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Abstract

Barley has been cultivated for more than 10,000 years. Barley improvement studies always 
have the privilege of the breeders and scientists. This review is expected to provide a 
resource for researchers interested in barley improvement research in terms of mutation 
breeding, tissue culture, gene transfers, gene editing, molecular markers, transposons, epi-
genetic, genomic studies and system biology. We aimed to discuss some important and/or 
recent studies and improvements about barley for understanding the factors responsible 
for converting barley plants into the superior cereals, which occurred through gene trans-
fers, gene editing and molecular breeding, which is important and could help us enhance 
the current pool of cultivated barley species to provide enough material for the future.

Keywords: barley improvement, Hordeum vulgare L., genetic research, genomics 

research, complex trait

1. Introduction

Cultivated barley (Hordeum vulgare L.) is the fourth important annual cereal crop from the 

family of Poaceae after wheat, rice, maize and is consumed as feed for livestock and, food—

either pure or combined with other cereals in the form of porridge, sattu (roasted barley), 
breakfast foods and chapattis [1] and, most importantly, is also used for brewing malts. 

Barley, which is also an excellent model plant for biochemists, physiologists, geneticists and 

molecular biologists, is one of the world’s earliest domesticated and most important crop 

plants [2]. According to world statistics, its production in 2015 was 148.78 million tons, where 

Turkey’s contribution was 4,750,000 metric tons [3]. Barley is a self-pollinating diploid with 

2n = 2x = 14 chromosomes. Moreover, it has two-rowed and six-rowed types, according to 

spike morphology [4]. The barley genome project is completed by the International Barley 
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Genome Sequencing Consortium [5]. It has 26,159 genes and large haploid genome of 5.1 

gigabases (Gb), approximately 84% of the genome is comprised of mobile elements or other 

repeated structures. Ease of growth under laboratory conditions, and tissue cultures facilitate 

the development of gene transfer and gene editing technologies, although research on barley 

genome and system biology is progressing.

Barley has been cultivated for more than 10,000 years [6]. In former times, the Sumerian and 

Babylonian cultures utilized barley grains as currency. Barley improvement studies always 

have the privilege of the breeders and scientists. Barley is a short season, early maturing grain 

with a high-yield potential, and may be found on the fringes of agriculture in widely varying 

environments, often on the fringes of deserts and steppes or at high elevations in the tropics, 

receiving modest or no inputs [7]. Wide genetic variation of barley has generated cultivars 

that are tolerant to stress environments such as cold, salinity, drought and alkaline soil [8]. 

It is possible to cultivate barley in extensive ecological range. This adaptive genetic diversity 

against abiotic and biotic stresses indicates the potential of barley to develop stress resistant 

cultivars. The main objective of barley breeding programmes is enriching yield and grain qual-

ity. Improvement studies are also based on producing varieties resistant to biotic (pathogens, 

fungal, viral and other organisms) and abiotic stresses (e.g. drought, salt, cold and heat) [9]. 

Identifying and understanding the genetics basis of stress tolerance mechanisms in crops is 

fundamental to develop new varieties with more stress tolerant characters [10].

Barley is an economically important crop plant, the fourth cereal worldwide in terms of the 

planting area, utilized almost 60% as animal feed, around 30% for malt production, 7% for seed 

production and only 3% for human food [11, 12]. In recent years, the malt derived from the 

germinated barley is the key material for the malting which represents the most economically 

favourable application for beer brewing [13]. However, to enhance the germination and malting 

quality of barley, addition of malting additivives during the malting is strictly  controlled cause 

of food safety and environmenal pollution. Improvement of barley cultivars for the malting 

may be the most economical approach to improve malt quality. As a result, identifying and 

understanding the genetics basis of barley is fundamental to develop new varieties with more 

properties [14]. Also nowadays, barley has numerous advantages in food industry due to its 

high content of bioactive compounds such as β-d-glucan, tocopherols, tocotrienols and phe-

nolics such as benzoic and cinnamic acid derivatives, proanthocyanidins, quinones, flavonols, 
chalcones and flavones [15, 16]. The studies showed that β-d-glucan is regarded as a significant 
function of preventing various diseases such as diabetes, cardiovascular diseases, hypertension 

and others [17].

Barley is one of the most genetically diverse cereals which is categorized as spring or win-

ter types, two-rowed six row, hulled or hulless by the presence or absence of hull tightly 

adhering to the grain, and malting or feed by end-use type. Therefore, breeding programmes 

depend on high level of genetic diversity which provides a significant opportunity for 
achieving progress. Specific traits may be introgressed in back-crossing studies by hybridisa-

tions between high-yielding cultivars and wild barley in conventional breeding programmes 

[18]. However, mutation breeding is also important for widening variation to develop new 

cultivars. Herman Nilsson-Ehle and Ake Gustafsson, and even L. J. Stadler have performed 

induced mutation studies on barley, and then Stadler have published his data in 1928. In 1953, 
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the ‘Group for theoretical and applied mutation research’ was established by the Swedish 

Government. The aim of their study was the investigation of basic research problems in 

order to effect and improve methods for breeding programmes [19]. Both radiation and 

chemical mutagenesis have been separately used to increase the numbers of barley cultivars 

which may have desirable traits. ‘Golden promise’, which is the most popular malting bar-

ley, was produced by radiation mutagenesis [20]. In Turkey, mutation breeding programme 

has been started by Bilge et al. with collaboration of Agricultural Research Institutes [21, 22]. 

They treated barley seeds with radiations (X and gamma rays) and chemical (ethyl alcohol, 

streptomycin, terramycin, penicillin G, sodium cyanide and ethyl methane sulfonate solu-

tions) mutagens and observed different traits such as chlorophyll deficiency, large-eared, 
high-yielding, thick-stemmed, dwarf and early-heading in M1. Today, use of mutation breed-

ing generally continuing at targeted level will be discussed by new technologies.

In this review, we summarize the history of barley improvement research in terms of muta-

tion breeding, tissue culture, gene transfers, gene editing, molecular markers, transposons, 

epigenetic, genomic studies and system biology. We aimed to discuss some important and/

or recent studies and improvements about barley for understanding the factors responsible 

for converting barley plants into the superior cereals, which occurred through gene transfers, 

gene editing and molecular breeding, which is important and could help us enhance the cur-

rent pool of cultivated barley species to provide enough material for the future.

2. Barley molecular markers

Plant breeders have been used with phenotypic traits for selection of desirable traits due to 

habits, disease resistance, yield or quality to develop new cultivars. Two major strategies have 

been utilized to select desirable traits which are classical breeding and molecular breeding. 

The development and use of molecular markers for the detection and exploitation of poly-

morphism have been playing a significant role in plant breeding studies. Molecular plant 
breeding utilizes two major approaches, marker-assisted selection (MAS) and genetic trans-

formation, to produce new varieties with desirable characteristics [23, 24]. MAS is a process 

that uses molecular markers to increase crop yield, quality and tolerance to biotic or abiotic 

stresses [25]. The choice of marker systems is a significant part of plant breeding cause of the 
requirements according to the conditions and resources. In the last two decades, molecu-

lar markers such as restricted fragment length polymorphism (RFLP), randomly amplified 
polymorphic DNA (RAPD), amplified fragment length polymorphisms (AFLPs), simple 
sequence repeats(SSR), inter-simple sequence repeats (ISSR), expressed sequence tags (ESTs) 

and single-nucleotide polymorphisms (SNPs), transposon-based markers (IRAP, iPBS) have 

been used as genetic markers for measuring the genetic differences existing in the genomes 
[26–30]. Development of next-generation sequencing technologies opened new opportunities 

for the development of sequence-based markers. Today, we have new markers which are not 

fragment-based but are sequence-based. Medium and high density arrays are available for 

barley. The choice of utilized marker methods has shifted from the first and second genera-

tion markers such as RFLPs, RAPDs, microsatellite and AFLPs to third and fourth generation 

markers including DArTs, TAMs, RADs and CNVs/PAVs which are demonstrated in Table 1 
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Marker types 

used

Aim Results Reference

RFLP Construction of an RFLP map of barley Genetic and physical mapping achieved [37, 38]

RAPD Analyses genetic variations in barley Cultivar certification achieved [56]

Cultivar discrimination Cultivar and hybrid certification achieved [57]

AFLP AFLP markers linked to water stress 

tolerant and sensitive bulbs of barley

AFLP markers was identified in two barley 
genotypes (tolerant and sensitive)

[41]

SSR Construction of a SSR consensus map 

of barley

149 mapped SSR markers on Australian varieties 

are presented in the form of a consensus 

map, SSRs proved to be adaptable to several 

technologies

[44, 45]

IRAP and 

iPBS

Callus age and retrotransposon Tissue culture conditions and callus age affected 
Sukkula retrotransposon movements, and all 

individuals did not present the same effect

[51]

SNP Utilization of the BOPA1 assay to 

explore SNPs in geographically 

matched landraces and wild accessions 

collected

Of the 1536 SNPs represented on BOPA1, 1301 

mapped SNPs

[58]

CAPS Comparison of SNP and CAPS markers 

application in genetic research in 

wheat and barley

Results supporting the development of different 
strategies for the application of effective SNP 
and CAPS markers in wheat and barley

[59]

CNV The prevalence of copy number 

variation (CNV) and its role in 

phenotypic variation in domesticated 

barley cultivars and wild barleys

Levels of CNV in the wild accessions were 

found to be higher than cultivated barley. CNVs 

are enriched near the ends of all chromosomes 

except 4H. CNV affects 9.5% of the coding 
sequences represented on the array and the 

genes affected by CNV

[55]

cDNA-AFLP Development of molecular markers 

linked to barley heterosis

Five transcript-derived fragments (TDFs) 

showed significant effects on heterosis
[60]

DArT 94 Czech malting barley cultivars 

identification
DArT-based dendrogram was established [61]

Genome-wide association studies of 

agronomic and quality traits in a set of 

German winter barley (Hordeum vulgare 

L.) cultivars using DArT

A set of about 100 winter barley (Hordeum 

vulgare L.) cultivars, comprising diverse and 

economically important German barley elite 

germplasm was analysed

[62]

QTL loci effecting kernel length LEN-3H and LEN-4H could be used for 

improve kernel length

[63]

SLAF-seq 

and whole-

genome 

shotgun

semi-dwarf gene ari-e from Golden 

Promise

Specific-length amplified fragment sequencing 
(SLAF-seq) with bulked Segregant analysis 

(BSA) to develop SNP markers, and (2) the 

whole-genome shotgun sequence to develop 

InDels. Both SNP and InDel markers were 

developed in the target region

[64]

Restriction 

site 

associated 

DNA (RAD) 

sequencing

SNP-based high density genetic map 

and mapping of btwd1 dwarfing gene 
in barley

The SNP-based high-density genetic map 

developed and the dwarfing gene btwd1 

mapped

[65]

Brewing Technology52



[31–34]. Next-generation breeding technologies are now effectively used for the establishment 
of genotypic and phenotypic relations [35]. Future barley varieties are designed with crop 

model ensemble [36].

Restriction fragment length polymorphism (RFLP) marker system has been used as a mea-

sure of genetic diversity for mapping studies in barley [37, 38]. Genetic relationships among 

21  barley accessions (17 of H. bulbosum L. and 4 of H. vulgare L.) have been investigated 

by Okumus and Uzun [39] have successfully produced 111 RAPD markers. Combination of 

bulked segregant analysis and RAPD primers has been used to identify molecular markers 

linked to crown rust resistance gene Rpc1 in barley [40]. Another molecular marker tech-

nique AFLP has been utilized for linkage studies and evolution of barley [41–43]. 149 simple 

sequence repeats (SSRs) or microsatellite markers have been constructed in the form of a 

consensus map by using 12 barley populations [44, 45]. SSR markers have been utilized for 

the selection of Rym4/Rym5 locus conferring resistance to the barley mosaic virus complex 

in barley. The polymorphic SSR marker QLB1 was found to be co-segregated with Rym4/

Rym5 locus which also used to develop for the high-resolution map [46]. Other marker meth-

ods used in plant breeding are transposable elements-based marker systems such as inter-

retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified 
polymorphism (REMAP) and inter-primer binding site amplification (iPBS) to identify ret-
rotransposon markers linked to traits. Our group has been using IRAP and iPBS marker 

techniques to determine retrotransposon insertion patterns, movements of transposons, 
somaclonal variations, and callus aging. Our results showed that callus culture conditions 

have activated BARE-1 and Nikita elements [47–50]. Movements of the non-autonomous ret-

rotransposon Sukkula were investigated by Kartal-Alacam et al. [51] in barley. Recently, IRAP 

technique is also utilized to assess the genotoxicity of some drugs such as epirubicin [52] and 

amiprophos-methyl [53].

Genome- and chromosomal-level genetic structures are really important for the investigation 

of the evolution, adaptation and spread of the crops. Therefore, single-nucleotide polymor-

phism (SNP) platforms, which are used to assess the evolution of barley, are a key tool in the 

development of farming. Russell et al. [54] utilized the barley oligonucleotide pool assay 1 

platform (BOPA1, composed of 1536 SNPs) to compare 448 accessions genome-level genetic 

structures, 317 of landrace material and 131 of wild barley, and observed that significant chro-

mosome-level differences diversity between landrace and wild barley types was around genes 
known to be involved in the evolution of cultivars. Fourteen barley genotypes (eight cultivars 

Marker types 

used

Aim Results Reference

InDel 

markers

Development of InDel markers High-density InDel markers with specific 
genome locations were developed with 6976 

molecular markers (SSRs, DArTs, SNPs and 

InDels) integrated into single barley genetic 

map

[66]

Table 1. Molecular markers used in barley research.
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and six wild barleys) have been utilized to explore copy number variations (CNV) by using 

comparative genomic hybridization. The study showed that CNVs were enriched near the ends 

of all chromosomes except 4H and affected 9.5% of the coding sequences represented on the 
array [55].

3. Barley tissue cultures and gene transfers systems

Plant tissue culture, which provides convenience for plant propagation and manipulation, is 

based on growing plant cells, tissues or organs isolated from the mother plant, on artificial 
media [67]. It is required to regenerate in vitro whole transgenic plants by using cells, tissues 

or a single cell cultured on a nutrient medium in a sterile environment [68]. Regeneration abil-

ity in barley depends on the donor plant material, genotype, media and environment [69–71]. 

One significant limitation of barley transformation is still the poor regeneration potential of 
modern cultivars. However, several studies have been conducted to improve tissue culture 

techniques to increase regeneration rates [72]. From past to today, various tissue culture pro-

tocols have been developed by using immature embryos [73–80], mature embryos [81–87], 

apical meristems [88–90], anthers [91–94], microspores [95–97], ovaries [98, 99], cell suspen-

sions [100–104], protoplasts [105], coleoptile tissue [106] and leaf base segments [90, 107].

The improvement of barley through genetic transformation and in vitro methods requires 

the development of reliable, efficient and reproducible plant regeneration systems (Table 2) 

[70, 108, 109]. The plant regeneration capacity is affected by the genotype of donor plants, 
growth characteristics of induced calluses, the composition of the media, including growth 

regulators [110, 111]. Tissue cultures of barley are mainly based on the optimization of cal-

lus induction [112], regeneration [71, 113] and transformation [99], understanding of tissue 

culture response [114], detection, evaluation and elimination of somaclonal variation [81, 94, 

115–118]. The use of mature embryos has a great advantage compared to other systems such 

as protoplast and cell suspensions. For barley tissue culture, mature embryos represent ideal 

system because of higher germination and regeneration rates by somatic embryogenesis from 

cultured mature embryos of barley [87]. Phytohormones are also crucial to setting optimal 
tissue culture conditions to produce undifferentiated callus tissue from differentiated tissues 
such as an embryo [119].

Callus formation, which is a dedifferentiation of single cells or tissue explants, offers the 
great opportunity for investigation of in vitro selection production of genetic variations 

[120–124]. The regeneration of plants from callus of barley has a great potential to produce 

new lines in breeding improved barley cultivars [125, 126]. The type of auxin, 2,4-dichlo-

rophenoxyacetic acid (2,4-D), is the most used growth regulator for callus induction [123, 

127, 128]. 2,4-D have been utilized to induce embryogenic callus together with or with-

out cytokinins such as zeatin or 6-benzylaminopurine (6-BAP). Moreover, the influences 
of 2,4-D, Dicamba (3,6-dichloro-O-anisic acid), Picloram (4-amino-3,5,6-trichloropicolinic 

acid) or 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) have been investigated on the induc-

tion of embryogenic callus. It was found that Dicamba significantly increased the regenera-

tion through somatic embryogenesis [78, 111, 129–131]. However, callus quality depends 
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on barley genotypes [125, 132]. And also, it has been reported that the most barley cultivars 

produced friable and translucent callus [122, 125].

Somatic embryogenesis, which is defined as a process by which haploid or diploid somatic cells 
develop into structure that resembles zygotic embryo, is an important tool for large scale veg-

etative propagation. Somatic embryos are bipolar structures without any vascular connection 

with the parental tissue and these structures can differentiate either directly from the explants 
without an intervening callus phase or indirectly after a callus phase. Immature embryos have 

a great potential to produce somatic embryos through embryogenic callus [133]. Marthe et al. 

[134] have investigated transformation efficiency for more than 20 barley cultivars by using 
immature barley embryos, and they found that the transformation efficiency of cv ‘Golden 
Promise’ was still higher than any other cultivar tested. Another study conducted by Hisano 

et al. [135] showed that callus derived from immature embryos of ‘Golden Promise’ had the 

highest ratio of regeneration of green shoots comparing with ‘Haruna Nijo’ and ‘Morex’.

Since 1990s, genetic engineering of plants is a powerful research tool for gene discovery and 

function to investigate genetically that controlled traits have provided great opportunities to 

introduce agronomically useful traits. The first report on stable barley transformation via direct 
DNA-transfer methods has been established by Lazzeri et al. [105]. Tingay et al. [142] were 

Culture type Aim Results Reference

Immature embryos Tissue culture and plant 

regeneration from immature 

embryo explants

Regeneration of plantlets was obtained for 19 

of the 20 genotypes approximately 4 months 

after culture initiation

[75]

Evaluation 9 barley cultivar for in 

vitro culture response

For each character, there were significant 
differences between genotypes, between 2,4-D 
concentrations and also significant genotype × 
medium interactions

[136]

Evaluation of 10 Canadian barley 

genotypes for in vitro culture 

response

Fertile plants were regenerated [137]

Callus induction and regeneration 

at Czech cultivars

The callus formation frequency and number 

of green regenerants were influenced 
significantly both by genotype and auxin

[123]

Callus induction and regeneration 

at Nordic cultivars

Regeneration of many plants from the same 

callus over long periods of time and makes 

available highly efficient regeneration protocols

[138]

Mature embryos Tissue culture establishment and 

plantlet regeneration

Plantlets regenerated both via organogenesis 

and somatic embryogenesis

[139]

Tissue culture and plant 

regeneration at Indian cultivars

Multiple shoot induction and plantlet 

regeneration in Indian cultivar of barley

[140]

Anther culture Possible effect of copper during 
anther culture in barley

The positive influence of copper sulphate was 
characterized by an increase of microspore 

survival during anther culture

[141]

Table 2. Tissue culture and plant regeneration studies in barley.
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Gene transfer type Aim Results References

Biolistic transformation 

system

Target tissues such as immature 

embryos, embryos derived callus and 

microspore derived callus

Successful transformation [156]

Immature embryos and microspore-

derived cultures

Successful transformation [157]

Transformation of recalcitrant species Successful transformation [158]

Pre cultured immature embryos Molecular analysis of T1 

generation plantlets revealed the 

amplification of selectable marker 
hptII gene in the progeny

[159]

Agrobacterium-mediated 

transformation

Immature embryos Successful transformation [142]

Shoot apices Successful transformation [160]

Optimization of gene transfer 

immature embryos

Transformation efficiencies 
2.6–6.7%

[145]

Young ovules Successful transformation [161]

Microspores Successful transformation [147]

Optimization of gene transfer 

immature embryos

25 % transformation efficiency [148]

Mature scutellum Successful transformation [162]

Immature embryo-derived callus 

cultures

Improve T-DNA transfer in 

monocotyledon transformation 

procedures

[163]

Mature embryos Successful transformation [164]

Tissue electroporation DNA transfer into mature embryos of 

barley via electroporation

Successful transformation [147]

Table 3. Gene transfer research on barley.

first reported Agrobacterium-mediated gene transfer protocol to barley using immature embryos 

(IEs). Since then, numerous protocols for barley transformation have been developed with the 

contribution of technical improvements based on immature embryos or androgenetic pollen 

cultures or isolated ovules as gene transfer targets [99, 143–146]. Gurel and Gozukirmizi [147] 

optimized the transformation parameters for efficient and successful genetic transformation 
of mature barley embryos. They defined the optimal combination of electroporation and elec-

troporated mature embryos with β-glucuronidase (Gus) and neomycin phosphotransferase II 

(nptII) genes. The frequency of transformants was generally not very high between 1.7 and 7.0% 

of the immature embryos infected via Agrobacterium. On the other hand, it has been recently 

reported that the frequency is around 25% or higher [148–150]. Although the transformation 

frequency is lower, immature embryos still remain the target tissue of choice in barley [148, 151].

The most of barley transformation studies have been performed to confer biotic (fungal 

and viral resistance) and abiotic (herbicide, drought and salinity, etc.) resistance, to facili-

tate brewing and digestibility, to alter protein composition and for molecular pharming 

[152]. Some of those methods have been established in Table 3. Yeo et al. [153] developed 
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'Golden SusPtrit' which is a barley line combining SusPtrit's high susceptibility to non-

adapted rust fungi with the high amenability of Golden Promise. They generated a double 

haploid (DH) mapping population (n=122) by crossing SusPtrit with Golden Promise to 

develop the ‘Golden SusPtrit’. SG062N was found the most efficiently transformed DH line 
with 11–17 transformants per 100 immature embryos. To protect barley from the effects of 
stress-produced reactive carbonyls, which is accumulated by reactive oxygen species in the 

plant cells, an Agrobacterium-mediated transformation was carried out using the Medicago 

sativa al dose reductase (MsALR) gene by Nagy et al. [154]. Their results demonstrated 

that this technique could be applied for the detection of cellular stress, and also found that 

targeting of MsALR into the chloroplast has also resulted in increased stress tolerance. In 

addition to these studies, Han et al. [155] reported that a construct containing full-length of 

HvGlb2 cDNA encoding barley (1,3;1,4)-β-glucanase isoenzymes EII under the control of 
a promoter of barley D-Hordein gene Hor3-1 was introduced into barley cultivar Golden 

Promise via Agrobacterium-mediated transformation. High content of (1,3;1,4)-β-D-glucan 
of barley grains is considered as an undesirable factor effecting malting potential, brew-

ing yield and feed utilization. They showed that over-expression of (1,3;1,4)-β-glucanase 
led to an increase in the thousand grain weight. Also, manipulating expression of 

(1,3;1,4)-β-glucanase EII could control the β-glucan content in grain with no apparent harm-

ful effects on grain quality.

4. Genomic studies on barley

The genetic revolution of the past decade has greatly improved our understanding of the rela-

tionships between genetic and phenotypic diversity with a resolution that has never been reached 

before. The development of next generation sequencing (NGS) technologies has increased accu-

racy and decreased costs. Sequencing or re-sequencing of reference genomes and also new variet-

ies allow the identification of numerous numbers of markers, allelic diversities and have changed 
our insight of genome organization and evolution. The sequencing of crop genomes provided 

evidences for plant origin and evolution; genome duplications, re-arrangements; adaptations 

and functional modulations [165]. The full genome sequence is essential to provide knowledge 

for understanding natural genetic variations and development for breeding programs.

Recently, novel high-throughput sequencing strategies have revealed the structure of barley 

genome [166, 167]. Existence of 26,159 barley genes was confirmed by a systematic synteny 
analysis with model species from the Poaceae family (rice, maize, sorghum and Brachypodium) 

which have already had annotation of their genomes. Also, up to 80% of the 5.1 Gb genome of 

barley contains repetitive DNA, making the fully sequencing complicated [5]. Full annotations 

and a sequence-rich physical map of the barley genome, which is based on the genomic infor-

mation contained in bacterial artificial chromosomes (BACs) developed for the Morex variety 
[168, 169], are available on public databases (http://webblast.ipk-gatersleben.de/barley/index.
php) [167]. The first single nucleotide polymorphisms (SNPs) genotyping approach, based on 
the illumina oligo pool assays (OPAs), allowed the examination of 4596 markers in sets of 1536 

SNPs [58]. Although declining cost of NGS technologies, thousands to million SNPs have been 

discovered via re-sequencing, providing greater detail for high density genetic maps [170]. 
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Currently, array-based genotyping platform Infinium iSelect allows the simultaneous testing 
of 7842 SNPs [171]. Takahagi et al. [172], performed deep transcriptome sequencing, identi-

fied 38,729–79,949 SNPs in the 19 domesticated accessions and 55,403 SNPs in the wild barley. 
However, the complete sequences of the 525,599 bp mitochondrial genomes of wild and culti-

vated barley have been determined by Hisano et al. [135]. The mitochondrial genome of barley 

consists of 33 protein-coding genes, three ribosomal RNAs, 16 transfer RNAs, 188 new ORFs, six 

major repeat sequences and several types of transposable elements. The mitochondrial genomes 

of these wild and cultivated barley lines have been found to be almost identical in terms of both 

nucleotide sequence and genome structure, only three SNPs detected between haplotypes [135].

Several techniques, including linkage (or QTL mapping) mapping, association mapping 

(GWAS) and high-throughput omic techniques, such as transcriptomics, ionomics, proteomics 

and metabolomics analysis, have been used to identify a single gene or multi-genes correspond-

ing to gene regulation networks of development, flowering, vernalization and biotic and abiotic 
stress conditions [173]. Next generation sequencing approaches (e.g. RNA-Seq) were carried 

out within 5 years and enlarged our knowledge about gene regulation networks of stress con-

ditions. Especially, RNA-seq approach has been widely utilized due to low background noise, 

high sensitivity and reproducibility, great dynamic range of expression and base-pair resolu-

tion for transcription profiling [174]. Transcriptomic analyses of more than 28 plant species 

have revealed thousands of genes that are differentially regulated under drought stress condi-
tions [175]. During last few years, an increasing number of these genes have been characterized 

and their function under drought conditions has been shown by the analysis of loss-of-function 

mutants or over expressing lines. Most of these functional characterization studies have been 

performed in the model species Arabidopsis thaliana and in the grass Oryza sativa. However, pro-

duction of desired drought-tolerant crop species has required the identification of orthologous 
genes in each species. Transcriptome and whole-genome sequencing of different plant species 
lead to identify orthologous genes across several model and crop species [176].

Transcriptome profiling of barley under low nitrogen (LN) conditions have been determined by 
using RNA-seq approach. 1469 differentially expressed genes were identified between tolerant 
and sensitive barley varieties under LN. Differences between tolerant and sensitive genotypes 
involved transporters, transcription factors, kinases, antioxidant stress and hormone signalling 

related genes. However, DEGs were classified in amino acid metabolism, starch and sucrose 
metabolism, secondary metabolism [177]. Up to today, transcription dynamic of hulless barley 

grain development was not well understood. Tang et al. [178] have conducted comparative tran-

scriptome approach to investigate changes during grain development. 38 DEGs were determined 

co-modulated in two barley landraces with the differential seed starch synthesis traits. The results 
showed that these 38 DEGs encoded proteins such as alpha-amylase-related proteins, lipid-trans-

fer protein, homeodomain leucine zipper (HD-Zip), Nuclear Factor-Y, subunit B (NFYBs), as well 

as MYB transcription factors. Also, they found that two genes Hvulgare_GLEAN_10012370 and 

Hvulgare_GLEAN_10021199 encoding SuSy, AGPase (Hvulgare_GLEAN_10033640 and Hvulgare_

GLEAN_10056301), as well as SBE2b (Hvulgare_GLEAN_10018352) were significantly contrib-

uted to the regulatory mechanism during grain development in both genotypes.

Numerous numbers of studies have been performed to understand biotic and abiotic stress 

tolerance mechanisms. For this purpose, RNA-seq approach or microarray have a valuable 

potential to define stress mechanisms. One of the studies has been conducted by Tombuloglu 
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et al. [179] to discover the properties underlying the boron tolerance mechanism. By using tran-

scriptome-wide approach, 256,847 unigenes were generated and, 16 and 17% of the transcripts 

were found to be differentially regulated in root and leaf tissues, respectively, according to 
gene expression analysis. Most of these unigenes were found to be involved in cell wall, stress 

response, membrane, protein kinase and transporter mechanisms [179]. Also, physiological and 

biochemical analysis have provided valuable insights towards a novel integrated molecular 

mechanism of stress tolerance mechanisms in barley. A genome-wide transcriptome analysis 

was performed to identify the mechanisms of cadmium (Cd) tolerance in two barley genotypes 

with distinct Cd tolerance by using microarray approach. Microarray expression profiling 
revealed that novel genes may play important roles in Cd tolerance which were mainly via pro-

ducing protectants such as catalase against reactive oxygen species, Cd compartmentalization 

(e.g. phytochelatin-synthase and vacuolar ATPase) and defence response and DNA replication 

(e.g. chitinase and histones) [180]. Another study to understand abiotic stress was the sequenc-

ing of young leaves RNAs of wild barley treated with salt (500 mM NaCl) at four different 
time intervals. Differential expression profiles have been classified into nine clusters by two-
dimensional hierarchical clustering. The most important groups were assigned to ‘response to 

external stimulus’ and ‘electron-carrier activity’ which means that the highly expressed tran-

scripts are involved in several biological processes, including electron transport and exchanger 

mechanisms, flavonoid biosynthesis and reactive oxygen species (ROS) scavenging, ethylene 
production, signalling network and protein refolding [181]. Hulless barley, also called naked 

barley, often suffered from drought stress during growth and development. Therefore, Zeng 
et al. [182] have investigated co-regulated mRNAs expression patterns under early well water, 
later water deficit and finally water recovery treatments, and to identify mRNAs specific to 
water limiting conditions. The results showed that 853 DEGs were determined and categorized 

into nine clusters. The up-regulated genes were found to be relevant to abiotic stress responses 

in abscisic acid (ABA) dependent and independent signalling pathway, including NCED, PYR/

PYL/RCAR, SnRK2, ABF, MYB/MYC, AP2/ERF family, LEA and DHN under low relative soil 

moisture content (RSMC) level. However, the transcriptome analysis revealed that the most 

affected genes were related to tetrapyrrole binding, photosystem and photosynthetic mem-

brane under drought stress conditions.

The proteomic approach also plays significant roles to understand alterations in the context 
of physiological and morphological responses to biotic and abiotic stresses in barley. Rollins 

et al. [183] have investigated the proteins differentially regulated in response to drought, 
high temperature or a combination of both treatments by using differential gel electropho-

resis and mass spectrometry. The study showed that the drought treatment induced strong 

reductions of biomass and yield, but not causing significant alterations in photosynthetic 
performance and the proteome. In contrast, the heat treatment and the combination of heat 

and drought caused the reduction of photosynthetic performance and changes of the leaf 

proteome. 14 proteins among 99 protein spots were identified as a genotype-specific man-

ner in response to heat treatment. The analysis indicated that the differentially regulated 
proteins were related to photosynthesis, detoxification, energy metabolism and protein bio-

synthesis. Barley, also, used to identify the quantitative proteome changes under different 
drought conditions by Vítámvás et al. [184]. They cultivated plants for 10 days under differ-

ent drought conditions that the soil water content was held at 65, 35 and 30% of soil water 

capacity (SWC), respectively. The proteomic alterations of barley crowns grown under 
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different drought conditions were determined utilizing two-dimensional difference gel 
electrophoresis (2D-DIGE). Analysis of 2D-DIGE revealed that 105 differentially abundant 
spots were detected between the controls and drought-treated plants. The identified pro-

teins were classified into stress-associated proteins, amino acid metabolism, carbohydrate 
metabolism, as well as DNA and RNA regulation and processing.

5. Genome editing

Genome editing has recently emerged as a novel transgenic method to improve crop plants 

has great opportunities over conventional gene targeted techniques. The most important 

advantage of gene editing is the modification of the targeting specific genes in situ. Genome 

editing, uses ‘programmable’ nucleases such as zinc finger nucleases (ZFNs), TAL effectors 
nucleases (TALENs) or clustered regularly inter-spaced short palindromic repeat (CRISPR)-

associated endonucleases, may also be used to introduce gene insertions, gene replacements, 

insertions or deletions at specific genomic locations [185]. These proteins have a recognition 

domain, is provided by the FokI domain in both ZFNs and TALENs, and Cas9 in CRISPR 

systems, can be engineered to target specific sequences. Genome editing is based on double-
strand break (DSB) induction [186], and subsequent repaired by the cell’s own non-homol-

ogous end-joining (NHEJ) or homologous recombination (HR) mechanisms [185]. Genome 

editing is a key tool for advancing knowledge of gene function as well as allowing targeted 

mutagenesis with high efficiency in plants, including barley [187, 188].

Wendt et al. [187] reported the assembly of several TALENs for a specific genomic locus in 
barley. They tested the cleavage activity of individual TALENs in vivo using a yeast-based, 

single-strand annealing assay, and then the most efficient TALEN have been selected for 
barley transformation. Cleavage of the non-specific target was not observed, but analysis of 
the resulting transformants demonstrated that TALEN-induced double strand breaks led to 

the introduction of short deletions at the target site. Another study with TALENs has been 

reported by Gurushidze et al. [188] that they used TALENs in pollen-derived, regenerable cells 

to establish the generation of instantly true-breeding mutant plants. A gfp-specific TALEN 
pair was expressed via Agrobacterium-mediated transformation in embryogenic pollen with 

22% of the TALEN transgenics. During gene replacement, desired DNA could integrate into 

the genome by homologous recombination that provides great promise to the introduction 

of mutations at pre-determined positions in the genome. Watanabe et al. [189] used a model 

system based on double-strand break induction by the mega nuclease I-SceI to target specific 
position in the genome. They obtained two transformants that were stably inherited as a sin-

gle Mendelian trait. They suggested that stable gene replacement could be achieved in barley 

for routine applications by targeted double-strand break induction. The RNA-guided Cas9 

system also represents a flexible approach for gene editing in barley and provides a valuable 
tool to create specific mutations that knock-out or alters target gene function. Lawrenson et al. 
[190] investigated the use and target specificity of RNA-guided Cas9 genome editing in bar-

ley. They demonstrated Cas9-induced mutations in the first generation of 23% for barley line. 
And also, they observed that stable Cas9-induced mutations were transmitted to T

2
 plants 

independently of the T-DNA construct thus establishing the potential for rapid characterisa-

tion of gene function in barley.
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6. Transposons, epigenetic studies and non-coding RNAs

Transposons, is a segment of DNA moves to new location in a chromosome or to another 

chromosome or cell, were first identified in maize by McClintock [191]. Several studies have 

been revealed that transposons affect gene structure, epigenetic regulations and genome 
dynamics of almost all living organisms [30]. Transposons alter the existing genome struc-

ture that can lead to significant changes such as deletions and/or insertions. Percentages and 
types of transposons can vary among species [192] that prokaryotic genomes contain 1–3% 

transposons. However, their percentage may reach 85% or more in eukaryotic genomes, espe-

cially plants [193]. Due to having larger genome, barley has larger transposon-derived DNA 

content with up to 85% [194]. Also, it was demonstrated that Copia retrotransposons remained 

intact and active for much longer time periods in the larger genomes such as barley than the 

smaller genomes [195].

Our group has been studying barley transposon effects on somaclonal variation, stability 
of aging barley calli and callus regeneration by using IRAP markers derived from BARE-1 

[47, 50] and Nikita [48]. In addition, mature embryo, leaf, root tissues were investigated for 

BARE-1 and BAGY2 movements by Marakli et al. [49] and Sukkula movement in barley, 

which is a non-autonomous retrotransposon, have been investigated by our group [51]. 

We demonstrated that BAGY2 was more stable than BARE-1. Another study on transpo-

son movements of retrotransposons and methylation alteration was performed by Temel 

and Gozukirmizi [196]. We found that not all callus induction conditions increased the ret-

rotransposon activity. However, increase in cytosine methylation has been observed during 

callus formation using Sensitive Restriction Fingerprinting. Yilmaz et al. [197] also inves-

tigated the stability of aging barley calli and regenerated plantlets from those calli. We 

used the BAGY2 retrotransposon-specific IRAP technique to determine level of variations 
of DNA. We found that the culture conditions caused genetic variations, and also copy 

numbers of internal domains of BAGY2 have increased. Moreover, IRAP technique has been 

utilized to assess the genotoxicity of some drugs such as epirubicin [52] and amiprophos-

methyl [53]. Recently, Yuzbasioglu et al. [198] used IRAP markers to identify variation in 

single seed derived leaves and roots in rice.

Epigenetic chromatin modification is defined as heritable changes in gene expression which 
are not occurred by alterations in the nucleotide sequences of DNA. DNA methylation and 

modifications of covalent histone N-terminal tail are mainly regarded as chromatin modi-
fications that can be changed in plants during the cell cycle [199, 200], plant development 

[201, 202] or in stress response [203]. The epigenetic mechanisms keep gene or genes active 

or repressive states [204, 205]. Braszewska-Zalewska and Hasterok [206] investigated the 

differences of epigenetic modification between root meristematic tissues of barley. Their 
study indicated that levels of epigenetic modifications varied between RAM tissues. Studies 
on environmental stresses showed that both DNA methylation and histone modifications 
are involved in DNA damage response. Also, Braszewska-Zalewska et al. [207] observed 

that chemical (maleic acid hydrazide; MH) and physical (gamma rays) mutagens strongly 

affected the level of histone methylation and acetylation. One of the major components of 
epigenetic variations is the combinations of histones carrying different covalent modifi-

cations that Baker et al. [208] have mapped nine modified histones in the barley seedling 
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epigenome using chromatin immune precipitation next-generation sequencing (ChIP-seq) 

technique. They defined 10 chromatin states (five states to genes and five states to inter-
genic regions) representing local epigenetic environments in the barley genome. Moreover, 

it was found that H3K36me3-containing two genic states were related to constitutive gene 

expression. However, one genic state involving an H3K27me3 was related to differentially 
expressed genes.

The recent wide applications of whole-genome tilling array and RNA-sequencing (RNA-seq) 

approaches have revealed that the transcription landscape in eukaryotes is much more complex 

than had been expected [209]. These approaches have facilitated the identification of thousands of 
novel ncRNAs (or npcRNAs) in many organisms, such as humans, animals and plants [210–214]. 

ncRNAs are classified as short (<200 nt) and long ncRNAs (lncRNAs; >200 nt). Transcriptional 
and post-transcriptional regulation of gene expression of short ncRNAs, including siRNAs, miR-

NAs and piRNAs, has been well recognized and the molecular mechanisms of short ncRNA-

mediated regulation have been well understood [215, 216]. On the contrary, the regulatory roles 

of lncRNAs are only beginning to be recognized and the molecular basis of lncRNA-mediated 

gene regulation is still poorly understood [217]. Our group has been investigating the associa-

tion between salinity stress metabolism and barley lncRNAs (unpublished data). Identification 
of novel lncRNAs is likely to provide new insight into the complicated gene regulatory network 

involving lncRNAs, provide novel diagnostic opportunities, and pinpoint novel therapeutically 

targets.

7. Conclusion

Barley is an economically important crop plant, the fourth cereal worldwide in terms of 

the planting area, utilized almost 60% as animal feed, around 30% for malt production, 

7% for seed production and only 3% for human food [11, 12]. In recent years, the malt 

derived from the germinated barley is the key material for the malting represents the most 

economically favourable application for beer brewing [13]. There is tremendous genetic 

research on barley at morphological, biochemical and molecular level for development 

of superior barley varieties. However, detailed analyses should be performed to investi-

gate for the environmental extrapolation of laboratory developed lines. The relationship 

between environmental effects and genetic studies, especially field studies will provide 
knowledge about interaction of environment and genetically developed varieties. We tried 

to cite as many papers as possible. Yet we apologize to authors whose works are gone 

unmentioned in this chapter.
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