q.E.D.

By Theorems 2 and 6, the following theorem is obtained.

Theorem 7 (Cut-elimination for 2LT) The rule \((\text{cut}2)\) is admissible in cut-free 2LT.

Proof Suppose \(2LT \models \Gamma \Rightarrow^2 \gamma \) for a 2-sequent \(\Gamma \Rightarrow^2 \gamma \). Then we have \(LT \models g(\Gamma) \Rightarrow g(\gamma) \) by Theorem 6 (1). By Theorem 2, we obtain \(LT - (\text{cut}) \models g(\Gamma) \Rightarrow g(\gamma) \). We thus obtain \(2LT - (\text{cut}2) \models \Gamma \Rightarrow^2 \gamma \) by Theorem 6 (2). Therefore \(2LT - (\text{cut}2) \models \Gamma \Rightarrow^2 \gamma \).

Conversely, by Theorem 7 and an appropriate modification of Theorem 6, a proof of Theorem 2 is also derived. Q.E.D.

3. Kripke semantics

3.1 Kripke model and soundness

The following definition (except the existence of \(N \)) of the Kripke frame is the same as that for the (fragment of) intuitionistic linear logic (Kamide, 2003).

Definition 8 A Kripke frame for \(LT \) is a structure \(\langle M, N, \cdot, \cdot, \cdot, \geq \rangle \) satisfying the following conditions:

1. \(N \) is the set of natural numbers,
2. \(\langle M, \cdot, \cdot, \cdot, \geq \rangle \) is a commutative monoid with the identity \(\cdot \),
3. \(\langle \cdot, \cdot, \cdot, \rangle \) is a pre-ordered set,
4. \(\cdot \) is a unary operation on \(M \) such that

\[
\begin{align*}
C0: & \quad \cdot \geq \cdot \cdot, \\
C1: & \quad \cdot \cdot \cdot \geq x \text{ for all } x \in M, \\
C2: & \quad \cdot \cdot \cdot \geq \cdot \cdot \cdot \text{ for all } x \in M, \\
C3: & \quad \cdot \cdot \cdot \cdot \cdot \cdot \cdot \text{ for all } x, y \in M, \\
C4: & \quad \cdot \cdot \cdot \cdot \text{ for all } x \in M, \\
C5: & \quad \cdot \cdot \cdot \cdot \cdot \cdot \cdot \text{ for all } x, y \in M, \\
\end{align*}
\]

5. \(\cdot \) is monotonic with respect to \(\cdot \cdot \cdot \), i.e.

\[
\begin{align*}
C6: & \quad y \cdot \cdot \cdot \text{ implies } x \cdot \cdot \cdot \cdot \text{ for all } x, y, z \in M.
\end{align*}
\]

Definition 9 A valuation \(\models \) on a Kripke frame \(\langle M, N, \cdot, \cdot, \cdot, \cdot, \rangle \) for \(LT \) is a mapping from the set of all propositional variables to the power set of \(M \times N \) and satisfying the following hereditary condition: \((x, i) \in \models (p) \) and \(y \cdot \cdot \cdot \text{ implies } (y, i) \in \models (p) \) for any propositional variable \(p \), any \(i \in N \) and any \(x, y \in M \). An expression \((x, i) = p \) will be used for \((x, i) \in \models (p) \). Each valuation \(\models \) can be extended to a mapping from the set of all formulas to the power set of \(M \times N \) by

1. \((x, i) = 1 \text{ iff } x \geq \cdot \cdot \cdot \),
2. \((x, i) = \alpha \Rightarrow^2 (y, i) \equiv \alpha \text{ implies } (x, i, y) \in \models (p) \text{ for all } y \in M \),
3. \((x, i) = \alpha \Rightarrow \beta \text{ iff } (x, i) \models \alpha \text{ and } (x, i) \models \beta \),
4. \((x, i) = \alpha \Rightarrow (y, i) \equiv \alpha \text{ and } (z, i) \models \beta \text{ for some } y, z \in M \text{ with } x \cdot \cdot \cdot y \cdot \cdot \cdot z \),
5. \((x, i) = \cdot \cdot \cdot \text{ iff } u \models \cdot \cdot \cdot \text{ for some } (u, i) \in M \text{ with } x \cdot \cdot \cdot \cdot \cdot \cdot \cdot \).
6. \((x, i) \models \text{ X} \alpha \iff (x, i + 1) \models \alpha\),
7. \((x, i) \models \text{ G} \alpha \iff (x, l) \models \alpha\) for all \(l \in \mathbb{N}\) with \(l \geq i\).

Proposition 10 Let \(\models\) be a valuation on a Kripke frame \(\langle M, N, \vdash, \varepsilon, \models \rangle\) for \(\text{LT}\). Then the following hereditary condition holds: \((x, i) \models \alpha\) and \(y \models x\) imply \((y, i) \models \alpha\) for any formula \(\alpha\), any \(i \in \mathbb{N}\), and any \(x, y \in M\).

Proof By induction on the complexity of \(\alpha\). Q.E.D.

Definition 11 A Kripke model for \(\text{LT}\) is a structure \(\langle M, N, \vdash, \varepsilon, \models \rangle\) such that

1. \(\langle M, N, \vdash, \varepsilon, \models \rangle\) is a Kripke frame for \(\text{LT}\),
2. \(\models\) is a valuation on \(\langle M, N, \vdash, \varepsilon, \models \rangle\).

A formula \(\alpha\) is true in a Kripke model \(\langle M, N, \vdash, \varepsilon, \models \rangle\) for \(\text{LT}\) if \((\varepsilon, 0) \models \alpha\) and valid in a Kripke frame \(\langle M, N, \vdash, \varepsilon, \models \rangle\) for \(\text{LT}\) if it is true for any valuation \(\models\) on the Kripke frame. A sequent \(\alpha_1, \ldots, \alpha_n \Rightarrow \beta\) (or \(\Rightarrow \beta\)) is true in a Kripke model \(\langle M, N, \vdash, \varepsilon, \models \rangle\) for \(\text{LT}\) if the formula \(\alpha_1 \land \cdots \alpha_n \Rightarrow \beta\) (or \(\Rightarrow \beta\) respectively) is true in it, and valid in a Kripke frame for \(\text{LT}\) if the formula \(\alpha_1 \land \cdots \alpha_n \Rightarrow \beta\) (or \(\Rightarrow \beta\) respectively) is valid in it.

The Kripke model \(\langle M, N, \vdash, \varepsilon, \models \rangle\) defined has a natural informational interpretation due to Urquhart (Urquhart, 1972) and Wansing (Wansing, 1993a; Wansing, 1993b). \(M\) is a set of information pieces, \(\vdash\) is the addition of information pieces, \(\uparrow\) is the infinite addition of information pieces, and \(\varepsilon\) is the empty piece of information. Then the forcing relation \((x, i) \models \alpha\) can read as “the resource \(\alpha\) is obtained at the time \(i\) by using the information piece \(x\).”

Theorem 12 (Soundness) Let \(C\) be a class of Kripke frames for \(\text{LT}\), \(L := \{ S \mid \text{LT} \vdash S \}\) and \(L(C) := \{ S \mid S \text{ is valid in all frames of } C \}\). Then \(L \subseteq L(C)\)

Proof It is sufficient to prove the following: for any sequent \(S\), if \(S\) is provable, then \(S\) is valid in any frame \(F := \langle M, N, \vdash, \varepsilon, \models \rangle \in C\). This is proved by induction on a proof \(P\) of \(S\). We distinguish the cases according to the last inference rules and initial sequents in \(P\). Let \(\models\) be a valuation on \(F\). In the following, we sometimes use implicitly the fact that \(\models\) is a pre-order, \(\langle M, \varepsilon \rangle\) is a commutative monoid with the identity \(\varepsilon\), \(\alpha\) is monotonically, and \(\models\) has the hereditary condition (Proposition 10). We show some cases.

Case (left): It is shown that \(L(C)\) is closed under (left), i.e. for any formula \(\alpha\) and any multiset \(\Gamma\) of formulas, if \(X!\alpha, \Gamma \Rightarrow \gamma\) is valid in \(F\) then so is \(X!\alpha, \Gamma \Rightarrow \gamma\). In the following, we consider only the case that \(\Gamma\) is nonempty (the empty case can be shown similarly). Suppose that \((1) (\varepsilon, 0) \models X!\alpha \Rightarrow \Gamma \Rightarrow \gamma\) and \((2) (x, 0) \models X!\alpha \Rightarrow \Gamma \Rightarrow \gamma\) for any \(x \in M\). We will show \((x, 0) \models \gamma\).

By (2), there exist \(x_1, x_2 \in M\) such that \((3) x \models x_1 \land x_2\), (4) \((x_1, 0) \models \alpha\) and \((5) (x_2, 0) \models \Gamma\). By (4), there exists \(x' \in M\) such that \((6) x_1 \models x'\) and \((7) (x'_1, 0) \models \alpha\). By \((6)\), the frame condition CI and the transitivity of \(\models\), we have \((8) x_1 \models x'\). Moreover, by \((8)\) and the monotonicity of \(\models\), we have \((9) (x_1 \cdot x_2, 0) \models X!\alpha \land (x_2, 0) \models \Gamma\). Hence, by \((1)\) we have \((x, 0) \models \gamma\).

Case (right): It is shown that \(L(C)\) is closed under (right), i.e. for any formula \(\alpha\) and any multiset \(\Gamma\) of formulas, if \(X!\alpha \Rightarrow \Gamma\) is valid in \(F\) then so is \(X!\alpha \Rightarrow X!\alpha\).

We only show the case that \(\Gamma\) is nonempty (the empty case can easily be shown using the frame condition CD). Suppose \((1) (x, 0) \models (X!\Gamma) \Rightarrow (\Gamma \equiv \{ \gamma_1, \ldots, \gamma_n \} \ (0 < n))\) for any
\[x \in M \text{ and } (2) \ (x, 0) \models X'!\Gamma x \Rightarrow X'!\alpha. \] We will show \((x, 0) \models X'!\Gamma x\). By \(1\), we have that there exist \(x_1, \ldots, x_n \in M\) such that \(3 \ x \geq x_1 \ldots x_n\) and \(4 \ (x_1, i) \models \!\Gamma_i x_1, \ldots, (x_n, i) \models \!\Gamma_n\). Then, by \(4\), we have that for any \(j \in \{1, \ldots, n\}\), there exists \(x'_j \in M\) such that \(5 \ x_j \geq x'_j\) and \(6 \ (x'_j, i) \models \!\gamma_j\). By \(6\), the frame condition \(C1\) and the hereditary condition of \(\models\), we obtain \((7) \ (x'_j, i) \models \!\gamma_j\). Thus we have that there exists \(x'_j \in M\) (because \(M\) is closed under \(\vdash\)) and there exists \(x'_j \in M\) such that \(\vdash x'_j \geq x'_j\) (by the frame condition \(C2\)) and \((x'_j, i) \models \!\gamma_j\) (by \(7\)). This means that \((8) \ (x'_j, 0) \models X'!\gamma_j\) for any \(j \in \{1, \ldots, n\}\). Further we have \((9) \ x_1' \ldots x_n' \geq x_1' \ldots x_n'\) since \(\geq\) is reflexive. Hence we have that there exist \(x_1', \ldots, x_n' \in M\) such that \((8)\) and \((9)\). This means \((9) \ (x'_j, 0) \models X'!\gamma_j \Rightarrow X'!\gamma_j\) (i.e. \((10) \ x_1' \ldots x_n' \models (X'!\Gamma)^*\)). By the hypothesis \((2)\) and the fact \((10)\), we have \((11) \ (x'_j, 0) \models X'!\alpha\) (i.e. \((x'_j, 0) \models \alpha\)). By the facts \((3)\), \((5)\), the monotonicity of \(\vdash\) and the frame conditions \(C2\), \(C3\), we have \((12) \ x \geq x_1' \ldots x_n' \geq x_1' \ldots x_n'\) since \(\geq\) is reflexive. Hence we obtain the following: there exist \(x_1' \ldots x_n' \in M\) (because \(M\) is closed under \(\vdash\)) such that \(x \geq x_1' \ldots x_n'\) (by \(12\)) and the transitivity of \(\geq\) and \((x'_j, 0) \models \alpha\) (by \(11\)). This means \((x, i) \models \alpha\), i.e. \((x, 0) \models X'!\alpha\).

Case \(\text{(co)}\): It is shown that \(L(C)\) is closed under \(\text{(co)}\), i.e. for any formulas \(\alpha, \gamma\) and any multiset \(\Gamma\) of formulas, if \(X'!\alpha, X'!\mu, \Gamma \models \gamma\) is valid in \(F\) then so is \(X'!\alpha, \Gamma \models \gamma\). In the following we consider only the case that \(\Gamma\) is nonempty (the empty case can be shown similarly). Suppose \((1) \ (x, 0) \models X'!\alpha \Rightarrow \Gamma^{*}\) for any \(x \in M\) and \((2) \ (x, 0) \models X'!\alpha \Rightarrow \Gamma^{*}\). We will show \((x, 0) \models X'!\alpha \Rightarrow \Gamma^{*}\). By \(1\), we have that there exist \(x_1, x_2 \in M\) such that \(3 \ x \geq x_1 \cdot x_2\). By \(2\), we have that there exists \(x_1, i) \models \!\Gamma_1 x_1, \ldots, (x_2, i) \models \!\Gamma_2\). Then, we obtain \((7) \ x \geq x_2\) since we have \(x \geq x_1 \cdot x_2\) (by \(3\)), \(6\), the monotonicity of \(\vdash\), the transitivity of \(\geq\) and the frame condition \(C5\). Hence, by \(7\), \(5\) and the hereditary condition of \(\models\), we obtain \((8) \ (x, 0) \models \Gamma^{*}\). Thus we obtain \((x, 0) \models \gamma\) by the hypothesis \((2)\) and the fact \((8)\).

Case \(\text{(wle)}\): It is shown that \(L(C)\) is closed under \(\text{(wle)}\), i.e. for any formulas \(\alpha, \gamma\) and any multiset \(\Gamma\) of formulas, if \(\Gamma \models \gamma\) is valid in \(F\) then so is \(X'!\alpha, \Gamma \models \gamma\). In the following we consider only the case that \(\Gamma\) is nonempty (the empty case can be shown similarly). Suppose \((1) \ (x, 0) \models X'!\alpha \Rightarrow \Gamma^{*}\) for any \(x \in M\) and \((2) \ (x, 0) \models X'!\alpha \Rightarrow \Gamma^{*}\). We will show \((x, 0) \models X'!\alpha \Rightarrow \Gamma^{*}\). By \(1\), we have that there exist \(x_1, x_2 \in M\) such that \(3 \ x \geq x_1 \cdot x_2\). By \(2\), we have that there exists \(x_2 \in M\) such that \(6 \ x_1 \geq x_1 \cdot x_1, i) \models \!\Gamma_1\). Then, we obtain \((7) \ x \geq x_2\) since we have \(x \geq x_1 \cdot x_2\) (by \(3\)), \(6\), the monotonicity of \(\vdash\), the transitivity of \(\geq\) and the frame condition \(C5\). Hence, by \(7\), \(5\) and the hereditary condition of \(\models\), we obtain \((8) \ (x, 0) \models \Gamma^{*}\). Thus we obtain \((x, 0) \models \gamma\) by the hypothesis \((2)\) and the fact \((8)\).
Similarly, suppose \((\varepsilon, 0) \models X^* \alpha * \Gamma^* \gamma\), i.e., \(\forall y \in M \exists y_1, y_2 \in M (y \geq y_1, y_2 \text{ and } (y_1, 0) \models X^* \alpha \text{ and } (y_2, 0) \models \Gamma^* \gamma)\) implies \((y, 0) \models \gamma\). We will show \((\varepsilon, 0) \models X^* \alpha \text{ and } (y_1, 0) \models \Gamma^* \gamma\). It is thus enough to show that \((y_1, 0) \models X^* \alpha \text{ implies } (y, 0) \models X^* \alpha\). Suppose \((y_1, 0) \models X^* \alpha\), then \((y, 0) \models X^* \alpha\) as follows: \[\forall \gamma \models \alpha \text{ iff } \forall \gamma \models \alpha\] Q.E.D.

3.2 Completeness
In order to prove the completeness theorem, constructing a canonical model is needed, and the resulting canonical model will be used to show the relationship between a timed Petri net and LT.

Definition 13 A canonical model is a structure \((M, N, \cdot, \vdash, \varepsilon, \geq, \models)\) such that

1. \(N\) is the set of natural numbers,
2. \(M := \{\Gamma \mid \Gamma\) is a finite multiset of formulas\},
3. for any \(\Gamma, \Delta \in M\), \(\Gamma \cdot \Delta := \Gamma \cup \Delta\) (the multiset union), where \(\Gamma \cdot \Delta\) will also be denoted as \(\Gamma_\Delta\),
4. for any \(\Gamma \in M\), \(\Gamma' := \Pi\) is the multiset \(\{\gamma \mid \gamma \in \Gamma\},\)
5. \(\varepsilon\) is the empty multiset,
6. for any \(\Gamma, \Delta \in M\), \(\Gamma \geq \Delta\) is defined by \(\Gamma \models \Delta\) where \(\Delta^* \equiv \gamma_1 \ast \cdots \ast \gamma_n\) if \(\Delta \equiv \{\gamma_1, \cdots, \gamma_n\}\) \((0 < n)\), and \(\Delta^* \equiv 1\) if \(\Delta\) is empty,
7. a valuation \(\lhd\) on \((M, N, \cdot, \vdash, \varepsilon, \geq)\) is a mapping from the set PROP of all propositional variables to the power set of \(M \times N\) defined by

\[(\Gamma, i) \models (p) \text{ iff } \Gamma \models X^* p, \text{ for any } p \in \text{PROP, any } \Gamma \in M \text{ and any } i \in N.\]

It can then be shown that \((M, N, \cdot, \vdash, \varepsilon, \geq)\) is a Kripke frame for LT. It is remarked that the condition C0 corresponds to \(\vdash \models 1\) since \(\varepsilon > |\varepsilon|\) or \(\varepsilon > |\varepsilon|\) is defined by \(\{\} \models \{\}^*\) where \(\{\}\) is the empty multiset. It is also remarked that the sequent \(\models \) is not true in this canonical model. \(\{\} \models \{\}^*\) is interpreted as \(\vdash \models 1\) (i.e., \(\{\} \models \{\}^*\)) but \(\{\} \models \{\}\) does not correspond to \(\vdash \models 1\). Also \(\models \) is not true in any Kripke model, because \(\models \) is interpreted as \(\{\} \models \{\}^*\) (i.e., \(\{\} \models \{\}\)).

Further it will be proved that \((M, N, \cdot, \vdash, \varepsilon, \geq, \models)\) is a Kripke model for LT. To show this fact is essentially to show the completeness theorem. To achieve the completeness theorem, the following lemma is needed.
Lemma 14 Let \(\langle M, N, \cdot, 1, _, \geq, \models \rangle \) be the canonical model defined in Definition 13. Then, for any formula \(\gamma \), any \(\Gamma \in M \) and any \(i \in N \),

\[
(\Gamma, i) \models \gamma \text{ if and only if } LT \vdash \Gamma \Rightarrow X^i \gamma.
\]

Proof This lemma is proved by induction on the complexity of \(\gamma \). We show some cases.

(Case \(\gamma \equiv i \)) : By the definition of \(\models \).

(Case \(\gamma \equiv 1 \)) Suppose \((\Gamma, i) \models 1 \) Then we have \((\Gamma, i) \models 1 \) iff \(\{ \} \) iff \(\Gamma \vdash \{ \} \) \(\Gamma \Rightarrow 1 \). Thus we obtain \(\vdash \Gamma \Rightarrow X^i 1 \):

\[
\Gamma \Rightarrow 1 \quad \Gamma \Rightarrow X^i 1 \quad (\text{we})
\]

Conversely, suppose \(\Gamma \Rightarrow X^i 1 \). Then we have

\[
\Gamma \Rightarrow 1 \quad \Gamma \Rightarrow X^i 1 \Rightarrow 1 \quad (\text{cut})
\]

and hence \((\Gamma, i) \models 1 \).

(Case \(\gamma \equiv \alpha_1 \rightarrow \alpha_2 \)) First we show that \((\Gamma, i) \models \alpha_1 \rightarrow \alpha_2 \) implies \(\Gamma \Rightarrow X^i \alpha_1 \rightarrow \alpha_2 \). Suppose \((\Gamma, i) \models \alpha_1 \rightarrow \alpha_2 \) i.e. \((\Delta, i) \models \alpha_1 \) implies \((\Gamma \cup \Delta, i) \models \alpha_2 \) for any \(\Delta \in M \). We take \(\{ X^i \alpha_1 \} \) for \(\Delta \). We have \((\{ X^i \alpha_1 \}, i) \models \alpha_1 \) by the induction hypothesis, and \((\Gamma \cup \{ X^i \alpha_1 \}, i) \models \alpha_2 \) by the hypothesis. Thus we have \(\vdash \Gamma, X^i \alpha_1 \Rightarrow X^i \alpha_2 \) by the induction hypothesis, and hence \(\vdash \Gamma \Rightarrow X^i (\alpha_1 \rightarrow \alpha_2) \) by \((-\text{right})\). Conversely, suppose \(\vdash \Gamma \Rightarrow X^i (\alpha_1 \rightarrow \alpha_2) \) and \((\Delta, i) \models \alpha_1 \) for any \(\Delta \in M \). Then we have \(\vdash \Delta \Rightarrow X^i \alpha_1 \) by the induction hypothesis. We obtain:

\[
\Delta \Rightarrow X^i \alpha_1 \quad X^i \alpha_1 \Rightarrow X^i \alpha_2 \quad X^i \alpha_2 \Rightarrow X^i \alpha_2 \quad (\text{cut})
\]

and hence \((\Gamma, i) \models \alpha_2 \) by the induction hypothesis.

(Case \(\gamma \equiv \alpha_1 \wedge \alpha_2 \)) First we show that \((\Gamma, i) \models \alpha_1 \wedge \alpha_2 \) implies \(\vdash \Gamma \Rightarrow X^i (\alpha_1 \wedge \alpha_2) \) for any \(\Gamma \in M \). Suppose \((\Gamma, i) \models \alpha_1 \wedge \alpha_2 \). Then we have \((\Gamma, i) \models \alpha_1 \) and \((\Gamma, i) \models \alpha_2 \). We obtain \(\vdash \Gamma \Rightarrow X^i \alpha_1 \) and \(\vdash \Gamma \Rightarrow X^i \alpha_2 \) by the hypothesis of induction. Thus we have \(\vdash \Gamma \Rightarrow X^i (\alpha_1 \wedge \alpha_2) \) by \((\text{right})\). Conversely, suppose \(\vdash \Gamma \Rightarrow X^i (\alpha_1 \wedge \alpha_2) \). Then we have

\[
\Gamma \Rightarrow X^i \alpha_1 \quad X^i \alpha_1 \Rightarrow X^i \alpha_1 \quad (\text{cut})
\]

and hence \((\Gamma, i) \models \alpha_1 \wedge \alpha_2 \) by the induction hypothesis, and hence \((\Gamma, i) \models \gamma \) and \((\Gamma, i) \models \alpha_2 \) by the induction hypothesis, and hence \((\Gamma, i) \models \alpha_1 \wedge \alpha_2 \).
(Case $\gamma \equiv \lambda \gamma'$): First, we show that $(\Gamma, i) \models \lambda \gamma$ implies $\vdash \Gamma \Rightarrow X_i \lambda \gamma$ for any $\Gamma \in \mathcal{M}$. Suppose $(\Gamma, i) \models \lambda \gamma$. Then there exists $\Delta \in \mathcal{M}$ such that $\vdash \Gamma \Rightarrow (\lambda \Delta)^* \quad \text{and} \quad (\Delta, i) \models \gamma$. By the hypothesis of induction, we obtain $\vdash \Delta \Rightarrow X_i \lambda \gamma$. Thus we obtain $\vdash \Gamma \Rightarrow X_i \lambda \gamma$

\[
\begin{array}{c}
\Delta \Rightarrow X_i \lambda \gamma \\
\vdash (\text{left}) \\
(\lambda \Delta)^* \Rightarrow X_i \lambda \gamma \\
(\text{right}) \\
(\ast \text{left}) \quad \text{or} \quad (1 \text{we}) \\
\end{array}
\]

$\Gamma \Rightarrow (\lambda \Delta)^* \quad \Gamma \Rightarrow X_i \lambda \gamma$ (cut).

Conversely, suppose $\vdash \Gamma \Rightarrow X_i \lambda \gamma$. We will show $(\Gamma, i) \models X_i \lambda \gamma$ i.e. there exists $\lambda \Delta \in \mathcal{M}$ such that $\vdash \Gamma \Rightarrow (\lambda \Delta)^*$ and $(\Delta, i) \models \gamma$. We take $\{X_i \lambda \gamma\}$ for Δ. Then we obtain $(\{X_i \lambda \gamma\}, i) \models \gamma$ by the induction hypothesis. Using the hypothesis $\vdash \Gamma \Rightarrow X_i \lambda \gamma$ we obtain $\vdash \Gamma \Rightarrow \{X_i \lambda \gamma\}$

\[
\begin{array}{c}
X_i \lambda \gamma \Rightarrow X_i \lambda \gamma \\
\vdash (\text{left}) \\
X_i \lambda \gamma \Rightarrow X_i \lambda \gamma \\
(\text{right}) \\
\end{array}
\]

$\Gamma \Rightarrow X_i \lambda \gamma \quad \vdash X_i \lambda \gamma$ (cut).

Thus, we obtain $\vdash \Gamma \Rightarrow (\lambda \Delta)^*$.

(Case $\gamma \equiv X \alpha$): $(\Gamma, i) \models X \alpha$ iff $(\Gamma, i + 1) \models \alpha$ iff $\vdash \Gamma \Rightarrow X^{i+1} \alpha$ (by the induction hypothesis) iff $\vdash \Gamma \Rightarrow X \Gamma X \alpha$.

(Case $\gamma \equiv G \alpha$): Suppose $(\Gamma, i) \models G \alpha$. Then we have $\forall l \geq i \quad (\Gamma, i) \models \alpha$, and hence $\forall l \geq i \quad \vdash \Gamma \Rightarrow X \alpha$ by the induction hypothesis. This means $\forall k \in \omega \quad \vdash \Gamma \Rightarrow X^{i+k} \alpha$, and thus $\vdash \Gamma \Rightarrow X^i \Gamma \alpha$ by (Gright). Conversely, suppose $\vdash \Gamma \Rightarrow X^i \Gamma \alpha$. Then we have:

\[
\begin{array}{c}
X^i \Gamma \alpha \Rightarrow X^i \Gamma \alpha \\
\vdash (\text{left}) \\
X^i \Gamma \alpha \Rightarrow X^i \Gamma \alpha \\
(\text{right}) \\
\end{array}
\]

$\Gamma \Rightarrow X^i \Gamma \alpha \quad \vdash X^i \Gamma \alpha$ (cut)

for any $k \in \omega$, i.e. $\forall l \geq i \quad \vdash \Gamma \Rightarrow X^i \alpha$. By the hypothesis of induction, we obtain $\forall l \geq i \quad (\Gamma, i) \models \alpha$ and hence $(\Gamma, i) \models G \alpha$ Q.E.D.

Lemma 15 The canonical model $(\mathcal{M}, N, \star, 1, i, \varepsilon, \geq, \models)$ defined in Definition 13 is a Kripke model for LT such that

\[
(\varepsilon, 0) \models \gamma \text{ if and only if } \text{LT } \vdash \gamma
\]

for any formula γ.

Proof The hereditary condition on \models is obvious. By taking 0 for i and taking ε for Γ in Lemma 14, the required fact is obtained. Q.E.D.

By using Lemma 15, the following theorem is obtained, because for any sequent $\Delta \Rightarrow \Delta'$ it can take the formula $\Delta^* \Rightarrow \Delta'$ such that $\vdash \Delta \Rightarrow \Delta'$.

Theorem 16 (Completeness) Let C be a class of Kripke frames for LT, $L := \{ S \mid \text{LT } \vdash S \}$ and $L(C) := \{ S \mid S \text{ is valid in all frames of } C \}$. Then $L(C) \subseteq L$.
4. Timed Petri net interpretation

The following definition of timed Petri net is roughly the same as that in (Tanabe, 1997).

Definition 17 (Timed Petri net) A timed Petri net is a structure \(\langle N, P, T, (\cdot)^*, (\cdot)_* \rangle \) such that

8. \(N \) is the set of natural numbers representing time
9. \(P \) is a set of places,
10. \(T \) is a set of transitions,
11. \((\cdot)^* \) and \((\cdot)_* \) are mappings from \(T \) to the set \(S \) of all multisets over \(P \times N \).

For \(t \in T \), \(t^* \) and \(t_* \) are called the pre-multiset and the post-multiset of \(t \) respectively. Each element of \(S \) is called a timed marking.

In this definition, \(i \in N \) indicates the waiting time until the pending tokens which are usable in future become available in a place. Thus, an expression \((\alpha, i) \in P \times N \) which corresponds to the formula \(\alpha^i \) means “A token \(\alpha \) has pending time \(i \), i.e., \(\alpha \) will be active after \(i \) time units.” In such an expression, a token \((\alpha, 0) \) is called an active token, and a token \((\alpha, i) \) with \(i \neq 0 \) is called a pending token.

Definition 18 (Reachability relation) A firing relation \([t] \) for \(t \in T \) on \(S \) is defined as follows: for any \(m, m \in S \),

\[
m_1 \vdash [t] m_2 \quad \text{iff} \quad m_1 = m_3 + t^* \quad \text{and} \quad t_* + m_3 = m_2 \quad \text{for some} \quad m_3 \in S.
\]

A reachability relation \(\gg \) on \(S \) is defined as follows: for any \(m, m' \in S \),

\[
m \gg m' \quad \text{iff} \quad m \vdash [t_1] m_1 (t_2) \cdots [t_n] m_n = m' \quad \text{for some} \quad t_1, \ldots, t_n \in T, \quad m_1, \ldots, m_n \in S \quad \text{and} \quad n \geq 0.
\]

It is remarked that \(\gg \) is transitive and reflexive.

We sometimes have to add certain time passage functions and timing conditions to the definitions of timed Petri net, firing relation and reachability relation, in case-by-case. A time passage function \(\delta \), which means the passage of time by \(\ell \) time units, is a function on \(S \) such that \(\delta([((\alpha, k)_i)_{i \in I}]_{i \in I}) = \{((\beta, k + \ell)_{i})_{i \in I}\}_{i \in I} \). A firing relation may be extended with respect to such time passage functions such that \(m \gg [D] m' \) if \(\delta([D]) m = m' \). A timing condition TC is a binary relation on \(S \). Then an extended reachability relation \(\gg \) on \(S \) may have, for example, the following conditions:

1. \(\forall m, m' \in S \quad \delta_1(m) = m' \quad \text{implies} \quad m \gg m' \)
2. \(\forall m, m' \in S \quad [(m, m') \in TC] \quad \text{implies} \quad m \gg m' \)
3. \(\forall m, m', m'' \in S \quad m \gg m' \quad \text{implies} \quad m + m' \gg m' + m'' \quad \text{and} \quad \delta_1(m) \gg \delta_1(m') \)

Following (Tanabe, 1997), we give an example of timed Petri nets.

Example 19 (Apple drinks) Suppose that we have just picked up three apples from an apple tree, and we can choose apple drinks between two options according to the following two rules.

(Rule 1): from an apple of less than one month old (i.e., less than a month has passed since picked from the tree), we can make a glass of apple juice.

(Rule 2): from two apples of between 10 and 20 months old, we can make a glass of cider.

We then give a timed Petri net \(\langle N, P, T, (\cdot)^*, (\cdot)_* \rangle \) with two time passage functions \(\delta_1 \) and \(\delta_1 \), and two timing conditions TC1 and TC2. Let \(P \) be \(\{A, J, C\} \) where \(A, J \) and \(C \) correspond to an apple, a glass of juice and a glass of cider, respectively. Let \(T \) be \(\{t_1, t_2, t_3, t_4\} \) with \(t_1 \) be \(([A, i]) \), \(t_2 \) be \(([J, i]) \), \(t_3 \) be \(([A, i]) \) and \(t_4 \) be \(([C, i]) \). Let TC1 be \(\{[(A, x), (J, 0)] \} \) \(0 \leq x \leq 1 \) and TC2 be \(\{[(A, x), (J, 0)] \} \) \(10 \leq x \leq 20, \) \(i = 1, 2 \). It is remarked that TC1 and TC2 correspond to (Rule1) and (Rule2), respectively. Graphically this becomes the following:
In this net, “*” indicates a timed token \((A, i)\).

Example 20 (Apple drinks 2) In Example 19, we consider the situation (Tanabe, 1997) that starting from three apples, how can we get a glass of juice and a glass of cider? Going through the stage of getting drinks.

1. We have three fresh apples: \(\{(A, 0), (A, 0), (A, 0)\}\).
2. One month has passed, i.e., all the apples have become one month old:
 \(\{(A, 1), (A, 1), (A, 1)\}\).
3. A glass of juice is made from an apple: \(\{(J, 0), (A, 1), (A, 1)\}\).
4. More eleven months have passed: \(\{(J, 11), (A, 12), (A, 12)\}\).
5. We finally have a glass of juice and a glass of cider: \(\{(J, 11), (C, 0)\}\).

Then this situation is expressed as follows:

\[
\{(A, 0), (A, 0), (A, 0)\} \rightarrow \{(A, 1), (A, 1), (A, 1)\} \rightarrow \{(J, 0), (A, 1), (A, 1)\} \rightarrow \{(J, 11), (A, 12), (A, 12)\} \rightarrow \{(J, 11), (C, 0)\}.
\]

Thus we can obtain:

\[
\{(A, 0), (A, 0), (A, 0)\} \rightarrow \{(J, 11), (C, 0)\}.
\]

In the next example, this will be verified using LT.

In order to compare timed Petri net and LT, the following definition is considered. It is assumed here that there is no time passage function or timing condition, since these are additional items in case-by-case.

Definition 21 (Timed Petri net structure) A timed Petri net structure is a structure \(\langle S, N, +, \emptyset, \bowtie \rangle\) such that

1. \(N\) is the set of natural numbers representing linear-time,
2. \(S\) is the set of all timed-markings,
3. \(+\) is a multiset union operation on \(S\),
4. \(\emptyset\) is the empty multiset,
5. \(\bowtie\) is a reachability relation on \(S\).

It is remarked that a timed Petri net structure \(\langle S, N, +, \emptyset, \bowtie \rangle\) satisfies the following conditions:

1. \((S, +, \emptyset)\) is a commutative monoid,
2. \((S, \bowtie)\) is a pre-ordered set,
3. \(x_1 \bowtie x_2\) and \(y_1 \bowtie y_2\) imply \(x_1 + y_1 \bowtie x_2 + y_2\) for all \(x_1, x_2, y_1, y_2 \in S\).

We then have the following basic proposition.

Proposition 22 (Correspondence: Timed Petri net and Kripke frame)

A timed Petri net structure \(\langle S, N, +, \emptyset, \bowtie \rangle\) is just a \(\bowtie\)-free reduct of a Kripke frame for LT.

By this proposition and the canonical model defined in Definition 13, a timed Petri net interpretation for LT is obtained.

1. A timed token or place name, \((\alpha, i)\) or \((\alpha, 0)\), corresponds to the formula \(X(\alpha)\) or \(\alpha\).
2. The reachability of a timed Petri net corresponds to the provability of a sequent in LT, i.e., \(\Gamma \Rightarrow \Delta \) corresponds to \(\Gamma \vdash \Gamma \Rightarrow \Delta^* \).

Then we have the remained question: “What is the Petri net interpretation of the exponential operator?” The following example is an answer from the idea of Ishihara and Hiraishi (Ishihara & Hiraishi, 2001).

Example 23 (Exponential operator) We give a timed Petri net \((N, P, T, (\cdot)^*, (\cdot)_*) \) with \(P := \{!\alpha, \alpha\}, T := \{t_1, t_2, t_3\}, t_1^* := \{!(\alpha, 0)\}, t_1_* := \{!(\alpha, 0)\}, t_2^* := \{!(\alpha, 0)\}, t_2_* := \{!(\alpha, 0)\}, t_3^* := \{(\alpha, 0)\} \) and \(t_3_* := \{(\alpha, 0)\} \), where all tokens are active tokens, i.e., tokens with \(i = 0 \in \mathbb{N} \). Graphically this becomes the following:

![Timed Petri Net Diagram](image)

This net corresponds to the facts \(\vdash !(\alpha) \Rightarrow !(\alpha) \otimes !(\alpha) \text{ and } \vdash !(\alpha) \Rightarrow \alpha \). In this net, the place \(!\alpha\) (if it has a timed token) can produce a number of tokens in many-times (i.e., as many as needed). We now show a LT based expression of the timed Petri net in the apple drink examples discussed before.

Example 24 (Apple drinks 3) We reconsider Examples 19 and 20 based on a sequent calculus expression for LT.

The time passage functions \(\delta_i \) and \(\delta_{j+1} \), and the timing conditions TC1 and TC2 are expressed as initial sequents (non-logical axioms) for LT.

In the following, we verify \(\vdash A, A, A \Leftrightarrow X^{i+1}\! J \ast C \), i.e., \(\{((A, 0), (A, 0), (A, 0)) \} \Rightarrow \{((J, 11), (C, 0)) \} \).

![Timed Petri Net Diagram](image)
5. Concluding remarks

In this paper, a new logic, called linear-time linear logic, was introduced as two equivalent cut-free sequent calculi LT and 2LT, which are the linear logic versions of Kawai’s LT\textsubscript{0} and Baretella and Masini’s 2S\textsubscript{o} for the standard linear-time temporal logic. The completeness theorem w.r.t. the Kripke semantics with a natural timed Petri net interpretation was proved for LT as the main result of this paper. By using this theorem, a relationship between LT and a timed Petri net with timed tokens was clarified, and the reachability of such a Petri net was transformed into the provability of LT and also 2LT. This means that the timed Petri net can naturally be expressed as the proof-theoretic framework by LT.

In the following, some technical remarks are given. The Kripke semantics presented is similar to the Kripke semantics (or resource algebras) with location interpretations by Kobayashi, Shimizu and Yonezawa (Kobayashi et al., 1999)) and Kamide (Kamide, 2004). The sequent calculi and Kripke semantics for LT can also be adapted to Lafont’s (intuitionistic) soft linear logic (Lafont, 2004) by using the framework presented in (Kamide, 2004). The framework posed in this paper can be extended to a rich framework with the first-order universal quantifier \(\forall \), based on the technique posed in (Kamide, 2004). It is known in (Lilis, 1992) that the linear logic framework with the first-order quantifiers correspond to a high-level Petri net framework.

6. References

A Linear Logic Based Approach to Timed Petri Nets

Although many other models of concurrent and distributed systems have been developed since the introduction in 1964 Petri nets are still an essential model for concurrent systems with respect to both the theory and the applications. The main attraction of Petri nets is the way in which the basic aspects of concurrent systems are captured both conceptually and mathematically. The intuitively appealing graphical notation makes Petri nets the model of choice in many applications. The natural way in which Petri nets allow one to formally capture many of the basic notions and issues of concurrent systems has contributed greatly to the development of a rich theory of concurrent systems based on Petri nets. This book brings together reputable researchers from all over the world in order to provide a comprehensive coverage of advanced and modern topics not yet reflected by other books. The book consists of 23 chapters written by 53 authors from 12 different countries.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following: