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1. Introduction 

One of the most common sexually transmitted diseases is human papillomavirus (HPV) 

infection that affects around 80% of sexually active women. Although most of the women 

clear HPV infection, individuals with inadequate immune responses develop persistent 

infections which lead to premalignant lesions such as high-grade cervical intraepithelial 

neoplasia (CIN-III), with high potential to progress to cervical carcinoma. Based on 

molecular and epidemiological data, high risk papillomaviruses (hrHPVs) are now 

recognized as etiologic agents of cervical carcinoma, although some additional events are 

required [1, 2].  

From 200 HPV genotypes identified so far, nearly 40 can infect cervix and at least 15 hrHPVs 

(16, 18, 45, 31, 52, 33, 58, 35, 59, 51, 56, 39, 68, 73, and 82) are usually associated with the 

development of carcinomas. Although HPVs 26, 53, and 66 are probably high-risk types 

limited data link them to cervix cancer [3]. HPV16 accounts for near 60% of the cervical 

cancer cases in most countries, followed by HPV-18, -31 and -45. 

HPVs are small non-enveloped double-stranded DNA viruses of about 8000-base pair long 

[4]. The viral genome codes for eight proteins and is divided in three functional regions: 

early (E1-E6), late (L1-L2) and long coding region (LCR). Early genes are synthesized in the 

infected basal cells and the late ones are expressed in differentiated cells [5], the replication 

of HPV cycle depending on complete squamous differentiation of the host epithelium. 

Except for E1 and E2 proteins (necessary for viral replication), papillomaviruses use the host 

cell machinery for viral DNA synthesis.  

New data confirmed that papillomavirus genomes are organized in the form of chromatin-

like structures composed by nucleoprotein complexes (nucleosomes) interconnected by a 

DNA filament. Treatment of CaSki human cervical carcinoma cell line with 

methidiumpropyl-EDTA-Fe (II) reveals nucleosomes in specific positions on the LCR and 



 

Oncogene and Cancer – From Bench to Clinic 184 

the E6 and E7 genes. First observed by electron microscopy for bovine papillomavirus (BPV) 

and HPV from human plantar warts, respectively [6], they were subsequently confirmed for 

CaSki cell line where the localization of nucleosomes was found at LCR, E6 and E7 genes 

level. The role of nucleosomes is to repress the activity of the E6 promoter. An open 

chromatin structure (transcriptionally active status) at early and late viral promoter regions 

was characterized by the presence of dimethylated forms of histone H3K4 as well as 

acetylated histones H3 and H4 [7]. These observations suggest the involvement of histone 

modification in HPV transcription regulation. 

2. HPV oncogenesis 

Most cervical cancers arise at the squamo-columnar junction, a site characterized by 

continuous metaplastic changes. The highest metaplastic activity occurs in young women 

who are reported to have the highest incidence of HPV infection. As cervical cancer is 

frequently detected in women over 35 years, it was suggested that the disease is a 

consequence of a slow progression of the viral infection acquired at younger age [8]. 

HPVs complete their life cycle only in fully differentiated squamous epithelium and the 

presence of viral genomes in the infected cells is essential both for papillomaviruses and 

their associated pathologies. HPV cervical infections result in three types of clinical 

manifestations: (a) productive infection which lead to virions production; viral genes 

expression is strictly associated with host cell differentiation; (b) latent (asymptomatic) 

infection (characterized by viral genome presence in basal layers) develops within the first 

three months or it can remain undetected for years [2]; (c) abortive infection, associated in 

particular with high risk HPV genotypes, arises especially in sites which are non-optimal for 

productive infection. Squamous and glandular carcinomas do not support the productive 

program.  

Both in vivo and in vitro studies associated cervical cancer with three viral oncogenes (E5, E6 

and E7) coded by hrHPVs [9]. HPV-induced carcinogenesis is a complex process 

characterized by alterations in tumour-suppressor genes. The aberrant function of these 

genes and the genomic instability determined by HPV viral genes, cumulated with the 

action of various cofactors, lead to progressive lesions and finally to cancer. Nevertheless, in 

the absence of persistent infection, the risk of cervical cancer is low [10].  

The switch from productive to abortive infection is determined by a deregulated expression 

of E6 and E7 viral oncogenes in proliferating cells, thus leading to an extended lifespan [11]. 

The oncoproteins E6 and E7 interfere with tumor suppressors p53 and pRb respectively, and 

favour cells to overcome senescence barrier. Moreover, these proteins target a growing 

number of other cellular proteins/ factors. Epidemiologic and experimental data showed 

that also the E6 and E7 genes of low-risk types interfere with p53 and pRb and under certain 

circumstances are able to induce cervical neoplasia.  

While in the normal viral life cycle, the genome replicates as episomal molecules, the up-

regulation of viral oncogenes expression is associated with the HPV genome integration into 
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the host cell chromosome [12]. As a result of integration, viral E1 and E2 genes are disrupted 

and their repressive action on E6 and E7 open reading frames is discontinued. Recent data 

point out that E2hrHPV proteins exhibit new oncogenic properties which rely on their 

ability to induce abnormal mitoses, leading to either loss or excess of DNA, together with 

DNA breaks during anaphase [13]. Although HPV integration plays an important role in the 

progression to cancer, the mechanisms are still unclear. Viral integration seems to confer 

selective advantage for oncogenes transcription and stability for transcripts encoding the E6 

and E7 proteins which affect the key tumor suppressors p53 and pRB [14]. Cytogenetic 

mapping of multiple integration sites suggests that HPV integration occurrs preferentially in 

chromosomal fragile sites (CFS) [15] although it is under debate whether these sites present 

a greater susceptibility or accessibility to integration [16]. Sometimes, hrHPVs integration 

occurs within or adjacent to cellular oncogenes like myc, APM1, TP63, hTERT [17, 18]. 

Generally, coding regions are rarely targeted by HPV but gene expression and mRNA 

structure can be altered by insertion of the strong HPV promoter [14, 19].  

Up-regulation of viral oncogenes expression together with loss of inhibitory effects of E2, 

result in cellular immortalization, deregulated proliferation and increased genomic 

instability [20]. The viral oncogenes are transcribed by a nucleoprotein complex 

(enhanceosome) that consists of transcriptional factors (JunB/Fra2) and a chromatin 

remodelling factor (HMG-I(Y) [21]. SMARCA2, a member of the SWI/SNF family of 

proteins, similar to the brahma (Brm) protein from Drosophila, is involved in transcriptional 

regulation of certain genes by altering the chromatin structure. When HPV is present as 

episome, SMARCA2 associates with E2 promoter and enhances E2 transcriptional activation 

[22]. SMARCA2 mRNA is a specific target for miR-199a-5p and miR-199a-3p in tumor cell 

lines, being often silenced in tumor cells at the post-transcriptional levels [23]. That might 

offer an alternative pathway for E2 gene silencing in HPV transforming infection. 

The expression of the HPV oncogenes is necessary and sufficient for the initiation of cervical 

carcinogenesis, but host genome mutations are needed for malignant progression. In 

cervical cancer, cells accumulate a wide range of numerical and structural chromosomal 

abnormalities [24] including lagging chromosomal material, anaphase bridges, and 

multipolar mitoses [25]. As mentioned, persistent infection with HPV could lead, under 

certain conditions, to the insertion of viral genes into the host genome. As a consequence 

host defense mechanisms, including methylation machinery are activated [26]. Some viruses 

can find ways to regulate their gene expression (e.g. by modulating DNA methylation) in 

order to facilitate persistent infection and circumvent immune system [27]. Viral 

oncoproteins have the ability to modulate the methylation machinery in order to silent 

tumor suppressor genes. Studies on biological samples revealed an inverse correlation 

between the hypomethylation status of LCR region, E6 gene expression and the severity of 

lesion suggesting that hypomethylation accompanies progression to cancer [28, 29]. The 

studies of Badal et al. [30] revealed a clonal heterogeneity of methylation status in various 

regions of the viral genome, thus indicating that methylation of the viral oncogenes in 

cervical lesions is not an event that causes neoplastic progression but the result of 

transcriptional activity levels.  
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As mentioned, cellular transformation is a consequence of persistent infection by hrHPVs 

that leads to clonal progression of the persistently infected epithelium. Viral oncogenes are 

essential for carcinogenesis and their expression induces the tumorigenic state which 

ensures cell survival, essential for viral replication and the spread of progeny [31] Although 

the viral oncogenes were intensively studied, new data bring more information about their 

involvement in cervix carcinogenesis. 

3. E6 HPV 

High-risk E6 proteins are known for their ability to associate and degrade tumor suppressor 

p53. E6HPVs inactivate p53 in the infected cells, by inducing its degradation through the 

ubiquitin–proteasome pathway (Mdm2 E3, E6AP) [32]. This interaction prevents p53 from 

inducing growth arrest and apoptosis and promotes the perpetuation of damaged DNA 

during the host cell reproduction. Even both high and low risk E6HPV proteins interact 

with p53, only high risk oncogenes are capable of binding to the core region of p53. This 

step is mediated by recruitment of E6-AP (E3 ubiquitin ligase) which interacts with the 

viraloncogene and forms a complex with both E6 and target proteins [33].  

E6 may inhibit p53 signalling pathways independent of protein degradation through p53 

sequestration in the cytoplasm or by enhancing p53 nuclear export [34]. As a consequence, 

E6 oncoprotein precludes the growth-suppressive activities of p53 by transcriptional 

suppression of its target genes. It inhibits p53 activity by abrogation of the p53 

transactivation via interaction with CBP/p300 [35, 36] or hADA3 histone acetyl-transferases, 

proteins involved in the regulation of transcription and DNA replication [37][38]. E6hrHPV 

proteins display a PDZ (postsynaptic density protein, discs large tumor suppressor, and the 

epithelial tight junction protein, Z0-1) motif designated as S/TXV at their C-terminus end 

which mediates E6 binding to proteins with these specific domains [39]. There are many 

studies focused on these interactions with proteins involved in proliferation control such as 

hDlg1 [40], hScrib [41], MAGI, PTPN3, MUPP1 [42, 43]. hScrib functions as a tumor 

suppressor that negatively regulates proliferation. hDlg and hScrib are proteins associated 

with cell junctions mediating the adhesion of basal cells to the ECM. Both are targeted for 

ubiquitination by high risk E6–E6AP complex, thus affecting epithelial cell growth [41]. 

MAGI proteins (membrane-associated guanylate kinase homologues –MAGUKs) are found 

at the tight junctions in epithelial cells and are thought to act in signalling pathways. Their 

degradation by E6 disrupts regulation of epithelial proliferation [42, 43]. Experimental 

evidence indicates that the interaction of E6 with PDZ proteins is necessary for the 

development of epithelial hyperplasia [44].  

Several proteins involved in apoptosis and immune evasion (Bak, FADD,c-Myc, NFX1, 

procaspase 8, etc) [45, 46, 47, 48] are also targeted by E6 HPV. Bak, a member of the Bcl-2 

family, is a proapoptotic protein whose interaction with the viral oncogene leads to the 

inhibition of apoptosis. This strategy by which the virus circumvents apoptosis might 

contribute to its oncogenic potential.  

E6 oncoprotein is also able to modulate transcription from other cellular signaling pathways 

by interacton with three G-protein (E6TP, Gps2, Tuberin). E6 binds and degrades E6TP1 (E6-
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targeted protein 1) in an E6AP dependent manner [49]. E6TP1 has homology to GAPs (GTPase 

activating proteins) for Rap [50] and its interaction with E6 was observed only in cancer-

associated high-risk HPV but not in lesion-associated low-risk HPV. E6TP1 is involved in 

regulating cell proliferation and malignant cellular transformation, and its degradation by 

ubiquitination seems to be related to cellular immortalization suggesting a critical role of 

functional inactivation of E6TP1 in E6-induced cellular immortalization. 

Tuberin is another protein with GAP activity which is degraded by E6. Tuberin functions in 

the harmatin–tuberin complex, which exhibits GAP activity toward Rheb proten. This 

complex is a negative regulator of mTOR signaling [51]. E6 also binds and degrades Gps2, 

that is involved in suppressing G-protein signaling pathway and c-Jun N-terminal kinase 

(JNK) activity [52].  

E6 is involved in the blockage of apoptosis acting in both major apoptotic pathways:  

a. the extrinsic pathway, which triggers extracellular signals that induce the activation of 

“death receptors” on the cell surface: 1) E6 binds to the death receptor TNFR-1, inhibiting 

TNFR-1 association with the TRADD (TNFR1- associated death domain adapter molecule) and 

blocking TNFR-1 death domain mediated apoptosis [47]; 2) E6 inhibits apoptosis by binding 

and degrading both the FADD adapter protein and caspase-8 [53]. 

b. the intrinsic pathway, which triggers sensing apoptotic signals that arise within the cell 

(DNA damage, oxidative stress) [54]. The lr/hrE6 oncoproteins block intrinsic apoptotic 

signaling interacting with Bak, inducing its proteasomal-dependent degradation [55], or 

using a mechanism depending or not on E6AP and E3 ubiquitin ligases [56].  

Another biological activity of E6 oncoprotein consists in alteration of cell adhesion in order 

to allow proliferation of differentiated cells and inhibition of terminal differentiation: 

extracellular matrix adhesion, cell:cell contact and cytoskeletal organization. For example, 

Paxillin and zyxin are focal adhesion molecules involved in binding cellular cytoskeleton to 

the ECM and transmitting signals along the actin network from the ECM to nucleus. Focal 

adhesions form a structural link between the extracellular matrix and the actin cytoskeleton, 

and are important sites of signal transduction. Paxillin has been shown to bind to β-integrin, 

oncoproteins such as v-Src, v-Crk, p210BCR/ABL, p125FAK, vinculin, and talin, and is 

involved in changing the organization of the actin cytoskeleton. E6HPV interacts with 

paxillin [57], and the binding leads to the disruption of the actin cytoskeleton, a 

characteristic of many transformed cells.  

E6 interacts with proteins involved in chromosomal stability within the HPV infected cell. 

Viral protein mediates MCM7 (minichromosome maintenance 7) degradation via E6AP and 

leads to chromosomal abnormalities in HPV infected cells [58]. Moreover, its interactions 

with XRCC1 and O(6)-methylguanine-DNA methyltransferase (MGMT) (proteins involved 

in single strand DNA break repair) induce DNA damage [59] or sensitize HPV infected cells 

to alkylating DNA damage [60]. These interactions increase genomic instability and 

accelerate the progression to carcinogenesis. 
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E6 hrHPV is also involved in immune evasion by interacting with IFR-3 (Interferon regulatory 

factor-3) [61], that is required for the expression of type I interferon. IFR-3 is activated by 

virus infection to form a complex with transcriptional regulators of the IFN-beta. Therefore 

IFR-3 inhibition affects its transactivation ability and results in the induction of IFN-β 

following viral infection [62]. Interferon induced growth arrest is dependent on p53 

acetylation, a modification which affects p53 stability and increases its transcriptional 

activity. As E6 targets p53 directly or through p300/CBP, the virus induces proliferation of 

HPV infected cells in the presence of interferon [63]. Moreover, E6 inhibits TLR9 

transcription, leading to a functional loss of TLR9 signaling pathways within the cell [61]. By 

activating telomerase, E6 promotes malignancy as the mutant cells continue to reproduce 

uncontrollably [64] 

It was noticed that oncogenic E6HPV is able to modulate the expression of many cellular 

miRNAs via p53. For example, miR-34a gene is a direct transcriptional target of p53 and its 

expression is transactivated by p53 binding to a consensus p53 binding site in the miR-34a 

promoter region [65, 66, 67]. As E6 is a regulator of p53, viral oncoprotein leads to the 

reduction of miR-34a, and this affects the expression of cell cycle regulators, including cyclin 

E2, cyclin D1, CDK4, CDK6, Bcl-2, SIRT1, and p18Ink4c [68, 69]. The hypothesis that p53 

modulates cellular miRNAs down-regulation mediated by E6HPV16 was sustained by the 

fact that the genes encoding miR-34a and miR-23b contain a promoter region with a p53 

binding site [70].  

4. E7HPV 

The HPV life cycle is associated with the differentiation process of the infected epithelial 

cell. Interaction between E7 and pRB determines degradation and phosphorylation of pRB 

with the release of E2F and activation of genes that promote cellular proliferation. The 

actions of E7 induce cells to enter in the S phase of cell cycle (including suprabasal epithelial 

cells) which ensures all cellular factors necessary for viral replication. On the other hand, E7 

can directly bind E2F1 and enhance E2F1-mediated transcription [71]. E2F transcription 

factors are critical regulators of G1 exit and S-phase progression. In addition, cellular 

differentiation, apoptosis and genomic instability are controlled by E2Fs [72]. E7 also 

interacts with pRb associated proteins (p107, p130) which are negative regulators of the cell 

cycle involved in G1/S and G2/M transition, via the LXCXE motif in CR2 [73].  

E7hrHPV can associate and alter the activities of multiple cellular factors that normally 

contribute to the regulation of the cell cycle. In addition to targeting pRB for proteasomal 

degradation [74] E7 inhibits p21 functions by direct binding, thus contributing to sustained 

activity of CDK [73, 75, 76]. Cyclin dependent kinases (cdks) are the most important in cell 

division cycle. Expression of cyclins E and A, the regulatory subunits of cdk2, which drives 

S-phase entry and progression, is under E2F control and they are both expressed at higher 

levels in E7 expressing cells [77].  

A cell infected by virus will usually respond by producing interferons (IFNs) that have an 

antiviral and antitumour effect. HPV16 E7 protein has been shown to block IFN-α activity 
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and inhibit IFN-β promoter [78]. Besides its role in cell proliferation E7 also regulates 

apoptosis. Some studies underlined that the actions of E7 appear to be anti-apoptotic. On the 

other hand, overexpression of E7 in genital keratinocytes induces spontaneous cell death. 

However, its effect on cellular apoptotic pathways is pleiomorphic. 

E7hrHPV increases genomic instability in primary human cells [79] and generates mitotic 

defects and aneuploidy as a consequence of gains or losses of entire chromosomes during 

mitosis, or by induction of supernumerary centrosomes and multipolar mitoses [25]. 

Supernumerary centrosomes and associated multipolar mitoses have been detected in cells 

that express low copy numbers of episomal E7HPV [80] and their incidence increases in cells 

with integrated HPV, presumably due to higher E7 expression. Induced aberrant centriole 

synthesis is dependent on cdk2 activity in E7 expressing cells [81, 82]. The ability of HPV16 

E7 to induce supernumerary centrosomes is at least in part independent from the ability to 

target pRB family members. A possible pRB/p107/p130 independent mechanism involves 

the association of E7 with the centrosomal regulator γ-tubulin [83]. E7HPV expression also 

causes other types of mitotic abnormalities including lagging chromosomal material and 

anaphase bridges that may represent chromosomal fusions caused by double stand DNA 

breaks [84]. The presence of DNA repair foci indicates that E7 may induce double strand 

DNA breaks or interfere with break repair. This may facilitate viral genome integration.  

High-risk E7 proteins are also able of direct the interaction with chromatin modifiers such as 

histone deacetylases HDACs 1, 2, 3 and 8, events independent of pRB inactivation. HDACs 

are involved in regulation of transcription of different genes, including those that present 

promoters activated by E2F transcriptional factor [84]. This interaction additionally affects 

the expression of S phase genes. Experimental studies showed that L67 mutation of HPV31 

E7 protein determines the impossibility to bind HDACs, and affects the virus ability to 

remain in an episomal status or to complete the later stages of the viral life cycle [85]. 

Currently, there is no study to prove the connection between the viral replication and the 

binding of E7 to HDACs. E7hrHPV also interacts with c-myc, augments c-myc 

transactivation, contributing to an efficient immortalization.  

As we mentioned before, HPV16 E7 oncoprotein interacts with complexes formed between 

E2F6 and polycomb transcriptional repressor (PRCs) [86]. PRCs associate with histone H3 

lysine 27 trimethyl (H3K27me3) [87] and inactivate p14ARF tumor suppressor [88]. Highly 

HPV16E7 expression correlates with high levels of H3K27me3 [89] and an increased 

expression of p16INK4A through KDM6B induction. This process is not dependent of pRB 

inactivation by E7 oncogene, but several genes (Hox) regulated by KDM6A or KDM6B are 

highly expressed, promoting cell proliferation and escape from senescence. Gathering these 

data, HPV16E7 expression may cause epigenetic reprogramming in host cells, inducing 

alterations in H3K27me3 levels and transcriptional changes. On the other hand, KDM5 has 

been linked to oncogenesis process [86]: E2 protein recruits KDM5 in order to repress the 

transcription of the E6 and E7 oncoproteins through the HPV LCR [90, 91]. The interplay 

between histone methyl-transferases and demethylases in the context of viral oncogenes 

activity is shown in figure 1.  
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Figure 1. The interplay between histone methyl-trasferases and demethylases in the context of viral 

oncogenes activity 

Expression of both early and late HPV genes seems to be subject to miRNA-mediated 

regulation at the post-transcriptional level in cervical cancer cell lines [68, 69].  

E7 increases the expression of miR-15/16 cluster through pRB degradation and release of E2, 

a factor which promotes miR-15a/16-1 cluster expression [68, 69]. On the other hand, 

E7hrHPV down-regulates the expression of miR-203 [92], a micromolecule involved in the 

control of the keratinocytes differentiation by shift from a proliferative to a nonproliferative 

status [93, 94]. Another cause of miR-203 down-regulation is due to methylation of CpG 

islands in the promoter region. Hypermethylation of miR203 as well as miR-34b and miR-

124 was correlated with CIN III and cervical cancer [95].  

Beside the E6 and E7 oncogenes, recent studies emphasize the role of two other viral 

proteins in HPV induced oncogenesis: E5 and E2.  

5. E5 HPV 

E5 HPV16 is a hydrophobic protein (83 amino acid long), localized in the intracellular 

membranes (plasma membrane, endoplasmic reticulum, nuclear envelope and Golgi 

apparatus) [96]. Based on its interactions with cellular proteins, E5 seems to be a weak 

transforming protein. These interactions lead to alterations in normal biological activity and 

evasion of the immune response. E5 gene encodes short hydrophobic peptides, which have 

mitogenic activity, synergic with EGF (epidermal growth factor) [97]. In hrHPV infections, (e.g. 

HPV 16) EGF receptor increases 2-5 times in the human keratinocytes expressing E5, leading 

to cell proliferation. This suggests that HPV16 E5 plays a major role in expanding 

populations of HPV16-infected basal keratinocytes in vivo by augmenting extracellular 
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growth signals in viral infected cells (enhancing ligand-dependent EGF-R activation). E5 

oncoprotein binds and inhibits the activity of the 16 kDa subunit of vacuolar ATP-ase (V-

ATPase), altering the endosomal acidification and degradation of EGF-R [98, 99]. The delay 

of EGF-R degradation can be reached by E5 interference with membrane trafficking and the 

fusion of early and late endosomes [100].  

E5 activates EGF-R signaling pathway through either EGF-dependent or EGF-independent 

processes, but it is also capable of interacting with, enhancing/ altering the signaling of other 

different classes of growth factor receptors like:  

- G protein-coupled endothelin receptor [96]; this interaction induces mitogenic activity 

of ET-1, leading to the chronic stimulation of keratinocyte proliferation;  

- keratinocyte growth factor receptor/ fibroblast growth factor receptor 2b (KGF-R/FGF-

R2b); these receptors are down-modulated by E5, through reduction of transcripts and 

protein [101, 102].  

- connexin 43 interferes with E5, in order to inhibit gap junction-mediated 

communication between epithelial cells in monolayer [103] and in raft cultures [104]; 

this makes the transformed cells more insensitive to homeostatic growth control signals 

from adjacent normal cells. Moreover, E5 seems to be involved in induction of cell 

fusion [105, 106, 107] a critical event in the early stage of HPV-associated cervical 

cancer. There are experimental data which support E5 role in cervical cancer. It seems 

this viral protein increases the efficiency of keratinocytes immortalization induced by 

E6 and E7 oncogenes [108] and affects cell-cell communications [109] 

In early infection, E5 appears to inhibit programmed cell death [110] using different 

mechanisms like: (a) down regulation of the total amount of Fas receptor and reduction of 

Fas surface location; and (b) alteration of the formation of Death-Inducing Signalling Complex 

(DISC) triggered by TRAIL [111]. While E5 did not down-regulate TRAIL receptor 

expression, it was found to inhibit TRAIL signaling by interfering with the formation of the 

TRAIL DISC and thereby inhibiting the cleavage of procaspases-3 and -8, as well as of PARP 

[111]. Therefore, it is possible that E5 interferes with the ability of the immune system to 

eliminate infected cells by impairing death receptor signaling. Together, the results of these 

studies provide strong evidence that E5 contributes to the evasion of immune surveillance 

during the early stages of HPV infection. 

In contrast, HPV16E5 sensitizes human keratinocytes to apoptosis induced by osmotic 

stress, perhaps due to cell membrane modifications caused by this strong hydrophobic 

molecule [111]. On the other hand, E5 can inhibit the ER stress pathway, cyclooxygenase-2 

(COX-2), XBP-1 and IRE1a, but this seems to be limited to the high risk genotypes, favoring 

viral replication and persistence [112]. 

The role of E5 in HPV transformation might be due to alteration of innate and adaptive 

immune responses. E5 protein seems to down-regulate MHC/HLA class I, through 

alkalinisation of the endomembrane compartments [113] and the direct interaction of E5 

with the heavy chain of the MHC class I complex [114, 115]. E5 gene is often deleted during 

viral DNA integration into the host cell genome. This might suggest a dispensable role of 
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this gene in oncogenesis but the fact that E5 mRNA is the most abundant viral transcript 

prior integration sustains its role in early phases of tumorigenesis.  

6. E2 HPV 

The E2HPV protein exhibits complex functions independent of transcription; it can 

modulate the host cells in concert with the viral vegetative cycle. Recent data point out that 

E2HPV could be involved in early carcinogenesis [13]. E2 is a repressor of E6 and E7 

transcription in the HPV context. E2HPV is involved in viral transcription and replication 

[116, 117], forming together with E1 a complex with viral origin of replication and recruiting 

cellular DNA replication machinery (DNA polymerases, replication protein A, replication 

protein C, topoisomerase I/II and proliferating-cell nuclear antigen) in order to facilitate 

viral DNA replication [116]. It was noted that E2 protein is expressed at relatively high 

levels in differentiated cells of the intermediate layers of CIN lesions; on the other hand, its 

expression is decreased with progression of the lesions and is absent in most of the cancers 

in situ, being inversely correlated with expression of E7 [13, 118]. E2 is an unstable protein 

expressed in both the nuclei and cytoplasm of infected cells, and is degraded through the 

proteasome [119, 120]. In most cases, HPV integration occurs by breaking the E2 gene 

region. Re-expression of E2 in cervical carcinoma cell lines appears to be detrimental to cell 

proliferation due to the induction of G1 cell cycle arrest through repression of the 

endogenous E6/E7 expression, as well as due to induction of cellular senescence and 

apoptosis [121, 122]. The fact that E2 can regulate the activities of E6 and E7 via 

transcriptional control or by direct interaction [28], suggests that HPV genome integration 

may result from a strong selective pressure on the virus to avoid E2-induced apoptosis 

while modulating the survival of infected cells through the activities of E6 and E7. 

E2 could enhance cellular DNA replication through abrogation of a mitotic checkpoint [123] 

and blocking the cell cycle in G2/M [124]; E2 activates the spindle assembly checkpoint and 

induces abnormal chromosome segregation after anaphase, leading to aneuploidy or DNA 

breaks [13]. The potential role of E2 to induce abnormal mitoses links E2 to HPV-associated 

carcinogenesis. This hypothesis is sustained by the fact that only E2 proteins from high-risk 

HPVs could induce abnormal mitotic phenotypes, in contrast to the E2 proteins from the 

low-risk HPV11 and 6 which are inactive [124].   

7. Prevention of cervical carcinoma 

The high risk human papillomaviruses are associated with cervical cancers and play an 

essential role in the pathogenesis of the disease. Although commercial prophylactic HPV 

vaccines are now available, they do not have therapeutic effect against established HPV 

infections and HPV-associated lesions which account for high morbidity and mortality 

worldwide. Advanced cervical cancer remains a public health issue despite the availability of 

preventive vaccines and population-based screening because they target a very young teenage 

population with a delayed impact on cervical cancer due to the peak of cervical cancer 

incidence at ages 45–55 [125]. Viral oncoproteins are critical for the induction and maintenance 
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of cellular transformation in HPV-infected cells. Therefore, E6 and E7 are considered the ideal 

targets for therapeutic HPV vaccines. By contrast with the commercial preventive HPV 

vaccines (Gardasil and Cervarix) which use HPV virus-like particles to generate neutralizing 

antibodies, therapeutic vaccines can eliminate preexisting lesions and infections by generating 

cellular immunity against HPV-infected cells. Consequently, many therapeutic vaccine 

strategies have focused primarily on stimulating the production and activation of T cells that 

can recognize infected cells expressing the target antigens (E6 and E7).  

A variety of vaccine strategies have been employed to target immune responses to these 

proteins. Various therapeutic HPV vaccines for cervical cancer, including live vector-, 

peptide-, protein-, nucleic acid-, or cell-based vaccines targeting the E6HPV and/or E7 

antigens were developed.  

Live vector-based vaccines (bacterial and viral vectors) are attractive due to their high 

immunogenicity and efficiency in delivering antigens or DNA encoding antigens of interest. 

Among them, ADXS11-001 (Listeria-based vaccine) targets E7 and is well tolerated by patients 

in end-stage of cervical cancer, who had failed prior chemotherapy, radiotherapy and/or 

surgery (phase I trial in patients with stage IVb cervical cancer) [126]. On the other hand, TA-

HPV (a recombinant vaccinia virus expressing HPV-16/18 E6/E7 fusion protein), induces HPV 

antigen-specific T cell-mediated immune response (phase I/II trial in patients with Ib or IIa 

cervical cancer) [127]. MVA-E2 and MVA-HPV-IL2 (Modified Vaccinia Ankara-based vaccines 

expressing HPV16 E6/E7 and IL-2) showed some promises as 50% of the treated patients 

presented complete healing of lesions and E6 and E7 antigen levels below the detection limit of 

6 months post vaccination (phase II trial in patients with CIN III) [128].   

Cell-based vaccines (dendritic cells-DCs, modified tumor cells) are highly immunogenic and 

useful in expressing the relevant tumor antigens. Vaccination with E7-presenting DCs 

transfected with siRNA targeting Bim (Bcl-2-interacting mediator) was capable of 

generating a strong E7-specific CTL response and a marked therapeutic effect in vaccinated 

mice [129]. The vaccine was in clinical pilot study in patients with late stage cervical cancer 

[130] or phase I trial in patients with stage Ib or IIa cervical cancer [131], or with recurrent 

cervical cancer [132].  

Peptide-based vaccines can combine multiple epitopes and enhance peptides for MHC 

binding. The peptide-based vaccine potency is increased by using adjuvants such as GM-

CSF, 4-1BB ligand, and Montanide ISA 51) [133, 134]. Several vaccines from this category are 

in different phase trials: Lipopeptide - lipidated E7 (HLA-A* 0201 - restricted epitope, a.a. 

86– 93 lipopeptide) in phase I trial in patients with refractory cervical or vaginal cancer; 

Peptide & Montanide ISA -51 (HLA-A * 0201- HPV16 E7 epitopes restricted, a.a. 12 to 20 ± 

a.a. 86 -93) ligated to PADRE, adjuvant Montanide ISA 51, in phase I/II trial in patients with 

recurrent or residual cervical cancer. TriVax- HPV16-E7 epitope (E7 49-57 with CD40 mAb) 

in tumor-bearing mice [135] has not yet been tested in clinical trials. 

The protein-based vaccines take the advantage of using fully purified proteins which are 

able to induce humoral and cellular immune response. Conformational epitopes of injected 
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proteins are recognized by B cell receptors, triggering specific immunoglobulin synthesis 

row. Proteins are retrieved and processed by antigen presenting cells (dendritic cells, 

macrophages, etc.) in cooperation with T helper lymphocytes (by presenting peptides 

conjugated with MHC class II molecules) and cytotoxic T lymphocytes (by presenting 

peptides conjugated with MHC class I molecules). Adjuvants (Iscomatrix, AS02B, Poly 

ICLC) [136, 137] and fusion immunostimulatory proteins (heat shock protein derived from 

Mycobacterium bovis) improve CTL responses of HPV protein-based vaccines [138].  

Nucleic acid-based vaccines are based on the direct introduction into the host cell of 

information encoding the antigen of interest, synthesized in situ. Recombinant DNA is 

introduced into tissues by intramuscular inoculation. Dendritic cells serves as central 

players for DNA vaccine development. pNGVL4a encodes the signal sequence Sig linked to 

a weakened form of HPV16 E7 fused to HSP70. It is used in phase I trial in patients with 

CIN II/III [139]. VGX-3100 vaccine expressing E6 and E7 HPV16/18 proteins was used in 

Phase I trial in patients with CIN II/III post-surgical or ablative treatment [140]. Regarding to 

the potential of E5 to contribute to HPV-associated carcinogenic process, it was suggested its 

role during the early tumorigenesis stage. Taking into account a limited immune response in 

malignat stage as a result in down-regulation of MHC class I and II molecules, a therapeutic 

vaccine targeting E5-expressing cells might be a good strategy to prevent the progression of 

premalignant lesions toward invasive cervical cancers [141]. Using a recombinant 

adenovirus which expresses E5HPV16 (AdV-based E5) in syngenic animals, it was observed 

a reduction of tumor growth correlated with tumor protection through CD8 T cells  [142], 

but HPV16E5 25-33 peptide plus CpG oligodeoxynucleotides (ODN) proved to be more 

effective as vaccine [143]. The construction of different DNA vectors based on epitopes of E5 

HPV oncogene (now under evaluation in animal models) was also described [144]. The 

immune effector cells in premalignanant lesions may eradicate tumor cells more efficiently 

than in the invasive cervical cancers. 

8. Conclusions 

The studies of HPV E6 and E7 oncogenes and the proteins coded will continue in order to 

discover new diagnostic and prognostic tools for cervical cancer. On the other hand, 

scientific studies will probably decipher new pathways of HPV oncogenesis molecular 

network and these will enrich the knowledge in this field.  
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CDK  cyclin-dependent kinases 

CKI and II casein kinase I and II 

COX-2  cyclooxygenase 2 

E6-AP  E6-associated protein 

E6-BP  E6-binding protein 

ET1  etched1 

FADD  Fas-associated protein with death domain 

FAK  focal adhesion kinase 

Fra2  Fos related antigen 

GAP  GTPase activating proteins 

GM-CSF granulocyte-macrophage colony-stimulating-factor 

Gps2  G-protein pathway suppressor 2 

hADA3  transcriptional adaptor 3 

HDAC  histone deacetylase 

hDlg  human Drosophila discs large protein 

hDlg1  discs large homolog 1 

hE6TP1  human E6-targeted protein 1 

HLA  human leukocyte antigen 

HMG  high mobility group  

HPV  human papilloma virus 

hScrib  human Scribble tumor suppressor protein 

hScrib  scribbled homolog Drosophila 

hTERT  human telomerase reverse transcriptase 

IFN  interferon 

IFNAR1 interferon-alpha receptor 1 

IRE1a  endoribonuclease/protein kinase IRE1-like protein 

IRF-1 and -3 interferon regulatory factor 1 and 3 

ISGF3  interferon-stimulated gene factor 3 

KDM1 lysine (K)-specific demethylase 1A 

M2-PK M2 pyruvate kinase 

MAGI  membrane-associated guanylate kinases 

Mdm2  murine double minute 2 

MHC  major histocompatibility complex 

MMP-7  multicopy maintenance protein 7 

mTOR  mechanistic/mammalian target of rapamycin (serine/threonine kinase) 

MUPP1  multi-PDZ-domain protein 1 

NFX1  nuclear factor (X can be any amino acids) 

p18Ink4c Cyclin-dependent kinase 4 inhibitor C 

PTPN3  protein tyrosine phosphatase, non-receptor type 3 

Rb  retinoblastoma protein 

Rheb Ras homolog enriched in brain 

S4  subunit 4 

SIRT  sirtuin (silent mating type information regulation 2 homologue) 1 
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SMARC SWI/SNF-related, matrix-associated, actin-dependent regulators of chromatin 

SWI/SNF  Switch/Sucrose nonfermentable 

TBP  TATA box-binding protein 

TLR9  toll-like receptor 9 

TNFR1  tumor necrosis factor receptor, member 1 

TP63  tumor protein p63 

TRADD TNFRSF1A-associated via death domain 

TRAIL  tumor necrosis factor-related apoptosis-inducing ligand 

v- Src  sarcoma viral oncogene 

v-Crk  sarcoma virus CT10 oncogene homolog (avian)-like 

XBP-1 X-box binding protein 1  

XRCC1 X-ray repair complementing defective repair in Chinese hamster cells 1 
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