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Abstract

Wood thermal properties specify the answers to the questions related to heat transfer.
The values of specific heat, thermal conductivity, and thermal diffusivity were simulta-
neously determined with quasistationary method. Wood is distinguished as a natural
material for accumulating the energy by heat transfer, as isolating material, with the
ability to slowly equilibrate its different temperatures. The measured thermal properties
value of beech and fir wood samples support those conclusions. Known dependences of
wood thermal properties on anatomical direction, density at given moisture content,
temperature are modelled and incorporated into heat conduction equation to provide
base for next evaluation of measured data. The heat conduction solutions, based on
known wood thermal properties, are used in similar problems. It is shown that thermal
properties influence the surface equilibrium temperature between skin and wooden
sample and the solution of heat conduction equation describes the flux passing through
the log as an element of log-cabin house. Also thermal diffusivity is a component of
equation that determines the position of observed point of wood during conduction. The
results served as a base point for planning the experiments, for designing the processes
of heat transfer, for designing the furniture and wooden houses, for designing the
machines and equipment in woodworking industry and others.

Keywords: wood, specific heat, thermal conductivity, thermal diffusivity, coefficient of
thermal expansion

1. Introduction

The desired change of wood temperature is involved in wood processing such as drying,

forming, gluing, finishing and others. Also, suitable temperature is a part of comfortable envi-

ronment in wooden houses. The heat transfer is one of the processes how to change the temper-

ature of wood. Wood is surrounded by boundary from its surrounding. Heat transfer occurs

spontaneously through the boundary solely due to the non-zero difference in temperature of

wood and its surrounding. The processes by which the heat is transferred are classified into three

categories: conduction, convection and radiation. The mechanism of conduction is dominant

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



process of heat transfer through wood in many previously mentioned situations of wood

processing. The convection and radiation are also included in description of heat transfer

through wood, mainly in the form of boundary conditions. The basic condition for convection

is moving medium. Relative motion of wood and surrounding occurs in convective boundary

condition. Also, permeable wood transfers simultaneously work and heat (outside pressure and

temperature as potential). Such mechanism produces deviation from results of conduction.

We are solving three basic questions related to heat transfer by wood:

1. How much heat is needed for changing the wood temperature by 1 K?

2. How much heat is flowing through the wall?

3. How fast two different temperatures in wood equilibrate?

The aim of the chapter is to answer to these questions. The first question is related to specific

heat capacity, the second question is related to thermal conductivity and the third one to

thermal diffusivity. The differences in wood temperature at constant pressure causes wood

dimensional changes. The question about wood dimension after wood temperature change is

related to thermal expansion coefficient. However, this question is often omitted because small

value of thermal expansion coefficient in comparison with coefficient of swelling or shrinking.

All the mentioned quantities are measured for wood. The quantities definitions are indepen-

dent from different measuring methods, but often assign quantities values with appropriate

units do not keep such clearness. Therefore, the next part of chapter is devoted to measuring

method of wood thermal properties.

2. Research method and results

Heat, internal energy, entropy are hardly measured quantities [1]. But temperature, length,

mass and time are easy measureable. Therefore, heat is computed from easier measured

quantities, for example, temperature difference and others. Let wood be a system of conserv-

ing the enthalpy H:

H ¼ U þ pV (1)

where U is internal energy, p is pressure, V is volume of wood. The next equation expresses

continuity for enthalpy:

∂H

∂t
þ

∂q

∂x
¼ 0 (2)

where q is heat flux, t is time and x is dimensional coordinate. After applying the first

thermodynamic principle to equation of enthalpy change, it follows:

ΔH ¼ Q−W0 þ ΔðpVÞ ¼ mcpΔTþ VΔp ¼ ðρcpΔTþ ΔpÞV (3)

where Q is heat, W′ is work carried out by wood on surrounding, m is wood mass, cp is wood

mass specific heat capacity at constant pressure, ΔT is temperature difference in wood. Specific
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heat is the amount of heat transferred to unit mass of wood to rise its temperature by 1 K.

Specific heat is property by which we are able to distinguish wood as a good material for

accumulate the energy by heat transfer. The flux which changes the enthalpy is divided into

two parts: flux which is related to change of temperature qU, and flux which is related to

change of pressure qW inside arbitrary wood infinitesimal volume dV:

ρcp
∂T

∂t
þ
∂qU
∂x

� �

dV ¼ 0 (4)

∂p

∂t
þ
∂qW
∂x

� �

dV ¼ 0 (5)

where ρ is wood density. The sum of both previous equations gives zero sources of enthalpy in

wood volume. Both equations are valid for arbitrary volume and, moreover, there is need to

determine the flux of internal energy as temperature function.

It follows from observation, that temperature difference in space spontaneously produces the

heat rate from higher to smaller values of temperature. The heat rate Q/t is proportional to

temperature difference ΔT, to the area of heat transfer S and inversely proportional to the

distance in space d. These findings are summarized by Fourier law:

Q

St
¼ λ

ΔT

d
(6)

where λ is thermal conductivity and represents the wood property to conduct heat. Thermal

conductivity is property by which we are able to distinguish wood as heat insulator or pure

heat conductor. The differential form of Fourier law:

q
!
¼ −λgradðTÞ (7)

relates the heat flux q and the gradient of temperature. In general, vector of heat flux and

temperature gradient are not at one line, therefore, thermal conductivity is the second order

tensor. Its eigenvalues are positive numbers in Wm−1 K−1. The minus sign in Eq. (7) expresses

the increase of the wood temperature by the heat flux directed to its volume, which surface

is oriented outside the volume. We have always made sure with measurement that thermal

conductivity is symmetric tensor and; moreover, for wood, it is possible to arrange it

to diagonal form according to suitable transformation. The form of Fourier law for radial

slab is:

qz
qx
qy

0

@

1

A ¼ −

λL 0 0
0 λR 0
0 0 λT

0

@

1

A

∂T

∂z
∂T

∂x
∂T

∂y

0

B

B

B

B

B

@

1

C

C

C

C

C

A

(8)

where wood anatomical directions (L—longitudinal, R—radial, T—tangential) coincide with

orientation of Cartesian coordinate axis (z, x, y). Radial board is linear orthotropic material.
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The form of Fourier law for tangential slab is formulated:

qz
qx
qy

0

@

1

A ¼ −

λL 0 0

0 λR
x2

x2 þ y2
þ λT

y2

x2 þ y2
ðλR−λTÞ

xy

x2 þ y2

0 ðλR−λTÞ
xy

x2 þ y2
λT

x2

x2 þ y2
þ λR

y2

x2 þ y2

0

B

B

B

B

@

1

C

C

C

C

A

∂T

∂z
∂T

∂x
∂T

∂y

0

B

B

B

B

B

@

1

C

C

C

C

C

A

(9)

Fourier law for log is suitable to express in cylindrical coordinates (z, r, φ) = (L, R, T):

qz
qr
qϕ

0

@

1

A ¼ −

λz 0 0
0 λr 0
0 0 λϕ

0

@

1

A

∂T

∂z
∂T

∂r
∂T

r∂ϕ

0

B

B

B

B

B

@

1

C

C

C

C

C

A

(10)

The log is cylindrical orthotropic material. Fourier law (7) does not contain time of the process

explicitly. The coupling of Fourier’s law and Eq. (4) results in heat conduction equation:

divðλgradðTÞÞ þ s ¼ cpρ
∂T

∂t
(11)

s denotes the rate of energy release or its consumption in volume unit of internal sources or

sinks. As wood can be distinguished as cylindrical orthotropic material [2–4] or as its special

case linear orthotropic material, heat conduction equation has the form with constant eigen-

values of thermal diffusivity α:

αR

r

∂

∂r
r
∂T

∂r

� �

þ
αT

r2
∂2T

∂ϕ2
þ αL

∂2T

∂z2
¼

∂T

∂t
(12)

in cylindrical coordinate system as wood has the form of log or:

αR
∂2T

∂x2
þ αT

∂2T

∂y2
þ αL

∂2T

∂z2
¼

∂T

∂t
(13)

in Cartesian system as wood has the form of radial slab. Thermal diffusivity is the ratio of

thermal conductivity and product of mass specific heat capacity and density at given moisture

content. Thermal diffusivity is property by which we are able to distinguish that wood equil-

ibrates its different temperatures slowly. Also, it describes the slowest temperature change in

wooden body. The solution of heat conduction equation provides the temperature field in

wood (direct problem) and the base of measurement method of thermal properties (inverse

problem). Advantage of solutions is possibility to describe the similar examples of heat trans-

fer by conduction. The various techniques (analytical or numerical) are employed to solve heat

conduction equation. Both of them have the same feature of using initial and boundary

conditions to compute particular solution. The initial and boundary conditions should match
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the situation as best as possible. The initial condition describes the temperature field in wood

at the beginning of the situation. There is possibility to recognize three kinds of boundary

conditions or their combination [5, 6]:

the 1st (I.) kind boundary condition describes the surface temperature as a function of time

(Dirichlet condition),

the 2nd (II.) kind boundary condition describes the heat flux at the surface as a function of time

(Newman condition),

the 3rd (III.) kind boundary condition describes the heat flux at the surface as a function of

surface temperature (Robin condition).

The constant temperature at the surface represents the 1st kind boundary condition. It

approaches the process of wood pressing, when press hot metal tables as heat reservoir touch

the wood surfaces [7]. Then the variable temperature at the surface can be modelled according

the Duhamel theorem. If wood is heated by external radiant source, linear increase surface

temperature in time of heating will describe the situation [8].

The constant heat flux at the surface represents the 2nd kind boundary condition. It approaches

the wood heating, when metal table touching the wood surface is heated by electric current [9].

Also zero heat flux represents the adiabatic process or symmetry in temperature field.

The constant proportionality between heat flux at the surface and the surface temperature

represents the 3rd kind boundary condition. It describes the surface phenomena during heat

transfer when fluid touches the wood surface. Also, heat transfer between low temperature

radiant sources and wood specimen fulfil this condition [5]. Then heat transfer coefficient is

proportional to emissivity of wood.

The coupling of the first and second boundary conditions enables to exclude the time from

boundary condition. Such situation occurs at the wood surface touching the solid [10].

The application of similar planar heat source as used by [9] in their unsteady state method and

apparatus arrangement of method as used by [11] continues to method used in the Depart-

ment of Wood Science at Technical University in Zvolen. The sample arrangement of the

method, named as quasistationary method [2], is depicted at Figure 1.

The eight specimens’ arrangement is symmetric which fulfil the following boundary conditions:

∂T

∂x

�

�

�

�

x¼dR

¼
q

λ
(14)

∂T

∂x

�

�

�

�

x¼0

¼ 0 (15)

Tðx; 0Þ−T0 ¼ 0 (16)

where dR is thickness of one specimen. Eq. (14) represents the constant flux at the surface

x = dR. The very thin (0.01 mm) NiCr foil is heated by direct electric current. It is produced
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by stable laboratory DC source. It is assumed the heat is symmetrically distributed to adjacent

specimens, therefore, heat flux q is computed:

q ¼
1

2

RI2

S
(17)

where R is resistance, I is direct current, S is rectangular area of one foil surface touching the

specimen. Eq. (15) describes zero flux at the centre of the block of the eight specimens. The initial

condition (16) prescribes constant temperature T0 throughout the specimen at the beginning of

experiment. Then, the solution of heat conduction equation in one dimension has the form:

Tðx; tÞ−T0 ¼
qdR

λ

αt

d2
R

−
d2
R−3x

2

6d2
R

þ ∑
∞

n¼1
ð−1Þnþ1 2

ðnπÞ2
cos nπ

x

dR

� �

e
−ðnπÞ2 αt

d2
R

" #

(18)

The sum in Eq. (18) can be significantly active only at the beginning of the experiment. It is

possible to neglect it for sufficient long time. And finally, the linear increase of temperature in

the middle of the 8 block of specimens is:

Tð0; tÞ−T0 ¼
qdR

λ

αt

d2
R

−
1

6

 !

¼ Atþ B ¼
q

ρdR

1

c
t−
qdR

6

1

λ
(19)

If A is the slope and B is the intercept of such linear increase of temperature in time, the

formulas are valid for thermal properties:

c ¼
q

AdRρ
(20)

λ ¼ −
qdR

6B
(21)

Figure 1. The diagram of quasistationary method.
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α ¼ −
d2
RA

6B
(22)

The method is named as quasistationary method because characteristic linear temperature

increase in time is present. Thermal diffusivity can be determined, even the flux from source

is not known. Moreover, if density is known, the specific heat is determined. The characteristic

temperature increase in time for whole duration of experiment is in Figure 2.

The one dimensional adiabatic model (18) is proper for thin radial boards, thin specimen with

the thickness in longitudinal direction or very distant tangential boards from the pith. Wood is

treated as linear orthotropic material. The solution:

Tðr;ϕ; tÞ−T0 ¼
qrϕmax

λT

αTt

ðrϕmaxÞ
2
−
ϕmax

2−3ϕ2

6ϕmax
2

þ ∑
∞

n¼1
ð−1Þnþ1 2

ðnπÞ2
cos nπ

ϕ

ϕmax

� �

e
−ðnπÞ2

αTt

ðrϕmaxÞ
2

" #

(23)

where r ≠ 0 m, is suitable for the block of 8 wooden wedges and wood is treated as cylindrical

orthotropic material. The angle between the marginal radial surfaces of one wedge is ϕmax.

Then computing of thermal properties from temperature increase in time is the similar to

previous formulas (20)–(22).

Models (18) and (23) are adiabatic, there is no lateral transfer of heat to surrounding there and,

therefore, the models are one-dimensional. The three dimensional model enables to simulta-

neously predict all material thermal diffusivity eigenvalues in principal anatomical directions

together with its specific heat. Such model should describe also lateral heat transfer to

Figure 2. The adiabatic solution (18) together with the linear part t ε (300; 400)s typical for quasistationary method ( α=

1.5 × 10−7 m2 s−1, c = 1.8 kJ kg−1 K−1, r = 416 kg m−3).
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surrounding. Adiabatic model (18) is extended to three dimensions with heat transfer from

lateral surfaces [12–14]:

Tðx; y; z; tÞ−T0 ¼
8q

cρdL
∑
∞

r¼1
∑
∞

p¼1
∑
∞

m¼1

ðsinμrÞ cos
μr

dT
z

� �

ðμr þ ðsinμrÞðcosμrÞÞ

ðsinμpÞ cos
μp

dR
y

� �

ðμp þ ðsinμpÞðcosμpÞÞ

μm cos
μm

dL
x

� �

ðμm þ ðsinμmÞðcosμmÞÞ

1−e
− μ2

m
αL

d2
L

þμ2
p
αR

d2
R

þμ2
r
αT

d2
T

� �

t

μ2
m

αL

d2
L

þ μ2
p

αR

d2
R

þ μ2
r

αT

d2
T

0

B

B

B

@

1

C

C

C

A

(24)

where dL, dR, dT are half of dimensions and αR, αT, αL are thermal diffusivities in longitudinal,

radial and tangential directions, c is specific heat capacity and ρ is density at given moisture

content. Eq. (24) is the solution of heat conduction Eq. (13), when the block of specimens is in

environment of air. The extension for convection at boundaries is accompanied with heat

transfer coefficients h and Biot numbers Bi at boundaries. Such extension significantly reduces

the number of specimens in quasistationary method to number of 2. Characteristic equations

are (for the anatomical direction):

μmtgμm ¼
hLdL

λL
¼ BiL (25)

μptgμp ¼
hRdR

λR
¼ BiR (26)

μrtgμr ¼
hTdT

λT
¼ BiT (27)

with constant initial temperature through the specimen T0. The solution (24) fulfils the next

boundary conditions:

−λL
∂T

∂x

�

�

�

�

x¼dL

¼ hLðTjx¼dL
−T0Þ (28)

−λR
∂T

∂x

�

�

�

�

y¼dR

¼ hRðTjy¼dR
−T0Þ (29)

−λT
∂T

∂x

�

�

�

�

z¼dT

¼ hTðTjz¼dT
−T0Þ (30)

∂T

∂x

�

�

�

�

x¼0

¼ −
ϕ

λL
(31)

∂T

∂y

�

�

�

�

y¼0

¼ 0 (32)

∂T

∂z

�

�

�

�

z¼0

¼ 0 (33)
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where BiL, BiR, BiT are Biot numbers at principal anatomical sections.

The information from only one thermocouple, which is placed in the middle of specimens

block, is able to be fully utilized only if material is isotropic in plane of source. Otherwise, more

thermocouples must be used to determine all wood thermal properties simultaneously.

Another possibility is to rotate the samples considering the position of source and principal

anatomical directions. Later all three sets of data will be processed simultaneously. The model

(24) is nonlinear. The starting values for least square method are found after utilization of

adiabatic models (18) and (23). The solution of heat conduction equation is the base of inverse

problem. The solution Tteor is compared to measured temperature values at given time Texp in

least square criterion Q:

Qðc;αL;αR;αT;BiL;BiR;BiTÞ ¼ ∑
N

i¼1

�

Titeorðc;αL;αR;αT;BiL;BiR;BiT; tiÞ−TiexpðtiÞ
�2

(34)

where N is number of measurement.

The results from quasistationary method in three dimensions are summarized in Tables 1 and 2.

The beech (Fagus sylvatica, L.) and fir (Abies alba, Mill.) wood were tested for thermal properties

as they are widely used in furniture and construction industry. The 18 beech cubic samples of

edge dimension 100 mm in principal anatomical directions were cut from outer part of stem

with diameter of 35 cm to be linear orthogonal as much as possible. The specimens’ equilib-

rium moisture content was 12%, and their surfaces were sanded to cube shape of measured

dimensions. The 1-cm thick specimen was cut from cubes to place the thermocouple 1 cm far

from heating foil. The measurement was performed in climatic chamber with air relative

humidity of 65% and temperature of 20°C. The specimens were fixed in the beech rack around

the heating foil. The temperature 20°C was initial one and applied heating flux was 145 Wm−2.

Then temperature was recorded every 5 s. Later on the data in file of recorded times and

temperatures were sorted, because long time of results computation according to Eqs. (24)

and (34). The experiment was performed three times, each time the heating foil touched the

dL [m] 0.1082

αL [m
2 s−1] 2.9 × 10−7

αR [m2 s−1] 1.7 × 10−7

αT [m
2 s−1] 1.2 × 10−7

c [J kg−1 K−1] 1900

λL [W m−1 K−1] 0.38

λR [W m−1 K−1] 0.23

λT [W m−1 K−1] 0.16

r[kg m−3] 703.9

Table 1. Average thermal properties of beech wood [13].
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different section. The results are embedded in Table 1 and the evaluated temperatures along

with computed results are depicted in Figure 3.

The same experiment was performed with 10 fir samples. The additional differences were in

dimensions (the fir cube edge was 50 mm), position of thermocouple was 3.4 mm next to

heating foil and heating flux was 100 W m−2. The results for fir wood samples are in Table 2

and depicted in Figure 4. The convection at boundary was free during both experiments (heat

transfer coefficient hL = 8.9 W m−2 K−1 at beech cross section and heat transfer coefficient 1.0 ×

101 W m−2 K−1 at fir anatomical sections).

The thermal properties have advantage in common definitions. The solutions of heat conduc-

tion equation are expressed in dimensional criterion or numbers. They describe the conduction

dL [m] 0.0542

αL [m
2 s−1] 5.2 × 10−7

αR [m2 s−1] 2.4 × 10−7

αT [m
2 s−1] 1.8 × 10−7

c [J kg−1 K−1] 1700

λL [W m−1 K−1] 0.36

λR [W m−1 K−1] 0.17

λT [W m−1 K−1] 0.13

r[kg m−3] 414.5

Table 2. Average thermal properties of fir wood [14].

Figure 3. Temperature increase in point [1; 0; 0]cm measured from heating foil placed in different anatomical sections of

beech wood. Sum of squares for 42 temperature measurements was 0.21 K2 [13].
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in similar objects and, moreover, the results can be extended to non-homogeneous objects.

Typical example is summing the thermal conductivities in building physics. The result

depends on arranging the layers and heat flux direction, Figure 5.

Both formulas in Figure 5 are valid in composite wall at steady state. The following formulas

enable the infinitesimal extension to non-homogeneous continuum [7]:

λ⊥ ¼
d

∫
d

0

dx

λðxÞ

(35)

λII ¼
1

d
∫
d

0
λðxÞdx (36)

Figure 4. Temperature increase in point [0.34; 0; 0]cm measured from heating foil placed in different anatomical sections

of beech wood. Sum of squares for 126 temperature measurements was 0.50K2 [14].

Figure 5. The basic pattern of layers and heat flux (arrow) in composite wall during conduction.
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The steady state solution (37) in log with infinite length (for example as element of log cabin

houses as is described in Ref. [15], Figure 6) is utilized for computing heat flux q = qi (38)

passing through it:

T−T0 ¼
1

2
ðT2−T0Þ 1−

r

R

� �

ffiffiffiffi

αT
αR

p

cos ðϕÞ

 !

(37)

q ¼
ffiffiffiffiffiffiffiffiffiffiffi

λRλT

p T2−T0

2R
(38)

The “enlarge cracks” are not necessary present in log after conditioning, but regularly one

occur after kerfing of logs from sap to pith because shrinkage differences in various anatomical

directions.

One of the haptic phenomena—tactile warm—is related to thermal properties [16]. Touching

wood at cold winter or hot summer is more pleasant than touching many other materials.

One of the possible reason and next explanation of tactile warms as physiological event

inheres in value of formed temperature at the surface between wood and human (living)

body [17]. The formed temperature is closer to temperature of human body before touching

wood either in cold winter or hot summer. The quantity responsible to this event is called

thermal effusivity e:

e ¼
ffiffiffiffiffiffiffiffi

λcρ
p

(39)

as a square root of product of thermal conductivity, specific heat and density. Let two semi-

infinite solids have different initial temperatures, T01, T02 and no additional sources or sinks act

at the surface or in their volumes. Steady temperature TS at the surface between these two

semi-infinite solids in contact is influenced by their effusivities e1, e2:

Ts ¼ T02 þ ðT01−T02Þ
e1

e1 þ e2
¼ T01 þ ðT02−T01Þ

e2
e1 þ e2

: (40)

The effusivity values for previously mentioned beech and fir wood are in Table 3.

Figure 6. Orientation of heat flux through log (cross section at left side); orientation of heat flux and position of crack due

to anisotropy of shrinkage (cross section at right side).
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The largest thermal effusivity eigenvalue is in wood longitudinal direction. It results to the

larger drop value of human skin temperature or smaller drop value of wood surface temper-

ature. The opposite is valid for wood tangential direction.

3. Factors related to thermal properties

The most of the factors are quantities: density, moisture content and temperature which are

scalars. The dependency on anatomical direction—the direction of measurement, is crucial for

distinguishing the thermal property as scalar or tensor.

3.1. Anatomical direction

Specific heat is a scalar quantity neither it is mass nor volume specific heat capacity, they do

not depend on anatomical direction. Thermal conductivity and thermal diffusivity are second

order tensors. Their eigendirections coincide with principal anatomical directions as a result of

measurement (also proved by Sonderegger et al. [18], Vay et al. [19]). Also their eigenvalues

determine the dimensions [2.dRmin, 2.dTmin, 2.dLmin] of the parallelepiped of the slowest aver-

age temperature change in its volume V:

d3
Rmin ¼

V

8

αR
ffiffiffiffiffiffiffiffiffiffiffi

αTαL
p , d3

Tmin ¼
V

8

αT
ffiffiffiffiffiffiffiffiffiffiffi

αLαR
p , d3

Lmin ¼
V

8

αL
ffiffiffiffiffiffiffiffiffiffiffi

αRαT
p (41)

Then, the ratio of optimal dimensions for beech in longitudinal, radial and tangential direc-

tions is:

1.6:1.2:1

and for fir:

1.7:1.2:1.

The characteristic feature of the optimal parallelepiped is the smallest transferred heat through

its surfaces, for example, from its volume.

3.2. Density

Wood is regarded as non-homogeneous material. This conclusion is strongly supported by

microscopy [20]. Therefore, for every homogeneous part of wood volume, we should prescribe

Material Direction

eL [W m−2 K−1 s0.5] eR [W m−2 K−1 s0.5] eT [W m−2 K−1 s0.5]

Beech 7.1 × 102 5.5 × 102 4.6 × 102

Fir 5.0 × 102 3.5 × 102 3.0 × 102

Table 3. Thermal effusivity of beech and fir wood in principal anatomical directions.
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the equations with appropriate boundary conditions. The phenomenon of continuum for whole

wood volume has been more efficient yet. We often neglect mass of air inside wood as it is

measured in air environment. The air volume in wood is not neglected. Therefore, mass specific

heat capacity c0 does not depend on oven dry density or anatomical species. Many experiments

proved the significant thermal conductivity dependency on oven dry density. Wood contains air

as a good thermal insulator, therefore, a smaller value of oven dry density results in a smaller

value of wood thermal conductivity. Perhaps one of the first relationships was set in theory of

thermal bridges by Kollmann and Malmquist [21]. The theory utilizes the equations in Figure 5,

and oven dry wood is treated as composites of substance and air. Also, the theory stated the

dependency of thermal conductivity on anatomical directions according to value of bridge factor.

In spite of thermal bridge theory indisputability, it seems to be more efficient the relationship

between thermal conductivity and density at given moisture content. If density is zero then no

matter exists for conduction and the simplest non-homogeneous model (layer of wood substance

next to layer of air) predicts linear relationship between thermal conductivity and density at

given moisture content and later no influence of density at given moisture content on thermal

diffusivity. These results are in contrary to results in Tables 1 and 2, so the simplest non-

homogeneous model does not hold for wood well. Week relationship between thermal diffusiv-

ity and density at given moisture content was published by Harada et al. [22].

3.3. Moisture content

The ratio of water mass specific heat to air mass specific heat is more than one. It follows from

mixing rule [23]:

c ¼
c0 þwcH2O

1þw
−

1

1þw

dðQz0−QzÞ

MH2OdT
(42)

where Qz, resp. Qz0 is wetting heat at given moisture content, resp. in oven dry state and is

represented in J mol−1. The last expression of Eq. (42) is zero for free water. The water

molecules in wood behave as sinks during evaporation. It should be noted, that diffusion of

water in wood is approximately 100 times slower than conduction of heat through wood at

room temperatures and these two processes can be studied separately [7]. The relationship

between equilibrium moisture content and species is weak. Also, the influences of moisture

content and oven dry density on thermal conductivity and thermal diffusivity are studied

separately. The density at given moisture content is directly connected with thermal diffusivity

computing formula. Then, the influence of moisture content on thermal diffusivity is set into

density at given moisture content.

3.4. Temperature

The linear function of mass specific heat capacity at zero moisture content on temperature was

provided by Perelygin [24] (according to Požgaj et al. [7]):

c0 ¼ 1:571þ 0:00277ϑ ½kJkg−1K−1� (43)

and [25] (according to Radmanović et al. [26]):
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c0 ¼ 1:1136þ 0:004856ϑ ½kJkg−1K−1� (44)

and others in the range ϑ = 0–100°C, even [27] published theoretical function determined from

Debye’s theory for solid substances at constant volume. The advantage of linear relationship is in

easy computation of average specific heat value. Also, determination of adiabatic temperature

leads to quadratic equation. The influence of temperature on thermal conductivity is studied by

setting initial temperatures to different levels and only small temperature drop between sur-

roundings and tested specimen causes heat transfer. Then results are tested by regression even

the results were obtained with method using the heat conduction equation solution with con-

stant coefficients. Later, on such results are used in numerical inverse or direct problem solutions

as starting values. The solving of nonlinear equation is better solution to incorporate the depen-

dence of thermal properties on temperature. One of the possibilities to overcome this problem is

designing the dependency of thermal conductivity on temperature, for example as polynomial:

λ ¼ kðT−T
∞
Þn (45)

where T∞, k, n are constants and heat conduction equation is rearranged to the parabolic

equation again:

∂F

∂t
¼ α

∂
2F

∂x2
(46)

where

F ¼
kðT−T

∞
Þnþ1

nþ 1
(47)

Also, the Arhenius dependence of thermal conductivity on temperature leads to Eq. (46), but

transformation from F to T is nonlinear and must be find numerically. The numerical solutions

of nonlinear heat conduction equation were showed by Zhao et al. [28]. Their procedure was

applied on experimental data of varying temperature and moisture content according to

industrial practise.

3.5. Thermal expansion

The change of heat capacity at constant pressure Cp and at constant volume CV is distinct for

gases. This phenomenon is often neglected for wood even the coefficient of volume thermal

expansion αe is determined:

V−V0 ¼ γeV0ϑ (48)

where V is volume at temperature ϑ in °C, V0 is the volume at 0°C. Then, difference in

capacities is:

Cp−CV ¼ TV
γ2

KT
(49)

where T is temperature in K and KT is isothermal compressibility. The coefficient of linear

thermal expansion αe is defined:
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d−d0 ¼ αed0ϑ (50)

where d is dimension at temperature ϑ in °C, d0 is the dimension at 0°C. The relationship

between coefficients of linear and volume thermal expansion is:

γ ¼ αeL þ αeR þ αeT þ αeLαeR þ αeRαeT þ αeLαeR þ αeLαeRαeT≈αeL þ αeR þ αeT (51)

where L, R, and T denotes principal anatomical directions (Table 4).

The dimension of wood equilibrates as fast as temperature of wood equilibrates. And thermal

diffusivity is also property characterizing how fast the dimensions of wood equilibrate during

equilibrating its two different temperatures. Let it say, for temperature T in point x0 and time t

is valid:

Tðx0; tÞ ¼ T
∞
þ ðT0−T∞Þe

−
h
d0
t

(52)

with no-zero flux at the surface x0 = d0, where T
∞
is equilibrium temperature and T0 is initial

temperature. If conduction occurs during constant pressure, the new position of point x0 will

be coordinate x:

x ¼ x0 1þ αeðT0−T∞Þe
−

h
d0
t

� �

(53)

Two dimensional problems are more complicated, but bonded oven dry specimens with thin

thicknesses oriented in different anatomical directions and different initial temperatures show

distinct deflections due to anisotropy of coefficient of linear thermal expansion in equilibrium.

4. Conclusion

The answers to the three questions mentioned in Section 1 are closely related to thermal

properties. Wood as natural material is characterized by its properties, which definitions are

precisely stated. The definitions are often expressed as equations which solutions are used in

measuring methods. Because of many measuring methods of wood thermal properties and

large variability of their results, methods must be clearly explained and their technical

representation must be closed as much as possible to assumptions used in solutions. The

Material Property

106 × αeT [°C
−1] 106 × αeR [°C−1] 106 × αeL [°C

−1] 106 × γe [°C
−1]

Fira 31.6 21.7 3.90 57.2

Beechb 40.3 31.8 3.1–4.5 75.2–76.6

Table 4. The coefficient of linear thermal expansion of fir and beech wood at zero moisture content ([29]a, [30]b) and

coefficient of volume thermal expansion.
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large variability of the results is connected not even with inherent categorization of wood

species, but for example also position in steam causes variability of the results. There are

several factors which affect the wood thermal properties in wood and a lot of others waited

for discovering [31]. The management of the industrial processes in real time according to

properties are really difficult. The designs of the heat transfer processes are connected to

wood thermal properties. After measuring of the results, they are used in solutions of

different similar direct problems, for example in furniture design or building physics and

others.
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