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Abstract

Production of the microbial pigments is one of the emerging fields of research due to a 
growing interest of the industry for safer products, easily degradable and eco-friendly. 
Fungi constitute a valuable source of pigments because they are capable of producing 
high yields of the substance in the cheap culture medium, making the bioprocess eco-
nomically viable on the industrial scale. Some fungal species produce a dark-brown 
pigment, known as melanin, by oxidative polymerization of phenolic compounds, such 
as glutaminyl-3,4-dihydroxybenzene (GDHB) or catechol or 1,8-dihydroxynaphthalene 
(DHN) or 3,4-dihydroxyphenylalanine (DOPA). This pigment has been reported to act as 
“fungal armor” due to its ability to protect fungi from adverse conditions, neutralizing 
oxidants generated in response to stress. Apart from the scavenging activity, melanin 
exhibits other biological activities, including thermoregulatory, radio- and photopro-
tective, antimicrobial, antiviral, cytotoxic, anti-inflammatory, and immunomodulatory. 
Studies have shown that the media composition and cultivation conditions affect the 
pigment production in fungi and the manipulation of these parameters can result in an 
increase in pigment yield for large-scale pigment production. This chapter presents a 
comprehensive discussion of the research on fungal melanin, including the recently dis-
covered biological activities and the potential use of this pigment for various biotechno-
logical applications in the fields of biomedicine, dermocosmetics, materials science, and 
nanotechnology.
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1. Introduction

Considering the harmful effects of synthetic dyes on human health and to the environment, 
developmental process for obtaining pigments from natural sources has become significant 
worldwide. Microbial pigments have gained attention owing to a growing interest of the 
industry in safer products, easily degradable, eco-friendly and do not cause harmful effects. 
The pigment production from microorganisms is considered more advantageous because it is a 

more efficient and cost-effective process than chemical synthesis of pigments. Microorganisms 
are also more feasible sources of pigments in comparison to pigments extracted from plants 

and animals because they do not have seasonal constraints, do not compete for limited farm-

ing land with actual foods, and can be produced easily in the cheap culture medium with high 

yields [1–6]. Besides, the microorganisms produce an extraordinary range of pigments that 

include several chemical classes such as carotenoids, melanins, flavins, phenazines, quinones, 
monascins, violacein, or indigo, as shown in Table 1.

Pigment Microorganism

Indigoidine (blue-green) Streptomyces aureofaciens CCM 323, Corynebacterium 

insidiosum

Carotenoid (orange) Gemmatimonas aurantiaca T-27

Melanin (black-brown) Kluyveromyces marxianus, Streptomyces chibanensis, 

Cryptococcus neoformans, Aspergillus sp., Wangiella 

dermatitidis, Sporothrix schenckii, and Burkholderia cepacia

Prodigiosin (red) Serratia marcescens, Rugamonas rubra, Streptoverticillium 

rsubrireticuli, Serratia rubidaea, Vibrio psychroerythrus, 

Alteromonas rubra, and Vibrio gazogenes

Zeaxanthin (yellow) Staphylococcus aureus, Vibrio psychroerythrus, Streptomyces 

sp., and Hahella chejuensis

Canthaxanthin (orange) Monascus roseus, Bradyrhizobium sp.

Xanthomonadin (yellow) Xanthomonas oryzae

Astaxanthin (red) Phaffia rhodozyma, Haematococcus pluvialis

Violacein (purple) Janthinobacterium lividum

Anthraquinone (red) Paecilomyces farinosus

Halorhodopsin and rhodopsin (pink Halobacterium halobium

Rosy pink Lamprocystis roseopersicina

Violet/purple Thiocystis violacea, Thiodictyon elegans

Rosy peach Thiocapsa roseopersicina

Orange brown Allochromatium vinosum

Pink/purple violet Allochromatium warmingii

Table 1. Pigments produced by different microorganisms. Adapted from Ref. [3].
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Among microbial species, fungi represent an economically significant source of these com-

pounds because they can act as microbial cell factories producing high yields of metabolites 

with great diverse chemical structures combined with ease of large-scale cultivation [7–9].

As shown in Table 1, some fungal species produce a dark-brown pigment, known as melanin. 

In general, this pigment is located in the outermost layer of the cell wall associated with chitin 

(referred as cell wall-bound melanin), but in some fungi, melanin can also be found outside 

the fungal cell, usually in the form of granules in culture fluids [10].

Fungal melanins are negatively charged, hydrophobic pigments of high molecular weight 

formed by oxidative polymerization from phenolic and/or indolic compounds, such as glu-

taminyl-3,4-dihydroxybenzene (GDHB) or catechol or 1,8-dihydroxynaphthalene (DHN) or 

3,4-dihydroxyphenylalanine (DOPA). Most Ascomycota fungi synthesize DHN-melanin from 

the polyketide synthase pathway, whereas few species are able to produce melanin through 

L-DOPA, in a pathway that resembles mammalian melanin biosynthesis [11–13].

The melanin pigment is not essential for fungal development, but it has been reported to act as 

“fungal armor” due to its ability to protect the microorganisms from harmful environmental 

conditions. In vitro studies have shown that melanized fungi are more resistant to UV light-

induced and oxidant-mediated damages, temperature extremes, hydrolytic enzymes, heavy 

metal toxicity, and antimicrobial drugs than those nonmelanized [10, 14–17]. Recent studies 

have shown that in industrial and roadside areas, there is an increase in the proportion of 

dark melanin-containing fungi, as Cladosporium and Alternaria, which were more resistant to 

contamination by heavy metals and unsaturated hydrocarbons. Radionuclide contamination 

also led to a change in fungal communities, with an increased proportion of melanized fungi. 

For example, melanized fungal species as Cladosporium spp., Alternaria alternata, Aureobasidium 

pullulans, and Hormoconis resinae were found to colonize the walls of the damaged reactor at 

Chernobyl where they are exposed to a high constant radiation field [18, 19].

The presence of melanin in the cell wall is also correlated with enhanced virulence of parasitic 

fungi, as Paracoccidioides brasiliensis, Sporothrix schenckii, and Exophiala (Wangiella) dermatiti-

dis [17, 20, 21]. This pigment protects the conidia against digestion by proteases and hydro-

lases secreted by competitive microorganisms or against bactericidal and fungicidal proteins 

of animal origin, such as defensins, magainins, or protegrins [22]. This effect was observed 
for Cryptococcus neoformans, whose in vitro melanization has been associated with resistance 

against host effector cells, oxidants, microbicidal peptides, and amphotericin B [23–25], and in 

Wangiella (Exophiala) dermatitidis, when the polyketide synthase gene WdPKS1 associated on 

melanin production was disrupted, this strain has become more susceptible to voriconazole 

and amphotericin B [26]. Others studies suggest that melanin contributes to fungal pathogen-

esis because this pigment alters the host defense response mechanisms, decreases phagocyto-

sis, and reduces the toxicity of microbicidal peptides, reactive oxygen species, and antifungal 

drugs as well as to play a significant role in fungal cell wall mechanical strength [27, 28].

Although the molecular structure of fungal melanin remains enigmatic, significant progress 
has been made in understanding particular aspects of its macro- and microstructure. These 

advances allow to elucidate the molecular mechanisms of the various biological functions of 
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melanin [22]. Studies have shown that the effect of melanin enhancing the survival of fungi 
under adverse conditions can be mainly due to its powerful free radical scavenger properties, 

acting as a “sponge” for other free radicals generated by the fungus in response to environ-

mental stress [20, 29, 30]. Apart from this scavenging ability, melanin exhibits other biologi-

cal activities, including thermoregulatory, photoprotective, antimicrobial, antiviral, cytotoxic, 

anti-inflammatory, radioprotective, and immunomodulatory [13, 17, 18, 31–34].

Since melanin has characteristics of functional materials and bioorganic, a growing number 

of researchers see this pigment with great interest, taking advantage of their properties for 

numerous biotechnological applications in cosmetics, pharmaceutical, electronic, and food 

processing industries [12, 19, 35].

The purpose of this chapter involves a comprehensive discussion of the research on fungal 

melanin, including the recently discovered biological activities and the potential use of this 

pigment for several biotechnological applications. Additionally, we discussed the ways to 

explore the metabolic potential of the pigment-producing fungi by manipulation of cultiva-

tion conditions to improve performance of the process, increasing yields, and reducing cost, 

for large-scale production.

2. Factors influencing the melanin production

Microbial pigment production is now one of the emerging fields of research due to its poten-

tial for various industrial applications, as foodstuff, cosmetics, pharmaceutical, and textile 
manufacturing processes. However, it is known that for the success of microbial fermentation 

processes, it is necessary to choose the correct productive culture strain and to determine the 

appropriate cultivation conditions [4, 8, 36].

An ideal pigment-producing microorganism should be capable of using a wide range of 

C and N sources; must be tolerant to pH, temperature, and minerals concentration; and 

must give reasonable pigments yield. The nontoxic and nonpathogenic natures, coupled 

with easy separation from cell biomass, are also preferred qualities. The potential of using 
filamentous fungi as pigment sources is due to their extraordinary metabolic versatility 
because they can be cultivated over a wide range of temperatures (10–50°C), pH (2–11), 

salinity (0–34%), and water activity (0.6–1) and under oligotrophic or nutrient-rich condi-

tions. They can grow in different culture systems (submerged and solid), and fermenta-

tion protocols have been established for large-scale industrial processes. In addition, these 

organisms can be genetically modified to increase productivity and quality of the produced 
pigments [37, 38].

In order to improve performance and reduce the cost of pigments produced by microbial 

fermentation, it is essential to identify the nutritional and physical factors that have a greater 

influence on the cell growth and metabolite biosynthesis [4, 6, 39, 40].

Several studies have shown that the composition of the growth medium, nature and concen-

tration of carbon and nitrogen sources, minerals, vitamins, temperature, pH, the presence of 
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oxygen and aeration, light, stress, and irradiation, among others, affect the growth and pig-

ment production in fungi and that the manipulation of the culture conditions can result in 

enhanced pigment production [41–47].

Experimental evidences indicate that the growth temperature influences the performance 
of the pigment production process, but this effect depends on the type of organism. 
Pseudomonas requires 35–36°C for its growth and pigment production, while in Monascus 

purpureus, maximum pigment production was observed at 30°C with a reduction of the 

yield at 37°C [48]. Another study in Monascus sp. J101 reported that the yield of pigment 

at 25°C was ten times higher than at 30°C, probably due to long growing (120 hours) and 

lower viscosity of the broth at 25°C compared to 30°C [49]. Studies developed in our labo-

ratory, using a melanin-overproducing mutant (MEL1) from Aspergillus nidulans fungus, 

showed that the higher production of pigment occurred at incubation temperature of 28°C 

compared to 37°C [50].

Researches support that the pH of the medium also affects the growth of fungi and type of 
pigment produced. In species of Monascus, the pH influences the yield and quality of the 
produced pigment, with the highest red pigment excretion and production at alkaline pH [51, 

52]. Studies on wood-inhabiting fungi indicate that pH of the substrate potentially plays an 

important role in fungal melanin formation. Fungi Trametes versicolor and Xylaria polymorpha 

tested on wood substrates produced maximum pigmentation at the pH range 4.5–5.0, except 

for Scytalidium cuboideum, which produce maximum intensity of red pigment at pH 6 and blue 

pigment at pH 8 [53]. In our study with the hypermelanized mutant (MEL1) from A. nidulans, 

we observed an increase in the production of pigment when the initial pH of the culture was 

at 6.8 compared to pH 8.0 [50]. Metabolically, the effects of pH and temperature on fungal 
pigment production is associated with changes in protein activity, so that the culture condi-

tions may control certain activities such as cell growth, production of primary and secondary 

metabolites, fermentation, and oxidation processes of the cell [54].

The influence of light on intra- and extracellular pigment production was studied in five 
pigment-producing fungi: M. purpureus, Isaria farinosa, Emericella nidulans, Fusarium verticil-

lioides, and Penicillium purpurogenum [55]. These authors concluded that the cultivation in the 

total absence of light increased biomass and production of extracellular and intracellular pig-

ments in all fungi. The fungi grown under red light have no effect, and green or yellow light 
resulted in worsening effect in all the fungi, thus postulating the existence of photoreceptors 
responsive to dark and light in all the fungi. In a similar study, [56] noted that the production 

of pigment by Monascus species also was favored when the fungus was grown in the dark.

Some studies report that the pigment synthesis requires proper aeration probably related to 
the oxygen dependency of some enzymatic reactions responsible for the production of pig-

ment. In Monascus ruber, it was observed that the highest levels of pigments production were 

obtained at an aeration rate of 0.05 L min−1, which appeared to be clearly sufficient for provid-

ing the fungus with oxygen and removing carbon dioxide [57]. In our studies, it was noted 

that no melanin pigment production takes place during stationary cultivation of hypermela-

nized mutant (MEL1) from A. nidulans, indicating that the formation of this pigment involves 

the oxidative polymerization of the precursors [50].
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Carbon and nitrogen are necessary for cellular metabolism, and these sources are related to 

the formation of biomass, the type produced pigment, and the yield of the desired substance. 

These nutrients may regulate the expression of genes of interest and activate important met-

abolic pathways for the production of pigments [45, 58, 59]. In general, glucose, an excel-

lent carbon source for growth, interferes with the formation of many secondary metabolites, 

including pigments. For example, the pigment production by Penicillium sp. was evaluated in 

the presence of 10 different carbon sources, and the maximum mycelial growth was obtained 
with fructose, whereas the maximum pigment production was obtained with soluble starch 

[60]. This result shows that the increased biomass does not necessarily result in increased 

pigment production because pigments produced by fungi are secondary metabolites whose 

production usually occurs at the late growth phase (idiophase) of these microorganisms [61]. 

The pigment production capability of fungal species belonging to the genera Penicillium, 

Aspergillus, Epicoccum, Lecanicillium, and Fusarium was evaluated in different culture media, 
and the results showed that the complex media, as potato dextrose (PD) and malt extract 

(ME), favored increased pigment production [47]. According to the authors, these media con-

tain nutrients that can regulate the expression of genes of interest and activate metabolic path-

ways important for the production of pigments.

Studies have demonstrated that the promoting or repressing effect of a nitrogen source on 
pigment production is strain dependent. It has been reported that various types of peptone, 

used as a nitrogen source, are able to promote an increase in the production of pigments in 

many species of fungi [55, 59, 62, 63]. However, M. purpureus was not able to grow in media 

containing peptone, and a maximum yield of the pigment was achieved when the media were 

supplemented with yeast extract (1%) and monosodium glutamate (5%) as nitrogen source 

[41]. In M. ruber, the use of glutamic acid as a nitrogen source showed promising results, 

either as stimulating the accumulation of extracellular pigments or contributing to increase 

the efficiency of the pigment production process [45]. The production of high amounts of 

extracellular melanin by the fungus Gliocephalotrichum simplex was obtained in cultures sup-

plemented with tyrosine (2.5%) and peptone (1%) [64].

The optimization of medium composition is an important strategy to increase pigment pro-

duction because some sources of carbon and nitrogen can be more easily assimilated and pro-

mote higher yields of the desired product. During the optimization experiments to enhance 

the production of melanin by Auricularia auricula, it was observed that soluble starch, tyrosine, 

peptone, CaCO
3
, and K

2
HPO

4
 had positive effects, while glucose, (NH

4
)

2
SO

4
, MgSO

4
, CuSO

4
, 

and FeSO
4
 negatively impacted melanin production [46]. In other study with A. auricula, it 

was observed that yeast extract, tyrosine, and lactose have significant effects on pigment pro-

duction and the optimization of medium resulted in 2.14-fold higher melanin concentration 

than that of the unoptimized medium [65].

Since the substrates for the production of pigment strongly influence the cost of the biopro-

cess, there is a need to select cheap and efficient substrates to make the process economi-
cally viable on the industrial scale. Large amounts of agro-industrial residues generated from 

diverse economic activities have attracted strong industry interest on the utilization of these 
residues as inexpensive substrates to support the growth of microorganisms in bioprocesses. 
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This strategy may represent an added value to the industry and also helps in solving pollu-

tion problems, reducing or preventing their disposal in the environment [1, 66, 67].

Various studies have reported the successful utilization of agro-industrial residues for the 

production of fungal pigments. The use of corn cob powder as a substrate for production of 

pigments by M. purpureus resulted in greater pigment production [68] than other substrates, 

as jackfruit seed [69], corn steep liquor [70], and grape waste [71]. In the black yeast Hortaea 

werneckii, it was observed that rice bran acts as the cheapest source for increased produc-

tion of melanin by than wheat bran and coconut cake [72]. Wheat bran extract, L-tyrosine, 

and CuSO
4
 represent the best combination of medium components to obtain the maximum 

melanin yield from the fungus A. auricula in submerged culture [73]. A study conducted in 

our laboratory evaluated the use of corn steep liquor, sugarcane bagasse, and molasses as 
nutritional source on pigment production by melanin-overproducing mutant (MEL1) from 

A. nidulans. We observed that, in the presence of 0.2% corn steep liquor, an increase in the 
pigment production occurred, while a high yield of biomass was obtained at a concentration 

of 2%. The supplementation of medium with molasses and sugar cane bagasse hydrolysate 

did not have a positive effect on pigment production but promoted an increase in the fungal 
growth. These results indicate that corn steep liquor contains substances that stimulate the 
synthesis of pigment and it represents a low-cost fermentation medium for large-scale pro-

duction of the pigment melanin by MEL1 mutant for future industrial applications [74].

3. Pathways of melanin biosynthesis

Various techniques, including electron paramagnetic resonance [75], X-ray diffraction [76], 

infrared, ultraviolet and visible spectroscopy [77], and nuclear magnetic resonance [78], have 

been used to elucidate the melanin structure from different organisms. These studies have 
shown that fungi can produce different types of melanins by oxidative polymerization of 
phenolic or indolic compounds [11, 27].

Melanin in cell walls of Basidiomycotina is derived from phenolic precursors, as glutaminyl-

3,4-dihydroxybenzene (GDHB) or catechol. In the parasitic fungus Ustilago maydis, polym-

erization of catechol dimers with the formation of fibrils of melanin was shown [79]. The 

precursor of melanin in Agaricus bisporus and other Basidiomycetes is a metabolite of the shi-

kimic acid pathway-γ-glutaminyl-4-hydroxybenzene oxidized under the action of peroxidase 
and/or phenolase into γ-glutaminyl-3,4-benzoquinone, followed by its polymerization [80]. 

C. neoformans, a pathogenic basidiomycetous yeast, is known to synthesize DOPA-melanin 

when o-diphenolic compounds, such as 3,4-dihydroxyphenylalanine, are present in the cul-

ture medium. This fungus may use a wide array of substrates, such as D- and L-dopamine 

[81], homogentisic acid [82], catecholamines, and other phenolic compounds [83], maximizing 

its ability to produce melanin. Polymerization of exogenous substrates in this fungus occurs 

under the action of laccase [19]. However, it is important to emphasize that different proper-

ties are observed for melanins derived from different substrates. Comparison of the catechol-
amines L-dopa, methyldopa, epinephrine, and norepinephrine shows differences in term of 
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color, yield, and thickness of the cell wall melanin layer. It was also observed that the pig-

ments vary in the strength of the stable free radical signal detectable by EPR [13, 83].

In the Ascomycota fungi, melanin pigment is generally synthesized from the pentaketide 

pathway in which 1,8-dihydroxynaphthalene (DHN) is the immediate precursor of the 

polymer, as described by Bell and Wheeler [11] based on genetic and biochemical evidence 

obtained from Verticillium dahliae and W. dermatitidis [84, 85]. Figure 1 shows a general 

model for fungal dihydroxynaphthalene (DHN)-melanin biosynthesis. In this pathway, the 

polyketide synthase (PKS) converts malonyl-CoA to 1,3,6,8-tetrahydroxynaphthalene (1,3,6,8-

THN), which undergoes several reduction and dehydration reactions to produce scytalone, 

1,3,8-trihydroxynaphthalene (THN), and vermelone. A further dehydration step leads to the 

intermediate 1,8-dihydroxynaphthalene (DHN), which is polymerized to DHN-melanin, pos-

sibly by a laccase enzyme [10, 13, 27].

However, some species of this class, including Cladosporium resinae, Epicoccum nigrum, 

Hendersonula toruloidea, Eurotium echinulatum, Humicola grisea, and Hypoxylon archeri, do not 

produce this type of pigment [11, 28, 86–88]. In the genus Aspergillus, DHN-melanin has not 

been identified in some members, as A. nidulans and A. niger. Bull [89] identified dopach-

rome (indole 5,6-quinone 2-carboxylic acid) and melanochrome (indole 5,6-quinone), which 
are intermediates in the DOPA-melanin pathway, in A. nidulans mutants defective in the 

production of melanin. Other studies confirmed the indolic nature of the melanin produced 
by A. nidulans [11, 90]. In A. nidulans strains, one tyrosinase was identified as the enzyme 
responsible for the production of melanin pigment, based on its substrate specificity (DOPA 
substrate) and susceptibility to inhibitors [91, 92]. In a recent study, our group characterized 

the pigment produced by A. nidulans mutants as DOPA-melanin according to the results 

obtained with specific inhibitors of DHN- and DOPA-melanin pathways [93].

Figure 1. The biosynthetic pathway of fungal dihydroxynaphthalene(DHN)-melanin. Scheme adapted from Ref. [13].
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The production of DOPA-melanin has also been investigated in other fungi such as Neurospora 

crassa [94], Podospora anserina [95], A. nidulans [91], A. oryzae, and C. neoformans [96]. A biosynthe-

sis pathway for fungal DOPA-melanin, proposed by [11], is shown in Figure 2, which strongly 

resembles the pathway found in mammalian cells, though some of the details may differ.

In this pathway, there are two possible starting molecules, L-dopa and tyrosine. If L-dopa is 

the precursor molecule, it is oxidized to dopaquinone by laccase. If tyrosine is the precursor, it 
is first converted to L-dopa and then dopaquinone. The same enzyme, tyrosinase, carries out 
both steps. Dopaquinone, a highly reactive intermediate, forms leucodopachrome, which is 
then oxidized to dopachrome. Hydroxylation (and decarboxylation) yields dihydroxyindoles, 

which can polymerize spontaneously to form DOPA-melanin [10, 27, 97].

Some fungi have more than one biosynthetic pathway of melanins. For example, Aspergillus fumig-

atus synthesizes DHN-melanin [98] and also produces a second type of melanin, piomelanins, 

from homogentisic acid by the tyrosine degradation pathway that protects the cell wall of hyphae 

from ROS, and gray-green DHN-melanins determine the structural integrity of the cell wall of 

conidia and their adhesive properties [99]. In Agaricus bisporus, melanins are formed from DOPA 

by tyrosinase and from γ-glutaminyl-4-hydroxybenzene by peroxidase and phenolase [100].

The extracellular fungal melanin, which is found in culture fluids usually in the form of gran-

ules, can be formed from some culture components, which are autoxidized or are oxidized by 

phenoloxidases released from the fungus during autolysis [10, 11, 27].

4. Biological activities of melanin

Despite the difference in their origins, melanin pigments have a number of common char-

acteristics that allow them to fulfill their protective function. Several biological functions of 

Figure 2. The biosynthetic pathway of the dihydroxyphenylalanine (DOPA)-melanin in fungi. Scheme adapted from 

Ref. [13].

Production of Melanin Pigment by Fungi and Its Biotechnological Applications
http://dx.doi.org/10.5772/67375

55



melanins are closely associated to their chemical composition and structure. The presence of 

unpaired electrons in the melanin structure is responsible for various properties, including 

antioxidant, semiconductor, optical, electronic, and radio- and photoprotective [19].

The effect of melanin enhancing the survival of fungi under adverse conditions is mainly due 
to its function as an extracellular redox buffer, which can neutralize oxidants generated by the 
fungus in response to environmental stress [19]. It has been reported that melanin contributes 

for virulence of C. neoformans, protecting the pathogen against free radicals generated immu-

nologically [29]. In W. dermatitidis and A. alternata, melanin confers resistance to oxidants per-

manganate and hypochlorite, representing a key role in pathogenesis of infections caused by 

these fungi [30]. Studies have shown that melanin of zoopathogenic and phytopathogenic 

fungi is essential for their parasitizing, due to its antioxidant properties [101].

Melanin pigment extracted from several fungal species has shown the ability to scavenge free 

radicals (reactive nitrogen and oxygen species), becoming a potential natural antioxidant. 

Melanins produced by Exophiala pisciphila and Aspergillus bridgeri ICTF-201 exhibited a sig-

nificant DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity comparable with 
that of synthetic melanin, indicating its antioxidant potential [102, 103]. Melanin produced 

by Schizophyllum commune showed high free radical scavenging activity in a dose-dependent 

manner, when the melanin concentration was increased from 10 to 50 μg, the scavenging 

activity was also increased from 87% to 96%, similar to those obtained using ascorbic acid 

(standard compound used to measure free radical scavenging activity) [34]. Melanin pigment 

of Fonsecaea pedrosoi has antioxidant potential by reducing Fe(III) to Fe(II), ensuring the bal-

ance of its redox chemical microenvironment and minimizing the effect of oxidation of fun-

damental structures on fungal growth [104]. Similar results were also observed for melanin 

from Ophiocordyceps sinensis, which proved to be an effective DPPH radical scavenger and a 
strong ferrous iron chelator [105]. The chelating power of fungal melanin can be explained by 

various functional groups present in the structure of this pigment, which provide an array of 

multiple nonequivalent binding sites for metal ions [14, 22].

It has been reported that substances acting as antioxidants protect cells from ROS-mediated 

DNA damage, which can result in mutation and subsequent carcinogenesis. The excess free 
radicals may attack cellular constituents, as the cell membrane, nucleic acid, protein, enzymes, 
and other biomolecules, by peroxidation, resulting in the severe damage of cell functions 

and subsequent serious deleterious effects on the organism [106]. It has been reported that 

melanin protects melanocytes and keratinocytes from the induction of DNA strand broken 

by hydrogen peroxide, indicating that this pigment also has an important antioxidant role in 

the skin [107]. Studies in our laboratory showed that melanin extracted from hyperpigment-

productive mutant (MEL1) of A. nidulans has the ability to scavenge the biological oxidants, as 

HOCl, and may be a promising material in cosmetic formulations to protect the skin against 

possible oxidative damage [31].

There is experimental evidence that fungal melanin may also act as an anti-aging drug, 

due to its action in reducing the generation of free radicals, clearing away the free radi-

cals produced in excess, and enhancing the activities of antioxidant enzymes. Studies have 

shown that one of the major causes of aging is the surplus free radicals produced during 
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the oxidative metabolism in the human body [108]. It was demonstrated that the melanin 

produced by fungus Lachnum singerianum YM296 significantly inhibited the formation of 
lipid peroxidation products and slowed down the aging process, elevating the levels of 

superoxide dismutase, glutathione peroxidase, and catalase and decreasing the level of 

malondialdehyde in mice liver and brain homogenate and serum, suggesting that this pig-

ment could be used as a new anti-aging drug [109].

Researches have also shown that some fungal melanin exhibits immunomodulatory activ-

ity through the inhibition of pro-inflammatory cytokine production in T lymphocytes and 
monocytes, as well as fibroblasts and endothelial cells [12, 110, 111]. During an inflammatory 
response, cells of the innate and acquired immune systems release a variety of mediators, 
such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukins (IL), and the reac-

tive nitrogen and oxygen species, which are implicated in the pathogenesis of a number of 

inflammatory diseases [112]. [113] reported that treatment of macrophages activated in vitro 

with melanin from the fungus F. pedrosoi inhibited the production of nitric oxide and Th1 cyto-

kines. The study performed by [114] showed that the expression of inducible nitric oxide syn-

thase gene decreased and lower levels of cytokines, such as IL-12 and TNF-α, were observed 

when activated macrophages were incubated with melanized cells of the Fonsecaea monophora 

fungus. Our studies demonstrated that melanin extracted from a highly melanized mutant 

(MEL1) of A. nidulans inhibited NO production in LPS-stimulated macrophages, with a maxi-

mum response of 82% inhibition, and also showed a dose-dependent inhibitory effect on TNF-
α production, reaching an inhibition of 51.86% at a melanin concentration of 100 μg/mL. These 

results suggest that melanin from A. nidulans has potential as an anti-inflammatory agent and 
may be used in the future for development of new drugs with therapeutic utility [32].

Some studies have proposed that fungal melanin exhibits anti-radiation activity in vivo and 

in vivo and then could be explored as a probable radioprotector [16, 115]. Since melanin has 

a stable free radical population, it is thought that the radioprotective properties of this pig-

ment result from a combination of physical shielding and quenching of cytotoxic free radi-
cals generated by radiation [18]. [116] showed that Lachnum extracellular melanin (LEM404) 

had strong anti-ultraviolet radiation activity because the survival rates of Escherichia coli, 

Staphylococcus aureus, and Saccharomyces cerevisiae under UV radiation were significantly 
increased after in vitro addition of LEM404. Compared with the control groups, the antioxi-

dant defense systems, such as superoxide dismutase and glutathione peroxidase activities, 

were improved significantly in mice of experiment groups, and the reactive oxygen species 
detected by malondialdehyde content were decreased significantly. These results confirmed 
that fungal melanin could be used as component of photoprotective creams mainly for its 

free radical scavenging rather than its light absorption properties. The probable mechanisms 

of radioprotection by melanin appear to be modulated in pro-survival pathways, immune 

system, and prevention of oxidative stress. It was reported that melanin isolated from the 

fungus G. simplex reduced the radiation-induced overproduction of pro-inflammatory cyto-

kines (IL-6 and TNF-α), which might help in the recovery from radiation injury by pre-

venting the aggravation of inflammation and oxidative stress [33]. This study confirmed 
the possible use of melanin-coated nanoparticles for protecting against radiotoxicity during 

radioimmunotherapy [117].
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Recent studies have demonstrated that, in addition to the ability of transferring electrons aris-

ing under the action of radiation, melanin also possesses ionic conductivity due to its ability 

to transform any type of radiation energy not only into heat but also use it for the mainte-

nance of redox processes in cells [118]. It was assumed that melanin pigments, participating in 

redox reactions, are able to perceive the energy of radiation (UV, visible light, and radiation) 

and convert it into useful reducing power for metabolic processes. This hypothesis is sup-

ported by the discovery of melanized fungi in soils contaminated by radioactive nuclides and 

areas around the damaged Chernobyl nuclear reactors, which not only survive high radiation 

levels but also have enhanced growth upon exposure [16, 19, 119, 120]. Owing to its semicon-

ductor property, melanin becomes a promising material for organic bioelectronic devices like 

transistors, sensors, and batteries [121].

Fungal melanins also exhibit growth inhibitory effect against various microorganisms. The 
extracellular melanin isolated from S. commune showed significant antibacterial activity 
against E. coli, Proteus sp., Klebsiella pneumonia, and Pseudomonas fluorescens and antifungal 

activity against dermatophytic fungi, Trichophyton simii, and T. rubrum [34]. The A. auricula 

melanin displayed inhibitory activity on biofilm formation of the three bacterial strains, E. coli 

K-12, Pseudomonas aeruginosa PAO1, and P. fluorescens P-3, and there was a proportional reduc-

tion in biofilm biomass with the increase in pigment concentration. Confocal laser scanning 
microscopy (CLSM) analyses showed that the three strains formed thick and compact bio-

films when grown in the absence of pigment, but the presence of A. auricula melanin resulted 

in thinner and looser cell aggregations on surfaces instead of normal biofilm architecture. This 
study suggested that A. auricular melanin inhibits quorum-sensing (QS)-regulated biofilm 
formation in all strains tested without interfering with their growth [122]. Silver nanoparticles 

incorporated Yarrowia lipolytica melanin exhibited antimicrobial activity against the pathogen 

Salmonella paratyphi, and they were also effective at disrupting biofilms on polystyrene as well 
as glass surfaces [123]. These nanoparticles displayed excellent antifungal properties toward 

an Aspergillus sp. isolated from a wall surface, suggesting the application of these nanoparti-

cles as effective paint additives. The melanin-silver nanostructures with broad-spectrum anti-
microbial activity against food pathogens also have potential applicability in food processing 

and food packaging industries [124].

The anti-cell proliferation effect of fungal melanin in tumoral cell lines has already been dem-

onstrated. [34] reported that the extracellular melanin produced by the fungus S. commune was 

effective against human epidermoid larynx carcinoma cell line (HEP-2) in a concentration-depen-

dent manner, indicating its potential application in cancer chemoprevention and chemotherapy.

The evaluation of the effect of fungal melanin on non-tumor cells is also interesting because 
it may serve as alternative to acute in vivo toxicity testing, avoiding the indiscriminate use 

of animals. The melanin produced by A. bridgeri was evaluated in vitro cytotoxicity assay 

using cell lines TE 355.Sk derived from normal human skin fibroblasts and HEK-293 derived 
from human embryonic kidney cells, and no cytotoxicity was observed against the two cell 

lines [103]. In our studies, the toxicity of the melanin from A. nidulans was also evaluated due 

to its potential practical application as antioxidant and anti-inflammatory agent. The results 
showed that the viability of mouse macrophages remained greater than 90% when these cells 
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were treated with a high melanin concentration (100 μg/mL), indicating that this pigment 

has low cytotoxicity [32]. We also showed that the toxicity of A. nidulans melanin on mouse 

fibroblast McCoy cell line, after metabolic activation with hepatic S9 microsomal fraction, was 
much lesser (CI

50
 = 413.4 ± 3.1 μg/mL) than known cytotoxic agents such as cyclophosphamide 

(CI
50

 = 15 ± 1.2 μg/mL). In this study, we demonstrated that this melanin pigment did not 

induce gene mutations in different strains of Salmonella typhimurium used in the Ames assay. 

Based on these results, we suggest that the melanin produced by A. nidulans does not cause 

significant damage to the cellular components and might be used in the future for develop-

ment of new therapeutic drugs [32].

5. Biotechnological applications of melanin

With the current knowledge about physical and chemical properties and the broad spectrum 

of biological activities, fungal melanins have attracted growing interest for their potential use 
in the fields of biomedicine, dermocosmetics, nanotechnology, and materials science.

5.1. Bioelectronic applications

In recent years, the electronics industry has been driven to develop materials and components 

that are cheaper and more environmentally friendly. As melanin has characteristics of func-

tional materials and bioorganic, a growing number of researchers in the fields of materials 
science and organic electronics see the melanin with great interest, taking advantage of their 

properties for applications in organic electronic devices. Melanins present interesting opto-

electronic properties, such as high optical absorption in the UV-Vis range, good transmission 

electronic, and ionic conductivity appreciably, pointing this biomaterial as a promising active 

component in organic electronic devices with low environmental impact [118, 121, 125–127].

Among the physical properties of melanin, the electrical conductivity is one of the most inter-

esting to investigate in the perspective of technological application. The electrical conductivity 

properties of this biopolymer are similar to those of amorphous semiconductor solids, and then 

it can be considered an organic semiconductor, which is largely available and biocompatible 

and, consequently, cheaper and easier to process with respect to inorganic semiconductors, as 
silicon germanium. In particular, it can be considered a promising material for sensors and pho-

tovoltaic devices, due to broadband spectral absorbance and charge transport properties [128].

The technical literature describes the integration of organic semiconducting polymers as 

melanin in silicon electronic devices in view of the possibility of achieving multifunctional 

systems that combine electrical and optical properties of semiconductors, the structural ver-

satility and mechanical characteristics of materials, and processing polymeric [129]. The pro-

duction of devices based on thin film melanin exhibited electrical conductivity comparable 
to that of amorphous silicon [130]. In this study, melanin films showed excellent thermal 
stability and adhere well to glass substrates and silicon, indicating the possibility of using this 

technique for the production of films from synthetic melanin. Other groups have published 
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various device architectures with applications such as memory (metal-insulator-semiconduc-

tor geometries) [131], batteries [132], and biomimetic interfaces [133].

Deposition of homogeneous melanin layers for optoelectronics application is an issue of 

considerable technological relevance. Synthetic melanin thin films deposited by spray-coat-
ing presented features ascribed to an amorphous semiconducting material [134]. They also 

showed that further improvement of conductivity together with an increased absorption in 

the NIR region, by doping the synthetic melanin macromolecule, could make this material a 

good candidate for optical sensing applications. It has been reported that the iron-melanin 

coating markedly enhances the catalytic activity of the gold nanoparticles (AuNPs) for both 

the hydrogen peroxide electroreduction and hydrogen evolution reaction [135]. This strat-

egy may be used to improve nanomaterials with potential applications as efficient catalysts 
and electrocatalysts. Studies have shown that synthetic melanin-like nanoparticles complexed 

with paramagnetic Fe3+ ions have potential as a highly efficient and nontoxic contrast agent 
for magnetic resonance imaging instead of Gd3+-based contrast agents, which can cause neph-

rotoxicity [136].

The optical and electronic properties of melanin have attracted the attention of researchers 
for the production of continuous thin films from conventional synthetic melanin, which have 
been used for a number of different device configurations, including chemi-sensors, next-
generation solar cells, and a range of other detectors [126, 130, 134]. Potential also exists to use 

melanin films as an effective radiation sensitizer that could greatly improve the spectral range 
and efficiency of superconducting transition-edge bolometers [137].

The metal chelation properties of melanin offer interesting possibilities for melanin-based 
metal ion sensing. A piezoelectric sensor system capable of real-time detection of metal ions 

was constructed by cross-linking melanin onto the gold electrode of quartz crystal micro-

balance (QCM) and showed high sensitivity and selectivity to metal ions particularly for 
Hg(II) [138].

Melanin has many other interesting properties, such as ultraviolet absorption, which has been 

utilized to prepare optical lenses or filters. Studies have shown that it is possible to use mela-

nin as an ultraviolet, visible and near-infrared absorbing pigment in opthalmic devices, pro-

tective eyewear, windows, packaging material, umbrellas, canopies, and other similar media 

suitable for providing protection from radiation [139, 140]. The incorporation of the melanin 

in solid plastic films of polyvinyl alcohol (PVA-melanin film system) to be used in conjunc-

tion with other plastics to make laminated sheets or lenses, including sunglasses, ski goggles, 

ophthalmic prescription lenses, helmets, windows, light filters for artificial lighting, and other 
light filters that protect people from potentially damaging UV and high-energy visible light 
has also been reported [141].

5.2. Medical applications

Despite its high biocompatibility, the use of melanin as a novel biomaterial in pharmaceuti-

cal and biomedical applications reported in literature is still scarce. A study performed with 

melanin nanoparticles as biocompatible drug nanocarriers, using metronidazole (antibiotic 

Melanin60



drug), showed that melanin could be a very interesting nanocarrier drug release device 

because it strongly responds to pH, being a very interesting feature for the treatment of 

intestine and colon diseases, which would greatly benefit with pH targeting [142]. Another 

study showed that systemic melanin-covered nanoparticle (MN) administration reduced 

hematologic toxicity in mice treated with radiation and that these structures provide effi-

cient protection to bone marrow against radiotoxicity during radioimmunotherapy and in 

some cases external beam radiation therapy, permitting the administration to tumors of sig-

nificantly higher doses [117].

Melanin has also been used to treat various types of malignant cancer tumors, disorders 

of the immune system including AIDS, diseases of blood origin and disorders due to 

the disturbances in cell homeostasis, and complex and hardly curable mental disorders 

(schizophrenia, epilepsy) involving nervous and other regulatory systems. A study on the 

use of melanin for the treatment of Parkinson’s disease, an amelioration in the monkeys’ 

overall functional ability and secondary motor manifestations by the administration of an 

effective amount of melanin in monkeys treated with MPTP (1-Methyl-4-phenyl-1,2,5,6-
tetrahydropyridine), a toxin that causes a neurodegenerative disease, was observed. This 

study demonstrated that toxin-induced Parkinson’s disease could be prevented in the mel-

anin-treated animals because the administered melanin causes chelation or scavenging of 

toxins, such as MPTP, thus preventing a neurodegenerative disease, such as Parkinson’s 

disease. The results of this study also showed that melanin administration to aid the recov-

ery of neurons in a mammal having neuron injury suggests that melanin can be used to treat 

Alzheimer’s disease [143].

Owing to their ability to increase the permeability of the blood-brain barrier, the melanin is 

also useful as carriers for other therapeutic agents, which must reach brain tissue to produce 

their therapeutic responses [144]. Two examples of such therapeutic agents that will cross the 

blood-brain barrier when linked to melanin are boron and nerve growth factor. According to 

the same authors, the melanin is also an effective vehicle for the transport of boron to cancer-

ous sites in the body, mainly when the cancerous cells to be treated are located in the brain, 

because this pigment binds boron very strongly. The melanin can also function as a carrier 

for nerve growth factor due to the ability to get nerve growth factor across the blood-brain 

barrier, and this is the major advantage over conventional therapy.

In recent years, efforts have been focused on investigating the potential use of this pigment 
as active material in tissue repair engineering. Bettinger et al. [145] reported that thin films 
of melanin were found to enhance Schwann cell growth and neurite extension in rat pheo-

chromocytoma cells (PC12 cells) compared to collagen films in vitro. Melanin films also 
induced an inflammation response that was comparable to silicone implants in vivo, and 
the implants were significantly resorbed after 8 weeks. These results showed that melanin 
thin films have great potential in the reconstruction of tissues, being biodegradable, and 
possess inflammatory response comparable to silicone. Another study of the biocompat-
ibility of melanin thin films demonstrated that the melanin film effectively supports the 
growth of undifferentiated stem cells and their differentiation into neuronal precursors and 
neurons [146]. They related that high-quality melanin thin films display appealing features, 
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such as reversible conductivity by controlled hydration—dehydration steps—excellent bio-

compatibility with stem cells, and water-resistant adhesion, for bioelectronic applications, 

e.g., in organic electrochemical transistors (OECTs), which can translate cellular activity 

into electrical signals [125, 147]. It has also been reported that melanin thin films possess 
highly desirable physical and biological properties that make them ideal for organic bio-

electronic devices [130].

In cosmetic industry, there are great interests in the melanin, especially to protect against 

the noxious effects of UV radiation by incorporation in skin photoprotection formulations 
[35, 148]. The protective action of melanin is related to its high efficiency to absorb and scat-
ter photons, particularly the higher-energy photons from the UV and blue part of the solar 

spectrum. Very likely, melanin photoprotection is also due to its ability to quench excited 
states of certain molecules and scavenge ROS that may be generated in pigmented cells [126]. 

Development of methods for producing melanin soluble in aqueous cosmetic buffers at phys-

iological pH and temperature may make possible the use of this pigment as ingredients of 

face and hand creams, lotions, antiaging ointments, or foundation makeups, acting as a screen 

and antioxidant for the protection against photoinduced skin damages [149]. Other dermo-

cosmetic applications of melanins include the use of the pigment for hair dyeing and the 

development of novel strategies for hair recoloration [150].

Since melanin has a stable free radical population, it is thought that the radioprotective 

properties of this pigment result from a combination of physical shielding and quenching of 
cytotoxic free radicals generated by radiation [18]. Some studies suggest the possible use of 

melanin-coated nanoparticles in medicine, mainly for protecting patients against the harm-

ful effects of gamma rays during radioimmunotherapy [34, 151]. Medical treatments using 

radiation such as external beam radiation therapy for cancer patients can damage bone mar-

row resulting in debilitating side effects. In experimental models, melanin can successfully 
shield bone marrow from such side effects. Mice treated with melanin-coated nanoparticles 
have higher white blood cell and platelet counts than control mice after radiation treat-

ment [117]. It has been reported the use of melanin, a biopolymer with good biocompat-

ibility and biodegradability, intrinsic photo-acoustic properties, binding ability to drugs, 

and chelating property to radioactive metal ions, as an efficient endogenous nanosystem 
for imaging-guided chemotherapy [152]. According to the authors, melanin nanoparticles 

could successfully enter into the tumor and act as an efficient drug-delivery system, thereby 
greatly increasing the safe utility of the drugs for tumor treatment and significantly lower-

ing the dosage used and its side effects.

A valuable biotechnological approach to the melanin-mediated synthesis of silver nanostruc-

tures with broad-spectrum antimicrobial activity has been developed. Silver nanostructures 

synthesized with melanin derived from Y. lipolytica displayed excellent antifungal activity 

against an Aspergillus sp. isolated from a wall surface, indicating its potential application as 

effective paint additives [123]. The melanin-mediated nanostructures with broad-spectrum 

antimicrobial activity against food pathogens may be considered suitable for many practical 

food packaging applications because they can effectively inhibit the growth of pathogens and 
increase the shelf life of packed food products [124].
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5.3. Environmental applications

The chemical structure of melanin presents many oxygen-containing groups, including car-

boxyl, phenolic and alcoholic hydroxyl, carbonyl, and methoxy groups, which have the abil-

ity to bind to a broad spectrum of substances [153]. In literature, studies have confirmed that 
fungal melanin acts as metal chelators, enhancing the biomass-metal interaction and conse-

quently its biosorption capacity [14]. Study conducted by [154] showed that a melanin-rich 

strain of the fungus Cladosporium cladosporioides biosorbed 2.5- to 4-fold more Ni, Cu, Zn, Cd, 

and Pb ion than non-melanic Penicillium digitatum. These authors also studied the culture of 

C. cladosporioides in different growth times and found that a culture grown for two days is 
not pigmented and has only 34% of Cd adsorption rate that obtained for pigmented biomass 

after 4 days of growth [155]. Another study reported that melanized fungus Armillaria adsorb 

high concentrations of cations from the surrounding environment; some ions (Al, Zn, Fe, Cu, 

and Pb) were 50–100 times more concentrated on rhizomorphs than in soil [156]. The results 

obtained in our laboratory using a melanin-overproducing mutant (MEL1) from A. nidulans 

fungus [31, 93] showed that biosorption capacity for neodymium and lanthanum varied with 

stage of growth of this mutant; the biomass obtained after 72 hours of growth exhibited a 75% 

increase compared to the biomass of 48 hours. This result is related to melanin production 

during growth of the MEL1 mutant, since the biomass 48 hours is slightly pigmented, while 

the 72 hours biomass is dark due to the increased production of pigment [157]. Therefore, the 

pigmented biomass of the MEL1 mutant may be considered as a promising biosorbents for 

removal/recovery of the rare earth elements from wastewater due to the presence of the mela-

nin increase significantly metal complexing capacity, improving the efficiency of biosorption 
process [157].

Some melanized fungi have shown to be good candidates for bioremediation of contaminated 

sites, due to the ability of fungal melanin to bind to heavy metals and radionuclides in contam-

inated sites. Experimental evidence shows that the accumulation of 90Sr by conidia or myce-

lium by a range of microfungal species is greater in pigmented than in unpigmented species 

[158]. [159] In a study on the uptake efficiency of the radiocesium (137Cs) and radiocobalt (60Co) 

in melanized and nonmelanized fungi, it was observed that 60% of both radionuclides were 

uptaken by melanin of A. alternata and Aspergillus pulverulents. These results can be explained 

by melanin or other natural pigments present in the cell wall of these fungi that can act as the 

radiation receptor and/or as an energy transporter for metabolism. Other studies have dem-

onstrated the potential application of the melanized fungi for the removal of radionuclides 

and heavy metals from aqueous solutions, providing an alternative means to affect cleanup 
of industrial effluent [16, 120, 160–164]. It has been reported that fungal melanin arranged in 

nanoparticles protects against extremely high levels of ionizing radiation and suggests that 

the protective efficacy of this pigment is a function of its chemical structure, the presence of 
stable free radical, and spatial arrangement [18]. According to the authors, these nanoshells 

have the potential use for environmental bioremediation, for example, to prevent the spread 

of radioactive contamination to ground water because the melanin is expected to encapsulate 

the radioactive particles and thereby reduce their spread. In this way, melanin nanoshells may 

be used to contain radiation from radioactive waste and biomedical radioactive materials.
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6. Conclusion

Melanin possesses physicochemical properties and biological activities that make it a suit-

able biomaterial for a wide range of applications in cosmetic, pharmaceutical, electronic, 

and food processing industries. In addition, this pigment has a considerable interest bio-

technological because it can be produced on a large scale with low cost, making its use 

for future practical applications economically advantageous. However, it is necessary to 

expand the knowledge about the structure-property-function relationships for the devel-

opment of melanin-based technology. In the context, we hope that the information in this 

book will be useful and will encourage a greater number of researches on fungal melanin, 

which might be useful to deploy innovative and sustainable solutions for human health 

and the environment.
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