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1. Introduction 

The mechanism of nanostructural carbides synthesis, and chemical activity of nanoparticles 

in oxidizing environments, even occurring in trace amounts in high-purity gases, require 

application of precise methods and performing investigations for a wide range of 

parameters. The methodology of investigation and the way of determination of selected 

synthesis conditions have been described in this work. Appropriate selection of 

investigation methodology enables understanding of process mechanisms, performing 

quantitative analysis and then correct determination of their conditions.  

Good basis for analysis of the processes proceeding with participation of solids are kinetic 

studies. Kinetic studies can be carried out under isothermal or non-isothermal conditions. 

The transitions with participation of solid reagents usually proceed in many stages. Each 

step should be treated as an independent process. The measurements indispensable for 

identification of process stages and reagents are usually carried out by methods of thermal 

analysis. There are elaborated different methods of kinetic studies. They are the subject of 

ongoing discussion [1]. 

Methods of process kinetics are of great significance for materials engineering. In work [2], 

for example, kinetics of carbothermal synthesis of β-SiC was investigated; in work [3,4] 

kinetics and mechanism of carbothermal reduction of MoO3 to Mo2C; in work [5] kinetics of 

thermal decomposition of NH4VO3; in work [6] kinetics of nanometric ceramic materials 

synthesis in argon and their oxidation in dry air were investigated. 

Kinetic studies of manufacturing process of carbides of the metals, e.g. titanium, vanadium, 

niobium, tantalum or silicon, are of particular significance. These metal carbides belong to 

the group of ceramic materials known as conventionally hard materials, high wear and 

oxidation resistance. This results from the character of chemical bound and crystallographic 

structure. The fabrication of ultrafine-grain ceramics by powder- metallurgical processes 
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involves a number of serious difficulties. In particular, it is necessary to use ultrafine 

powders and to optimize sintering conditions so as to prevent grain growth. Due to their 

high reactivity of such powders, the process must be run in an inert atmosphere. The 

composites containing nanostructural carbides show higher strengthening in comparison to 

their microstructural equivalents [7].  

Synthesis of these materials is most often carried out by carbothermal reduction of oxides or 

precursors containing metal-oxygen-carbon conjugation [1,2,8,9,10]. Other attractive 

synthesis routes are processes of decomposition of organometallic precursors or synthesis 

carried out with participation of hydrocarbons, eg. CH4 or C6H6, and salts of transition 

metals [11,12]. Carbothermal synthesis of the carbides proceeds through stages of oxides 

formation and than oxycarbides formation being the intermediate products of the syntheses. 

In the latter case the intermediate products are low-stoichiometry carbides of high vacancies 

concentration resulting from stability range of these phases in equilibrium metal-carbide 

system. 

Presence of oxygen atoms in MCxO1-x lattice or high concentration of carbon vacancies in 

MC1-x lattice cause reduction in hardness and wear and oxidation resistance [12,13]. 

The synthesis stages leading to elimination of above mentioned lattice defects and 

obtainment of high-stoichiometry, oxygen stripped carbides, characterized by best 

properties, proceeds in temperature range above 1000ºC. 

At the example of decomposition processes investigations process kinetics of the 

decomposition of NH4VO3 has been analysed. The issues concerning kinetics of those 

processes have been presented at the example of thermal decomposition of NH4VO3 to V2O5 

in dry air. Vanadium carbides, carbonitrides and borides are known ceramic materials [14-

16]. NH4VO3 could be used in these processes as a precursor. The results of investigations on 

thermal decomposition of NH4VO3 in dry air have been presented. The base of kinetic 

description of these processes were termoanalytical TG-DSC measurements. They allowed 

identifying of intermediate and final products, distinguishing stages of the process, 

determination of their temperature ranges and acquisition the quantitative description. 

Process kinetics of the stages were described by Kissinger’s method, isoconversional method 

and applying Coats- Redfern equation.  

Obtaining the carbides of high carbonization degree, remaining the right grains size and 

properties, is essential. Selection of parameters meeting these requirements is difficult. 

Kinetic studies have significance during investigations of conversions proceeding with use 

of nanomaterials [17]. In the process of TiC synthesis by sol-gel method, described in work 

[6], the intermediate product is low stoichiometric MC1-x (x≤ 0.3). Carbides nucleate and 

grow in the carbon matrix. The process is carried out in argon. Describing kinetics, Coats-

Redfern’s equation was applied. Kinetic models of stages were identified basing on 

statistical evaluation and compliance to a large extent of conversion degrees of stages 

calculated and determined from termoanalytical measurements. While building the kinetic 

models of the processes, the results of measurements were treated as statistic values. A 

system of a complex analysis of measurements results was developed with the use of 
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artificial neuron networks. Kinetics and by the same, the mechanism of the process of 

oxidation of nanocrystalline carbides in form of powder were tested, and they were 

subjected to evaluation based on the comparison of the oxidation rate values.  

The possibility to remove the carbon matrix in reaction with oxygen was considered during 

analysis of the kinetics of the process of TiCx/C nanocomposite oxidation in dry air. It was 

proved that it was not possible to purify the obtained nc-TiC by burning in the air the 

carbon matrix, contained in the system. 

2. Thermal decomposition of NH4VO3 

2.1. Methods kinetic analysis 

It is assumed that the rate of non-catalytic, heterophase reactions depends on temperature, 

conversion degree and pressure  

 ( ), ,
d

r T P
dt

α
φ α= =   (1) 

After separation of variables we obtain 

 ( ) ( ) ( )
d

k T f h P
dt

α
α=   (2)  

Under thermogravimetric measurements conditions ( ) 1h P ≈  [18]. Then 

 ( ) ( )
d

k T f
dt

α
α=   (3)  

Separation of variables means that k(T) function should not depend on conversion degree, 

and function f(α) should not depend on temperature. Function k(T) is described by 

Arrhenius equation 

 ( ) exp
E

k T A
RT

 
= − 

 
  (4) 

k(T) function maintains its exponential character in relatively narrow range of temperature. 

Assuming T=0 as integration limit this range is exceeded since k (T) tends asymptotically to 

the limit values (at T o→ and T → ∞ ). 

By combining (3) and (4) we obtain 

 ( )exp
d E

A f
dt RT

α
α

 
= − 

 
  (5) 

Thus, for isothermal conditions we have 
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 ( )
( )

( ) t
o

d
g k T

f

α
α

α
α

= =   (6) 

For non-isothermal conditions, at a linear heating rate of sample
dT

dt
β=  we obtain 

 ( )
1

0

exp
T

T

A E
g dT

RT

α

α

α
β

=

=

 
= − 

 
   (7)  

The integral has no analytical solution. An important approximate solution is the Coats-

Redfern equation [12] 

 
( )

( )
2

2
ln ln 1 m

g RTAR E
F T

E E RTT

α

β

    
= = − −    

      
  (8) 

Based on experimental data for each stage the form of the f(α) or g(α) function most 

consistent with the experimental data and the parameters of Arrhenius equation A and E 

should be determined. 

During standard thermogravimetric measurements the temperature of the sample, the TG, 

DTG and HF functions and the mass spectra of evolved gaseous products are recorded. 

Solid products are identified by XRD method. On this basis the division of the process into 

stages is made and α(T) dependencies are determined for the stages. The methods of 

measurement results elaboration and kinetic models recommended by ICTAC Kinetics 

Comittee are given in work [1]. These include in particular Kissinger’s method and 

isoconversional method. 

2.1.1. Kissinger’s method 

The basis of Kissinger's method are the parameters describing the process rate maxima (Tm, 

αm), determined at different heating rates of samples [14]. For maximum 
2

2
0.

d

dt

α
=  By 

differentiating equation (5) we obtain 

 ( )
2

'

2 2
exp 0m

m mm

d E E d
Af

RT dtdt RT

α β α
α

     
= + − =   

      
  (9) 

Since 0
m

d

dt

α 
≠ 

 
, therefore 

 ( )'

2
expm

mm

E E
Af

RTRT

β
α

 
= − − 

  
  (10) 

There should be added that the formula (10) requires that ( )'
mf α <0. In this method 

therefore only kinetic models fulfilling this condition can be used. 
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By transforming (10) and adapting the result to the measurements performed at different 

heating rates of samples the Kissinger equation (11) is obtained  

 ( )'

2
,,

ln lni
m

m im i

AR E
f

E RTT

β
α

     = − −     
  (11) 

While performing calculations, 
2

, ,

1000
ln i

m i m iT T

β 
  ÷
 
 

 charts are prepared. Then the activation 

energy E and the value of expression ( )'ln m

AR
f B

E
α

 
− = 
 

 are calculated by linear 

regression method. 

Knowing B, ( )'
mAf α−  is calculated from equation (12) 

 ( ) ( )' exp
E

Af B
R

α− =   (12) 

To calculate A one needs to know the kinetic model for a given stage (form of the function 

f(α)). The kinetic model most consistent with the experimental data, of the tested models, 

was established by analyzing the trajectories of Y(T) function depending on α(T). The 

conversion degrees α(T) for the stages were estimated on the basis of experimental data, 

whereas the Y(T) function was calculated from the formula 

 
1

0

'( )
( ) exp[ ]

T

m

i T

Af E
Y T dT

RT

α

α

α

β

=

=

= −   (13)  

For the stage A ( )' .mf constα ≈  The integral was calculated numerically. There should be 

added that at constant activation energy, trajectories of 
1

0

1
exp

T

T

E
dT

i RT

α

α
β

=

=

 
− 
 

  functions 

depending on the conversion degree, for different βi, should be the same. The ranges 

0 1T Tα α= =÷  for given βi must be determined experimentally. At higher heating rates of the 

samples there should be wider temperature range 0 1T Tα α= =÷ . This is consistent with DTG 

and HF charts. After determining the form of the function f(α) the derivative ( )'
mf α  is 

calculated. Knowing ( )'
mAf α  and ( )'

mf α  Arrhenius coefficient A is calculated. 

2.1.2. Isoconversional method 

In the the isoconversional method equation (5), obtained after separation of variables, is also 

used. Differentiating (5) with respect to 1T−∂  we obtain 
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( ) ( )

1 1 1

ln
ln

d
k T fdt

T T T
α α

α

α
α

− − −

  
∂      ∂ ∂   = +   
 ∂ ∂ ∂       
 

 (14)  

For α = const we have 

 
1

ln
d

Edt

RT

α

α

α

−

  
∂  

   = −
 ∂
 
 

 (15)  

Integrating (15), taking into account that 
dT

dt
β= , and generalizing the result for different βi 

we obtain 

 
.,

ln i
ii

Ed
const

dt RT
α

αα

α
β
  

= −  
   

 (16) 

Integration constant, according to equation (5), is equal ( )ln f Aαα   . Equation (16) 

therefore takes the form  

 ( )
,,

ln lni
ii

Ed
f A

dt RT
α

α
αα

α
β α
    = −       

 (17) 

It should be added that the introduction of the coefficients Aα and Eα depending on 

conversion degree does not comply with the principle of separation of variables. Equation 

(17) is used in the differential isoconversional method. The basis of the reaction rate 

calculations are reaction rates 
,i

d

dt α

α 
 
 

determined for selected conversion degrees and 

different βi and the corresponding to them temperature values Tα,i. 

In the case of the integral isoconversional method the basis for calculations, for isothermal 

conditions, is equation 

 ( ) exp
E

g A t
RT

α
 

= − 
 

  (18)  

Activation energy, in this case, is calculated from the formula 

 
( )

,ln lni

g E
t

A RT
α

α
α α

α 
= + 

  
 (19) 
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The time of obtaining the assumed conversion degree at different temperatures was 

designated by tα,i. The charts of ,

1000
ln i

i

t
Tα ÷  are constructed. The parameters of equation 

(19) are calculated by linear regression method. For non-isothermal conditions there is no 

analytical solution. During the calculations of activation energy there are used approximate 

equations of general form  

 
,

ln i
B

i

E
const C

RTT

α

αα

β 
  = −
 
 

 (20) 

In this work the Kissinger’s-Akoshira-Sunose equation was used 

 2
,

ln i

i

E
const

RTT

α

αα

β 
  = −
 
 

 (21) 

In this case the charts of 
2
,

1000
ln i

i
TT α

α

β 
  ÷
 
 

 are constructed. The parameters of this equation 

are calculated by linear regression method.  

2.2. Experimental 

NH4VO3 from Fluka was used as a substrate. Decomposition process was carried out in dry 

air (Messer, Germany) containing 20,5% vol. O2 rest N2. Impurities occurred in amounts: 

H2O < 10 vpm, CO2 < 0,5 vpm, NOx < 0,1 vpm, hydrocarbons < 0,1 vpm. Thermogravimetric 

measurements were carried out on TG–DSC Q600 (TA Instruments) apparatus. Gaseous 

products of proceeding transitions were identified by mass spectrometry method. Pfeifer 

Vacuum ThermoStar GDS 301 apparatus was used. Solid products were identified by  

XRD method. X’Pert Pro apparatus from PANalytical with a copper X-ray tube with  

current voltage 35 kV and intensity 40 mA was used. Spectra processing and analysis  

was performed using X’Pert HighScore 1.0 software with incorporated ICDD spectra  

library. 

2.3. Results 

During the TG-DSC measurements weighed amounts of the sample in the order of 20 mg 

were used. The temperature of the sample, TG, DTG and HF functions, and mass spectra of 

gaseous products were registered in time. In all series the temperature of samples changed 

linearly in time. It was found that thermal decomposition of NH4VO3 in dry air proceeds in 

the three endothermic stages according to 

 ( ) ( )4 3 4 6 16 4 6 16 2 53 2
6 NH VO NH V O NH V O V O→ → →  (22)  



 
Heat Treatment – Conventional and Novel Applications 

 

316 

The theoretical, total mass loss of the sample equals 22,29 wt%. The mass losses in the 

stages, referred to the initial mass of the sample, equal: 11,48 wt% in stage I, 4,404 wt% in 

stage II, and 6,66 wt% in stage III. The intermediate products (for control also the final 

product) were obtained under isothermal conditions, in the temperature ranges of their 

occurrence. As the final product V2O5 (ICDD card 85-0601), and as the second intermediate 

product (NH4)2V6O16 (ICDD card 79-205) were obtained. The intermediate product formed 

in step I was identified on the basis of the mass balance (there is no pattern of this 

compound in ICDD directory). In all the stages and at different heating rates of the samples 

evolved: NH3, H2O, NO and N2O resulting from oxidation of NH3. In the gas phase NO2 did 

not occur. The results of this step of research are given in [19]. 

2.3.1. Analysis of influence of sample heating rate on the course of the process  

The influence of sample heating rate on the course of the process was examined on the basis 

of the TGu , DTG and HF functions. The measurements were carried out at sample heating 

rates of: 1; 1,5; 2; 2,5; 3; 3,5; 4; 4,5; 5; 6; 7 ; 8 and 10 K min-1. The isothermal measurements 

were carried out at the sample heating rate equal to 2 K min-1. Basing on the TG-DSC 

measurements the division of the process into stages was made and the conversion degrees 

for the stages were determined. There should be added that the data sets concerning 

conversion degrees, determined for the stages, are the basis for the description of process 

kinetics as in [1,17,20-23].  

2.3.2. Analysis of TGu, DTG and HF charts 

The trajectories of TGu, DTG and HF plots are presented in separate figures. In Figure 1 TGu 

functions in temperature registered during the measurements are presented. 
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Figure 1. TGu functions in temperature. Decomposition of NH4VO3 in dry air [19]. 
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The linear segments correspond to the isothermal conditions. The samples were heated 

isothermally until the stable mass has been reached (about 30 min). 

In case of the investigated process, under isothermal conditions, the results for the stage 

could by obtained only at a few temperatures, while at higher temperatures the results were 

obtained at high conversion degrees. For these reasons, the course of investigated process 

was not further examined under isothermal conditions. 

 

Figure 2. Plot of TGu functions in temperature. Decomposition of NH4VO3 in dry air [19]. 

In Figure 2 the plots of TGu function in temperature obtained under non-isothermal 

conditions are presented. The single curve is formed of about 20 thousand points. The 

determined TGu values should depend only on temperature and heating rate of the samples. 

This was confirmed by neural networks method in reference [24]. All the series were 

considered simultaneously. The computer software Statistica Neural Network was used. 

Figure 3 shows an example of DTG plots for selected heating rates of the samples. 

It follows that at higher βi the temperature range 0 1.T Tα α= =÷  increases (Fig.3). The 

temperature range of the process in stage is an important parameter. 

Along with the increase of sample heating rates the DTG function plots are shifted into the 

higher temperature range. It is also visible that at the higher sample heating rates stages I and 

II are overlapped to a larger extent, and the final segments of plots, corresponding to the stage 

III, are not monotonic. As mentioned before, this was attributed to the oxidation of formed 

earlier V2O5-x to V2O5. The Tm temperatures corresponding to peaks of DTG function plots 

(necessary for Kissinger’s method) have been determined. The results are listed in Table 1. 

The values of αm, for Tm temperatures given in Table1 were retrieved from data sets of α(T). 

There are also given the temperature ranges, determined basing on DTG plots, for the 

stages.  
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Figure 3. Plots of DTG function in temperature. Decomposition of NH4VO3 in dry air [19]. 

β 

Kmin-1 

Stage I Stage II Stage III 

Tm /K αm ∆T /K Tm /K αm ∆T /K Tm /K αm ∆T /K 

1 447,83 0,721 
410,75-

457,95
465,65 0,384 

457,95-

490,65
543,93 0,617 

509,25-

566,15 

1,5 452,62 0,742 
405,55-

462,85
469,87 0,415 

462,85-

489,45
550,38 0,653 

513,25-

572,15 

2 457,48 0,761 
413,15-

467,55
473,58 0,476 

467,55-

491,35
558,2 0,705 

516,25-

580,45 

2,5 458,06 0,698 
412,85-

469,65
475,6 0,443 

469,65-

494,65
560,65 0,701 

518,15-

583,45 

3 460,18 0,683 
415,65-

472,15
477,16 0,495 

472,15-

496,15
565,44 0,729 

522,95-

590,75 

3,5 462,25 0,703 
415,65-

474,15
479,51 0,474 

474,15-

497,15
567,21 0,737 

523,75-

590,75 

4 465,12 0,689 
413,25-

476,15
481,41 0,517 

476,15-

503,15
572,81 0,744 

526,55-

596,75 

4,5 465,32 0,689 
417,25-

476,95
481,9 0,38 

476,95-

500,35
572,17 0,743 

526,15-

595,15 

5 467,29 0,714 
418,45-

479,35
   574,3 0,736 

530,45-

597,95 

6 471,44 0,698 
416,45-

481,85
   580,7 0,719 

533,45-

609,25 

7 475,68 0,741 
417,15-

485,25
   588,2 0,83 

537,85-

614,15 

8 476,22 0,71 
421,65-

485,25
   587,06 0,723 

536,25-

620,75 

10 480,09 0,716 
423,15-

490,15
   591,89 0,73 

538,85-

625,35 

Table 1. List of data for Kissinger’s method. Thermal decomposition of NH4VO3 in dry air. 
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In Figure 4 the HF function in temperature has been presented for selected example values 

of β.  

 

Figure 4. Plots of HF functions in temperature. Decomposition of NH4VO3 in dry air. 

It is visible from the course of HF plots that in the case there are three endothermic stages 

referred to the NH4VO3 decomposition. The HF plots end with the exothermic transition 

attributed to the oxidation of small amount of V2O5-x to V2O5. Along with the increase of 

sample heating rate stages I and II overlap. Peaks of HF function are shifted, with respect to 

the DTG peaks, by a few degrees into the range of higher temperature. There should be 

added that NH3, H2O, NO and N2O evolved in all the stages, also at higher simple heating 

rates.  

2.3.3. Analysis of α(T) plots for determined stages 

The conversion degrees for stages were calculated from the following formula 

 0

0

( )
k

m m
T

m m
α

−
=

−
 (23) 

The data concerning the TGu function were the basis for calculations. During the division of 

the process into stages also DTG and HF plots were taken into account [22-24]. 

In Figure 5 the results obtained for the stages are presented. One curve was formed of a few 

thousand points. 
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Figure 5. Plots of α(T) depending on temperature for the stages. Thermal decomposition of NH4VO3 in 

dry air. 

2.4. Result analysis 

2.4.1. Kissinger’s method 

In Figure 6 the plots of 
2

,,

1000
ln i

m im i
TT

β 
  ÷
 
 

 for the stages, obtained on the basis of the data from 

Table 1, are presented.  

The parameters for Kissinger’s equation (11) were calculated by linear regression method. 

The computer software Statistica 6.0 was used. The results are listed in Table 2.  

Stage E kJ mol-1 B* Af’(αm) 1 min-1 rp model -f ’(αm) A 1 min-1 

I 117,66 19,496 4,133 E12 0,979 A2 2,476 1,669 E12 

II 164,48 30,178 2,37 E17 0,989 A4 6,762 3,504 E16 

III 113,75 12,623 4,137 E9 0,985 A2 2,596 1,594 E9 

Table 2. List of the results calculated by Kissinger’s method. Thermal decomposition of NH4VO3 in dry 

air. * constant in Kissinger’s equation (11) 
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Figure 6. Plots of 
2

,,

1000
ln i

m im i
TT

β
÷

 
 
 
 

 for the stages. Thermal decomposition of NH4VO3 in dry air. 

The kinetic models for the stages were determined analyzing the courses of the function  

Y(T) = 
( ) 0.99

0 ,01

'

exp .

T
m

i T

Af E
dT

RT

α

α

α

β

=

=

 
− 
 

   

There should be added, that the values of αm determined for the stage, changed marginally 

for different β. Therefore, there could be assumed that ( )'
mf constα ≈ . In figure 7 plots of 

Y(T) function for the stages depending on α(T), for β = 3K min-1, are presented as an 

example.  

 

Figure 7. Plots of Y(T) function for the stages depending on α(T) for β = 3K min-1. Thermal 

decomposition of NH4VO3 in dry air. 



 
Heat Treatment – Conventional and Novel Applications 

 

322 

For the stages I, III the most consistent with experimental data, of the tested models, was the 

A2 model.  

 ( ) ( )
1

2ln 1g α α = − −    (24) 

 ( ) ( ) ( )
1

22 1 ln 1f α α α = − − −    (25)  

 ( ) ( )
( )

1
' 2

1

2

1
2 ln 1

ln 1

m
m m

m m

f
α

α α

α α

−
 = − − − − 

 − − 

 (26) 

Whereas for stage II this was the A4 model  

 ( ) ( )
1

4ln 1g α α = − −    (27) 

 ( ) ( ) ( )
3

44 1 ln 1f α α α = − − −    (28) 

 ( ) ( )
( )

( )

3
' 4

1

4

3 1
4 ln 1

ln 1

m
m m

m m

f
α

α α

α α

−
 = − − − − 

 − − 

  (29) 

The selection of the model was confirmed making calculations by Coats – Redfern method. 

The selected models and calculated values of ( )'
mf α  are given in Table 2.  

2.4.2. Isoconversional method 

The basis for calculations by this method were dependencies α(T) determined for the stages 

at different heating rates of the samples (Fig. 5). First, the activation energies were calculated 

for αm,i corresponding to the inflection points of α(T) curves (average values of αm given in 

Table 1). In this case, formula (21) should take the form of equation (11). In Figure 8 the 

obtained plots of 
''

2
,,

1000
ln

mm

i

ii
TT αα

β
 
  ÷  
 

 are presented. 

The results of calculations are given in Table 3. This method is less accurate than the 

Kissinger’s method 

Stage αm E /kJmol-1 B* rp

I 0,713 117,3 19,401 0,989

II 0,460 148,2 26,05 0,987

III 0,721 122,3 14,426 0,988

Table 3. List of the results of activation energies calculations by isoconversional method for the 

inflection points of α(T) curves. *) constant in equation (21). 
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Figure 8. Plots of 
''

2

,,

1000
ln

mm

i

ii
TT

αα

β
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 for the stages. Isoconversional method. Conversion degrees equal 

to αm,i.  

The calculations for other values of conversion degree were also performed. Should be 

noted that α(T) tend asymptotically to the limit values. In these ranges ,iTα  could not be 

determined with sufficient accuracy. Therefore, the calculation was performed 0,1<α < 0,90.  

The plots of 
2

,,

1000
ln i

ii
TT αα

β 
  ÷
 
 

 for the stages are shown in Figure 9. 

The values of activation energies calculated by the isokinetic method are given in Table 4.  

αi 

Stage I Stage II Stage III 

E 

kJ mol-1 
B* rp 

E 

kJ mol-1
B* rp 

E 

kJ mol-1
B* rp 

0,1 140,45 27,00 0,986 163,02 30,083 0,996 147,58 21,299 0,991 

0,2 131,69 24,303 0,988 161,22 29,493 0,998 137,71 18,709 0,990 

0,3 128,45 23,06 0,991 158,71 28,788 0,992 126,45 16,012 0,991 

0,4 125,65 22,099 0,995 155,72 27,987 0,994 130,05 16,577 0,989 

0,5 123,13 21,256 0,999 156,50 28,187 0,994 127,46 15,849 0,986 

0,6 120,29 20,351 0,989 154,54 27,58 0,989 125,48 15,276 0,987 

0,7 117,56 19,489 0,988 156,70 28,065 0,985 122,94 14,597 0,985 

0,8 114,75 18,61 0,988 158,2 28,365 0,982 121,83 14,227 0,987 

0,9 112,38 17,826 0,989    119,92 13,679 0,983 

Table 4. The activation energies calculated for the stages by the isoconversional method. Thermal 

decomposition of NH4VO3 in dry air.* constant in equation (21) 
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In the case of investigated process, the E for the stages I and III (asymmetric plots of DTG 

and HF), changed continuously along with the change of conversion degree. In the case of 

stage II (symmetric plots of DTG and HF) E was practically constant, similar to that 

determined by Kissinger’s method. That is the isokinetic method compensates the impact 

of βi on the course of the process by changing the activation energy. Theoretically [25] 

much more interesting is the possibility to compensate the impact of βi, at a constant 

activation energy, with use of temperature ranges 0 1T Tα α= =÷ , the values determined 

experimentally. 

 

Figure 9. Plots of 
2

,,

1000
ln i

ii
TT αα

β
÷

 
  
 

for the stages. Thermal decomposition of NH4VO3 in dry air. 
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2.4.3. Coats – Redfern method 

During the calculations by this method the sets of α(T) presented in Figure 5 were also used. 

The activation energies E, determined for the stages by Kissinger’s method (for αm values 

belonging to the sets of α(T)), were taken as the base values. The plots of 
( )

2
ln

g E

RTT

α 
÷ 

  
 

were constructed. Among the known kinetic models the ones the most consistent with the 

experimental data were selected; for stages I and III model A2, and for stage II model A4. 

For the selected model and different βi the values of the coefficient A were calculated for the 

stage in the following manner. First Z(T) was calculated from the formula 

 ( )
( )

2

2
ln 1 lnm

gRTAR E
Z T

E E RTT

α

β

   
= − = +   

       
  (30) 

Then lnA was calculated according to 

 ( )ln ln
2

1 m

E
A Z T

RT
R

E

β

 
 
 = +   

−  
   

  (31) 

The calculations of Z(T) were performed for the range 0,01 0,99α≤ ≤ . The values of Tm and 

the temperature ranges for the stages are given in Table 1. However the calculated values of 

A are given in Table 5. For all the stages the obtained values of coefficient A were higher 

than the values determined by Kissinger’s method. There should be added that the 

proportion between the values was remained.  

Using average values of A the activation energies were tested. The criterion was the best 

conformity of trajectories of α(T) plots, calculated and determined experimentally, in the 

whole range. The conversion degrees were calculated as follows. First g(α) was calculated 

from the formula 

 ( ) ( )2 expg T F Tα  =     (32)  

Formula (32) is suitable for different models. Whereas the method of calculating conversion 

degrees depends on the form of kinetic model. For example, for model A2  

 ( ) ( )
1

2ln 1g α α = − −     (33) 

thus 

 ( ){ }2
1 exp gα α = − −      (34) 
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The values of activation energy calculated in this way are given in Table 5. 

 

β  

K min-1 

Stage I; A2; E=117,66 Stage II; A4; E=164,48 Stage III; A2; E=113,75 

∆Z(T) 
A E12 

min-1 

E*  

kJ mol-1
∆Z(T) 

A E17 

min-1 

E* 

 kJ mol-1
∆Z(T) 

A E9 

min-1 

E*  

kJ mol-1 

1 19,81 5,91 114,10 29,98 1,468 157,48 12,72 4,97 110,2 

1,5 19,58 7,23 114,36 29,34 1,721 157,85 12,46 5,73 110,5 

2 19,22 6,71 114,56 29,31 2,227 - - - - 

2,5 19,12 7,61 114,60 28,85 1,436 157,00 12,06 6,52 110,6 

3 19,11 9,02 115,06 28,87 2,150 158,20 12,05 7,54 111,1 

3,5 18,82 7,85 114,56 28,57 1,860 157,90 11,76 6,70 110,5 

4 18,83 9,15 115,26 28,51 1,908 158,50 11,76 7,59 111,5 

4,5 18,61 8,27 114,56 28,31 1,845 157,88 11,57 7,10 110,5 

5 18,57 8,84 114,76 28,34 2,113 158,80 11,50 7,31 110,6 

6 18,41 8,99 115,16 27,98 1,770 158,10 11,33 7,48 111,1 

7 18,24 8,85 115,36 27,81 1,742 158,90 11,19 7,56 111,3 

Table 5. The kinetic parameters obtained by Coats–Redfern method. Thermal decomposition of 

NH4VO3 in dry air. 

The parameters A and E determined by this method for different βi remain nearly  

constant.  

The corrected activation energies are slightly lower than the ones determined by 

Kissinger’s method; in the case of stage II they are practically equal to the values 

calculated by isokinetic method. The result is interesting because it shows that the 

activation energy determined by Kissinger’s method can be regarded as representative for 

the whole set of α(T) related to the stage. It should also be emphasized that determining 

the triad of g(α), A and E directly from the Coats-Redfern equation, usually the good 

results are not obtained [1,21,24]. That is it is a matter of calculation methods, and not of 

the Coats-Redfern equation. 

Using the kinetic parameters given in table 5 the verifying calculations were performed. For 

the selected βi the trajectories of α(T) and r(α,T) functions were determined. The process rate 

was calculated from the formula 

 ( ) ( ), exp
E

r T A f
RT

α α
 

= − 
 

  (35) 

While calculating f(α) the values of α(T) obtained from the Coats-Redfern equation 

(formulas (32)–(34)) were used. In Figure 10 the results obtained for stage I and II ( β= 2, 4 

and 6 K min-1) are presented as an example.  
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Figure 10. Plots of α(T) and r(T, α) for the stage I and III. Thermal decomposition of NH4VO3 in dry air. 

The results are fairly well consistent with the experimental data; at the experimentally 

determined temperature ranges the process rates change from zero for α(T) = 0, reaching the 

maximum values at the points of inflection of α(T) curves, and then decrease to zero at 

( ) 0Tα → . The obtained results show that in our study Coats-Redfern equation was of great 

importance. Due to the analytical form it is also easy to use in the calculations of the kinetics 

of heterophase non-catalytic processes. 

3. Heat treatment of TiCx/C. Carbonisation of nc-TiCx 

Manufacturing, storage and use of nc-TiC in form of powder for sintering or co-deposition 

processes involves the possibility of occurrence of free carbon in the system. Carbon can be a 

by-product of the synthesis process (pyrolysis of hydrocarbons) and remain in equilibrium 

in the TiC-C system or be the product of oxidation of TiC in the air according to the 

mechanism proposed by Schimada [26], whereby the oxygen dissolves in the carbide and 

the layer containing oxycarbides is formed. 

 ( ) 2 1 x x 2TiC 3 / 2  x O TiC O  CO−+ → +  (36) 

In second stage, in the layer amorphous TiO2 is formed and elemental carbon is produced 

[27-31] 

 ( ) ( )1 x x 2 2TiC O 1 x / 2  O TiO 1 x C− + − → + −  (37) 

The produced carbon changes the state of the surface of TiC particles. A low oxygen content 

is the most important prerequisite for high sintering activity of the nanocrystalline TiC 

powders, especially in the sintering processes, synthesis of the nanocomposites for example 

nc-TiC in metallic matrices. 
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In the manufacturing of nanomaterials by sol-gel method the second, high temperature, i.e. 

at temperatures above 1400 K, stage is essential. The first stage of this method is the sol-gel 

technique. This stage is carried out at lower temperature. The intermediate product of 

pyrolytic decomposition of PAN-DMF-TiCl3 is formed - the powder containing 

nanocrystalline TiCx in carbon matrix [6]. Nanocrystallites of titanium carbide are 

characterized by high fraction of lattice defects, i.e., vacant carbon sites, presence of oxygen 

and/or nitrogen. In the second stage carbonisation and purification of TiCx/C composite in 

argon takes place. It is essential to obtain the materials with high values of the C/Ti ratio, 

while maintaining the proper, nanometric grain size, in order to obtain the most favourable 

properties such as hardness and oxidation resistance. The selection of parameters meeting 

these requirements is difficult. 

There was assumed that the good basis are kinetic studies. They allow to determine the 

intermediate and final products, distinguish the stages of the process, determine the 

temperature ranges of their courses and obtain a quantitative description.  

The kinetic measurements were carried out using TG-DSC-MS technique. Nanoparticles 

size, lattice parameter, chemical and phase composition before and after heat-treatment 

were determined with the following techniques: XRD (Philips PW3040/x0 X’Pert Pro), 

HRTEM (JEM 3010), SEM (JEOL JSM 6100), EDX (Oxford Instruments, ISIS 300), XPS 

(SIA 100 Cameca), total carbon measurement (MULTI EA2000, AnalyticJena), and the 

presence of free carbon was estimated by Raman Spectroscopy. The measurements were 

carried out under non-isothermal and isothermal conditions. The advantage of this 

method is the possibility of continuous registration of measured values and use of small 

weighed amounts of samples during measurements. The procedure is illustrated at the 

example of heat treatment in argon of the nanocomposite powder containing nc-TiCx 

(x≤0.7) in carbon matrix obtained by sol-gel method. The method ensures maintaining 

the small size of crystallites, by physically limiting the volume available for their growth, 

and the matrix prevents agglomeration of particles and oxidation during storage and 

transport. 

At a certain temperature range, and under certain conditions, the reaction of carbonisation is 

possible  

 x x yTiC  yC TiC ++ →  (38) 

Heating of the samples in an argon atmosphere can lead to the growth of crystallites. The 

aim of this study was to develop conditions for annealing of the composite, under which, as 

a result of carbonisation, TiCx reaches a high stoichiometric composition, i.e. x> 0.8, at the 

minimal growth of crystallites. Obtaining such optimal material properties can be controlled 

by selecting the appropriate temperature and rate of the process. 

The thermogravimetric measurements were carried out at sample heating rates of 10, 20, 

and 50 Kmin-1. The mass of the samples were ca. 40 mg. During the measurements the 

samples were heated up to 1473, 1573, 1673 and 1773 K. These temperature values 

correspond to the isothermal conditions. The samples were heated under isothermal 
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conditions for 6 h. High-purity argon ‘Alphagaz 2 Ar’ from Air Liquide (H2O\ppm/mol, 

O2\0.1 ppm/mol, CnHm\0.1 ppm/ mol, CO\0.1 ppm/mol, CO2\0.1 ppm/mol, H2\0.1 

ppm/mol) was used during experiments. With regard to reactivity of O2 the special attention 

during measurements was given to possibility of oxidation of components of the system 

during the process run. Argon purge flow rate during measurements was set at 100 

cm3/min. The part of the results in works [17,32] were presented. Below the complete 

analysis description were introduced. 

3.1. Kinetic analysis 

The kinetic description of the process was based of thermogravimetric measurements. The 

results of the measurements are presented on the plots of sample temperature, TG, DTG and 

HF function dependencies on time (Fig. 11).  

Initially the measurements were carried out under non-isothermal conditions at a linear 

change in sample temperature, then at the transitional regime, and finally under isothermal 

conditions (Fig.11a). It should be added that these results were the basis of the description of 

the process. The theory of kinetics under non-isothermal conditions require that this 

function depends only on the sample heating rate and temperature. The results were 

evaluated by neural networks method. Neural networks, used to analyze the non-isothermal 

measurements, were previously described in [20-23]. The TGu function was the described 

(dependent) variable, and the sample heating rate and temperature were the describing 

(indepedent) variables. All the measurement series were examined simultaneously. The 

received network was GRNN 2/11310. Statistical analysis of this network is given in Table 6. 

 

Parameter Tr Ve Te 

S.D. Ratio 0.01716 0.01926 0.01734 

Correlation 0.999874 0.999845 0.99987 

Table 6. Statistical estimation of GRNN 2/11310 network 

In columns 2, 3, 4 the statistical evaluation of training (Tr), verification (Ve) and testing (Te) 

subset is listed.  

A high accuracy was obtained. The TG dependencies determined experimentally could have 

been used in kinetic calculations.  

The essential operation is the division of the process into stages. Basing on the presented 

measurement results four stages of the process were identified (Fig. 12). In the endothermic 

stage I, proceeding with a weight loss, the release and desorption of volatile products, 

contained in the samples after the first stage, occurred. In the exothermic, second stage, 

marked with the symbol II, proceeding with a samples weight gain, the oxidation of non-

carbonised nc-TiCx/C by oxygen present in trace amounts in argon occurred. In the 

endothermic third stage, labeled by III, simultaneously proceeded the pyrolysis of organic 
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admixtures and carbonisation of nc-TiCx/C. The pyrolysis and carbonisation were treated as 

concurrent reactions. Stage IV (exothermic) proceeded with sample weight gain. It concerns 

the oxidation of carbonised nc-TiC with oxygen contained in argon. The process proceeded 

at temperature above 1573 K. 

 

Figure 11. Plots of T, normalized TG function and DTG and HF in time. Heat treatment of nc-TiC/C in 

argon. a) temperature, b) normalized TG, c) DTG, d) HF 

During the thermogravimetric measurements the evolved gaseous products were identified 

by mass spectrometry method. The compounds produced in the reaction with the oxygen 

present in trace amounts in argon, are described in detail, because these processes could 

affect the quality of the obtained, carbonised nc-TiC. CO2-m/e44, CO-m/e28 NO-m/e30 and 

NH3-m/e17 have been identified. NH3 formed as a result of pyrolytic decomposition of 

carbon compounds was the precursor of nitric oxide. CO2-m/e44 mass spectrum, is shown in 

Figure 13 as an example. To facilitate the analysis of the results the normalized TGu function 

is also plotted. 
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Figure 12. Plots of normalized TG functions in time for β=10 K/min and 6h at 1673 K recorded during 

the heating of nc- TiCx/C in argon.  

 

Figure 13. Mass spectra of CO2 and normalized TG function plots. Heat treatment of nc-TiC/C in argon 

at the heating rate 10 Kmin-1.  

The analysis of mass spectra allowed the more accurate characterisation of distinguished 

stages. In stage I volatile products were evolved. CO2, CO and NO were also formed. In this 

stage H2, NH3, HCN and CH3–CH3, CH2=CH2 and CH≡CH also evolved. In stage II oxidation 

of non-carbonised nc-TiCx/C occurred. During the course of stage III CO and CO2 were 

emitted. They were attributed to the oxidation of released hydrocarbons. HCN, CH3–CH3, 

CH2=CH2, and CH≡CH were also formed.  

The correct kinetic description was hindered by evolution of secondary products. Therefore 

the values of α(T) determined for each stage required an independent evaluation. 
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3.2. The results of calculations 

For distinguished stages, basing on the TG function, the conversion degree was calculated. 

The formula (23) was used. 

During the measurements weight changes of the samples were as follows: in stage I: 10 

Kmin-1 (1.6%), 20 Kmin-1 (1.7%) and 50 Kmin-1 (2%). In stage II, the sample weight changes 

equaled: 10 Kmin-1 (0.089%), 20 Kmin-1 (0.047%). Whereas in whole the range of the course of 

stage III weight changes were: 10 Kmin-1 (13.47%), 20 Kmin-1 (13.23%) and 50 Kmin-1 

(13.66%). The obtained relations of α(T) for stages I and II are shown in Figure 14. 

 

Figure 14. Temperature dependencies of α(T) function; a) stage I, b) stage II. 

In accordance with the theory of kinetics of heterogeneous processes the plots of α(T) are 

shifted into higher temperature range along with the increase in samples heating rate. 

Due to the measurements in different regimes the dependencies of α(T) determined for 

stage III required a more detailed discussion. The conversion degree in stage III was 

changing regularly in time (Fig. 15a). Irregular changes were observed in the trajectories of 

the curves of conversion degree dependencies on temperature (Fig. 15b). It was also found 

that in the transient area a significant increase in conversion degree took place. 

The results presented in Figure 16a were elaborated according to the rules of non-isothermal 

processes theory and in Figure 16b according to the isothermal processes theory.  

The plots of α(T) determined for non-isothermal conditions concern the pyrolysis  

process. 

At low temperatures, there is no carbonisation of nc-TiC, and at temperature above 1573 K 

pyrolysis proceeded much faster than carbonisation. Under the non-isothermal conditions, 

the transition from one temperature range to the other was short. As a result the influence of 

carbonisation on the recorded samples weight loss was not revealed. 
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Figure 15. Total conversion degree. Stage III; a) time dependency b) temperature dependency. 

 

 

Figure 16. Conversion degree dependencies on temperature and time. Purification and carbonization of 

nc-TiC/C in argon. Stage II. a) non-isothermal conditions b) isothermal conditions. 

The dependencies of α(T) determined for stages I, II and III under non-isothermal 

conditions, at a linear heating rate of the samples, were evaluated by neural networks 

method. The α(T) was the described variable and the sample heating rate and temperature 

were the describing variables. For each stage all the measurements series were analyzed 

simultaneously. The results are listed in Table 7 

According to the theory of non-isothermal processes kinetics, the α(T) dependencies, 

determined for the stages, describe with high accuracy two parameters: sample heating rate 
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and sample temperature. These results could therefore be used in further calculations, i.e., 

during the identification of kinetic models (determination of the form of g(α) function) ) and 

during determination of Arrhenius parameters A and E. 

 

Parameter 
Stage I , MLP 2/2 Stage II Stage III, MLP 2/15 

Tr We Te Tr We Te Tr We Te 

S.D. Ratio 0.0361 0.0355 0.0364 0.0269 0.0274 0.0284 0.0728 0.0820 0.0784 

Correlation 0.999 0.999 0.999 0.999 0.999 0.999 0.997 0.997 0.997 

Table 7. Estimation of α(T) dependencies determined for stage I, II and III with use of artificial neural 

networks method. 

First, the values of these parameters were estimated by linear regression method. Each series 

were analysed separately. The obtained results for stage III are given, as an example, in 

Table 8. 

β 

[K/min] 
r* F 

E 

[kJ/ mol] 

A 

[1/min] 

Tm  

[K] 
Δα ΔT 

10 -0,988 50029,7 315,09 8,48 E09 1530 0.005-0.639 1321-1564 

20 -0,988 47245,7 327,77 3 E10 1559 0.005-0.508 1345-1560 

50 -0,989 20219,0 375,62 1,95 E12 1590 0.004-0.29 1370-1551 

Table 8. List of kinetic parameters. Stage III, model F1. 

r* - correlation coefficient, F – Snedecor statistic 

Using the determined values of A and E parameters, the values of α(T) were calculated from 

the Coats-Redfern equation. They were compared with the data determined from the 

measurements. The systematic error in the order of 4.5% has been noted. The accuracy was 

improved by correcting the value of E parameter. There was required that the error in the 

series, i.e. the mean square error between the values determined from the measurements 

and calculated 
( )

2
ln

g

T

α 
 
  

, was close to zero. The calculations for the remaining stages were 

performed in the same way. The results are given in Table 9. 

The results have been verified. Using the kinetic parameters given in Table 9 the conversion 

degrees were calculated from the Coats-Redfern equation for the e stages and compared to 

the ones determined from measurements. As an example, in Figure 17 the results for stage I 

are shown. A good consistency was obtained.  

The kinetic parameters determined for the stages have been used for simulation 

calculations. The α(T) and r(α,T) dependencies on temperature and sample heating rate 

were investigated. The results are presented in Figure 18. 

The determined dependencies are in accordance with the theory. With the increase in 

sample heating rates the α(T) curves are shifted into the higher temperature range. The 
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process rate increases from zero for α(T) equal zero, reaches the maximum in temperature 

Tm, and then usually decreases to zero at α(T)→1. The temperature ranges for stages runs 

are consistent with the ones determined experimentally. The α(T), and r(α,T) plots for a 

stage do not come to an end, because at high conversion degrees process ran according to 

the different kinetic models.  

 

stage Model g(α) 
β 

[K/min] 

A 

[1/min]

E 

[kJ/mol]

Tm 

[K] 
Δα 

ΔT  

[K] 

I D3 ( )
2

1

3
3

1 1
2

α
 

− − 
  

10 2,2 E-6 15,8 487,4
0,03-

0.9989 
299-826 

20 1,2E-6 16,5 524,9
0,035-

0,9969 
299-937 

50 3,5E-7 16,3 539,5
0.005-

0.9995 

298-

1319 

II F2 ( )
1

1 1α
−

− −  

10 6,81 E4 125,25 1128
0.002-

0.999 

935-

1271 

20 7,74 E6 160,8 1156
0.002-

0.999 

1007-

1291 

III F1 ( )ln 1 α − −   

10 
8,48 

E09 
306,8 1530

0.005-

0.639 

1321-

1564 

20 3 E10 318,8 1559
0.005-

0.508 

1345-

1560 

50 
1,95 

E12 
364,5 1590 0.004-0.29 

1370-

1551 

Table 9. List of kinetic parameters for the stages.  

 

Figure 17. Comparison of α(T) calculated and determined from experiments. Stage I, model D3. 
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Figure 18. Plots of α(T) and r(α,T) functions; a) stage I, model D3; b) stage II, model F2; c) stage III, 

model F1. 

Under the isothermal conditions the last phase of stage III and whole the stage IV 

proceeded. The results presented earlier, obtained in the series up to 1573, 1673 and 1773 K, 

were not sufficient for description of the course of stage III under isothermal conditions. 

They have been complemented by additional measurements. During the investigations 

samples were heated up to 1343, 1503, 1543 and 1623 K using the following heating rates: 10, 

20 Kmin-1.  

While elaborating these results the calculations for stages I, II and III were also performed. 

There were obtained similar results as before (Table 9). These data are not provided. At the 
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high conversion degrees in stage III the change of kinetic model (form of g(α) function) took 

place. Under the isothermal conditions, at lower conversion degrees, the process first 

proceeded according to the F1 model (similarly as under the non-isothermal conditions), 

then at high conversion degrees (higher than 0.98) according to the D3 (three-dimensional 

diffusion Jander’s model). This concerns the removal of remaining products of pyrolysis. 

The charts of α (T) were obtained from about 25,000 measurement points for each case. The 

value of k(T) was calculated by linear regression method for the subsequent sets, each 

containing 1100 values of the g(α) function. The results were evaluated using several 

measures. The values of R2 measure were determined. The calculation results for all 

measurement series are given in Table 5. The temperature, the mean values of k(T) 

determined for the entire sets, the time of obtaining the isothermal conditions t1, counted 

from the beginning of the measurement, and the conversion degree α1 obtained for this time 

are given. 

series β [K/min] T [K] k*103 [1/min] t1 α1 R2 

1443 K 10 1440,9 13,61 158,4 0,7092 99,72 

 20 1440,9 14,41 99,98 0,69 99,92 

1503 K 10 1501,1 14,75 203,92 0,9553 99,68 

 20 1501 35,18 92,85 0,872 99,59 

1543 K 10 1541,4 9,39 201,72 0,9331 99,72 

 20 1541,3 12,48 142,69 0,9539 99,87 

1573 K 10 1568,5 6,94 199,19 0,9303 99,36 

 20 1568,2 8,3 131,15 0,938 99,85 

1623 K 10 1620,2 40,63 162,6 0,9653 99,91 

 20 1619,7 61,84 91,8 0,9615 99,95 

1673 K 10 1669,4 54,28 160,2 0,9699 99,69 

 20 1669,1 104,31 86 0,9883 99,39 

1773 K 10 1770,5 219,28 154,2 0,9831 99,72 

 20 1770 242,24 83,6 0,9831 99,52 

Table 10. The results of kinetic calculations for isothermal conditions. F1 model. 

R2 – statistical measure 

In the considered range of temperature two processes preceded simultaneously; pyrolysis of 

organic compounds, contained in the raw samples and proceeding with their participation 

carbonisation of nc-TiCx/C. The bounded carbon remains in the system. As a result the lesser 

sample mass losses were observed. In lower temperature proceeds also pyrolysis, as shown 

by the values of k(T) given in Table 10. Carbonisation starts at temperature of about 1541 K 

and becomes a dominating process at temperature of about 1570 K. At 1610 K pyrolysis 

becomes a dominating process again. With regard to carbonisation effectiveness, the process 

should be carried out at temperature of about 1570 K. The minimum on the curve k(T) has 

been observed in Figure 19. 
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Figure 19. Dependency of reaction rate constant on temperature for β = 20 K/min. F1 model (g(α) = [-

ln(1 - α)]); ♦– mean value of k(T)  

In the same manner were obtained the results presented in Table 11, concerning the 

desorption process of volatile products after the completion of carbonisation process.  

series β [K/min] T [K] k*103 [1/min] t2 α2 R2 

1543 K 10 1541,4 0,255 402,3 0,989 97,82 

 20 1541,3 0,354 326,2 0,9933 95,03 

1573 K 10 1568,5 1,47 221,76 0,9412 99,59 

 20 1568,2 2,34 150,98 0,9486 99,65 

1673 K 10 1669,4 9,5 160,2 0,9699 99,69 

 20 1669,1 16,07 87 0,9892 99,45 

1773 K 10 1770,5 41,08 154,18 0,9831 99,66 

 20 1770 49,36 84,1 0,9854 99,57 

Table 11. The results of kinetic calculations for isothermal conditions. D3 model 

In the third column the values of k(T) are given, and in the subsequent columns time t2 from 

which desorption becomes the dominant factor, and the corresponding conversion degree.  

Under the measurement conditions the oxidation of carbonised nc-TiC, by the oxygen 

contained in trace amounts in argon, occurred in series up to 1673 and 1773 K. This process 

proceeded according to the R2 model (reaction at the interface, cylindrical symmetry) or R3 

model (reaction at the interface, spherical symmetry). The weight gain of the sample was 

less than 1%. Inhibition of oxidation process of carbonised nc-TiC can be explained on the 
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basis of the mechanism of Shimada [26], the formation on the surface of nc-TiC particles of 

amorphous TiO2 layer, blocking access of oxygen to the reaction zone. The given values of 

k(T) indicate that the samples obtained at heating rates of 10 K/min oxidized slower than at 

the heating rates of 20 and 50 K/min. It is also visible that the final temperature of the 

process affects the properties of carbonised nc-TiC. Basing on the series up to 1673 and 1773 

K there was found that after the completion of carbonisation and purification process of nc-

TiC, at higher temperatures oxidation of the carbonised nc-TiC by oxygen present in argon 

in trace amounts takes place. 

The removal of carbon from the matrix and carbonisation of nc-TiCx proceeded most 

preferably in a series up to 1573 K, at the heating rate of 20 K/min. The results of 

investigations concerning this series are therefore given.  

 

Figure 20. Dependency of nc-TiC mean lattice parameters (a) and mean particles diameters (D) on 

temperature [32].  

Carbonisation resulted in an increase of lattice parameter of titanium carbide. The largest 

increase in lattice parameter was observed for the series up to 1573 K. Under these 

conditions, the average particle size was in the order of 40 nm. Mean values of lattice 

parameters of nc-TiC and the average particle size determined after the carbonisation 

processes are shown in Figure 20. The measurement of crystallites size by Scherrer method 

and on the basis of TEM images showed that the mean size of TiC crystallites after 

carbonisation was approximately 30% higher in relation to the size before the heat treatment 

process at temperature of 1573 K. The results of microscopic examination were confirmed by 

the results of the X-ray diffraction. The analysis of chemical composition and phase 

composition showed an increase in the fraction of carbon in titanium carbide from TiC~ .68 to 

TiC~ .8 ÷.85 and removal of carbon from the matrix. The results of this step of research are 

given in [6,32]. 
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4. Oxidation of the nc-TiCx/C and nc-TiCx 

The possibility of implementing purification of TiCx/C composites by burning out the 

elementary carbon, composing matrix, was considered. The results of oxidation of nc-TiCx/C 

system have been presented. Oxidation of the TiCx/C powders, being an intermediate 

product of sol-gel synthesis, and of the TiCx powders obtained by reduction with hydrogen 

was investigated. The reduction of TiCx/C powders with hydrogen aimed at removing from 

the system the carbon from the matrix. Purification with hydrogen according to the reaction 

C+H2→CH4 was carried out at temperature of 1173K, under pressure of 16MPa, for 4.5 h 

[6,32]. The measurements were carried out using thermogravimetric method, under non-

isothermal conditions. The samples unreduced with hydrogen were studied at the following 

heating rates: 5Kmin-1 (sample weight of 18.749 mg), 10 Kmin-1 (sample weight of 16.049 

mg), 15 Kmin-1 (sample weight of 13.322 mg), 20 Kmin-1 (sample weight of 15.908 mg). The 

powders after reduction with hydrogen instead were studied at 5 Kmin-1 (sample weight of 

17.768 mg), 10 Kmin-1 (sample weight of 17.174 mg), 15 Kmin-1 (sample weight of 17.544 

mg), 20 Kmin-1 (sample weight 17.544 mg). During the measurements temperature of 

samples, TG, DTG, and HF were recorded. In one series several dozen thousands of each 

variable values were recorded. During the measurements the linear change of sample 

temperature over time was maintained, as required by the theory of non-isothermal kinetics. 

The normalized TG curves of the samples unreduced and reduced with hydrogen are 

shown in Figure 21. 

 

Figure 21. Plots of TGu curves for TiCx/C samples and TiCx (after reduction with H2) samples, a) 5, b) 20 

Kmin-1 

The normalized TGu curves of the samples reduced with hydrogen are shifted upward to 

the same degree for different heating rates (ΔTG in the order of 0.03 mg), because in the TiCx 

powders (after reduction with hydrogen), the relative content of titanium increased as a 

result of removing elemental carbon by acting with hydrogen. This resulted in greater 

weight gain of TiCx during the oxidation in comparison with TiCx/C. In both cases the 
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weight gain of the sample started at temperature in the order of 600 K. This means that 

under these conditions the oxidation of nc-TiCx started. 

In the DTG curves, there are three peaks (Fig. 22). The first peak is associated with start of 

the oxidation of nc-TiCx. The subsequent weight loss is associated with the burning out of 

the elemental carbon, produced during the oxidation of the nc-TiCx. This process proceeds 

simultaneously with the further oxidation of nc-TiCx. The next peak concerns the oxidation 

of unreacted nc-TiCx. The elemental carbon, contained in nc-TiCx/C samples unreduced with 

hydrogen, burns out in the final stage of the process. 

 

Figure 22. Dependency of DTG curves on temperature, a) for TiCx/C, b) for TiCx  

(after reduction with H2) 

Two distinct maxima were observed in the HF plots (Fig. 23). The first one is associated with 

the beginning of oxidation process of nc-TiCx and the second one with burning out of the 

elemental carbon, produced during the oxidation of the nc-TiCx, and further course of the 

nc-TiCx oxidation. The apparent increase in the value of HF function, in the final stage of the 

process, is associated with the terminating oxidation of nc-TiCx. 

The results have been confirmed by the identification of CO2, formed in the system, by mass 

spectrometry. There was also found that while increasing sample heating rates the plots of 

mass spectra of CO2, originating from the nc-TiC oxidation process and from burning out of 

the formed carbon, overlapped. The carried out experiments have shown that the nc-TiC, 

obtained by sol-gel process, cannot be purified by burning out in the air the carbon 

admixtures contained in the system. 

The performed studies indicated also the possibility of occurring during the description of 

oxidation of ceramic nc-TiC/C powders in the air, some difficult issue related to the 

simultaneous proceeding, in a certain range of temperature, of metal carbide oxidation and 

burning out of the carbon. The following manner of kinetics description of the both 

concurrent reactions, based on thermogravimetric studies, has been proposed. 
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Figure 23. Dependency of HF on temperature, a) for TiCx/C, b) for TiCx (after reduction with H2) 

To obtain the normalized TGu curve, corresponding to the oxidation process of TiCx in the 

whole range of temperature the neural networks method was applied. Basing on the results 

registered before burning out of the formed carbon and after the end of this process the 

network was fitted. Then the fitted network was used to generate the segment of normalized 

TGu curve for the temperature range in which both transformations proceeded 

simultaneously. The multi-layer MLP networks were used. The described variable was TGu 

function, and the describing variable was temperature. Each measurement series was 

analysed separately. Using these models sections of TG curves corresponding to the 

oxidation process of nc-TiC, in the temperature range in which this process proceeded 

simultaneously with the burning out of the carbon, were generated. The TGu plots generated 

by the network and determined experimentally are shown in Figure 24. 

 

Figure 24. Plots of TGu function, calculated and experimental. Oxidation of nc-TiCx/C samples, 

unreduced by hydrogen, in air, a) 5 Kmin-1, b) 20 Kmin-1 
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On the basis of TGu curves, complemented by the results of calculations, the α(T) 

dependencies for the oxidation process of nc-TiCx in the whole temperature range were 

determined. 

The conversion degree for the process of burning out the elemental carbon was determined 

as follows. By subtracting the experimental values from the calculated TGu values, ΔTG was 

determined, and then, integrating numerically, TGu curves for the process of burning out the 

carbon were determined. The α(T) dependencies obtained for both processes, are presented 

in the form of graphs in Figure 25. 

 

Figure 25. The α(T) dependencies. Oxidation of unreduced nc-TiCx/C in air, a) oxidation of nc-TiCx,  

b) burning out of elemental carbon  

According to the theory, along with the increase in sample heating rates, the plots of α(T) 

are shifted into the higher temperature range. 

The conversion degree for the process of burning out the carbon in the matrix (the second 

temperature range) was calculated in the same way. In the case of the oxidation process of 

nc-TiCx (after reduction with hydrogen) two stages occurred: nc-TiCx oxidation and burning 

out of the elemental carbon formed at the beginning of the oxidation process of nc-TiC. The 

α(T) dependence was determined for all the stages in the same way. The determined α(T) 

dependencies were the basis of kinetic studies. The Coats-Redfern equation was used. For 

all the stages kinetic models and Arrhenius parameters were determined (Table 12). 

These data contain the full information about the kinetics of analysed processes. There 

should be noted that the kinetic parameters (the forms of g(α) functions and the values of A 

and E) determined on the basis of experimental data, should correspond to their 

physicochemical meaning. In the analysed case, the F2 model [g(α) = (1-α)-1-1], having a 

theoretical justification, was used, and the determined activation energy values are similar 

to those found in many chemical reactions. 
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Sample Conversion Model
Β 

[K/min]
A [1/min]

E 

[kJ/mol]
Tm [K] Δα ΔT [K] 

TiCx/C 

TiC F2 

5 26343,35 88,31 810,45 0,01-0,99 648-1147 

10 291522,00 99,20 822,77 0,01-0,99 671-1141 

15 16689,12 86,70 903,79 0,02-0,99 691-1245 

20 22863,39 89,26 923,22 0,01-0,99 690-1295 

Celemental F2 

5 1,76E+10 185,04 902,35 0,02-0,99 803-1058 

10 8,27E+09 177,71 916,13 0,02-0,99 809-1085 

15 4,74E+12 222,13 932,37 0,02-0,98 827-1046 

20 7,1E+12 223,18 936,23 0,01-0,99 817-1042 

Cmatrix F2 
15 5,24E+16 391,91 1243,06 0,02-0,98 1142-1366 

20 7,22E+16 392,43 1246,63 0,02-0,99 1138-1373 

TiCx after 

reduction 

TiC F2 

5 1,01E+06 106,33 809,11 0,01-0,99 645-983 

10 1,37E+05 95,18 838,82 0,01-0,99 649-1134 

15 1,70E+05 98,51 892,95 0,01-0,99 673-1153 

20 3,19E+05 100,63 886,78 0,01-0,99 668-1144 

Celemental F2 

5 6,98E+09 178,41 902,90 0,02-0,99 803-1063 

10 6,44E+09 174,85 908,97 0,02-0,99 810-1078 

15 1,55E+12 214,49 933,09 0,02-0,99 832-1063 

20 5,19E+11 204,20 930,08 0,02-0,99 830-1071 

Table 12. List of kinetic data for the transformations in oxidation processes of titanium carbide samples 

before and after the reduction with H2.  

Basing on the obtained results an analysis of the process has been performed. The r(α,T) 

dependencies on sample heating rates and sample temperature for the stages were studied. 

The plots of r(α,T) obtained for the nc-TiCx/C not-reduced with hydrogen are shown in 

Figure 26. 

 

 

Figure 26. Plots of r(α,T). Oxidation of nc-TiCx/C unreduced with hydrogen; a) oxidation of nc-TiCx, b) 

burning out of the carbon formed during the oxidation process of nc-TiC, c) burning out of the carbon 

contained in the samples 
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According to the theory of kinetics of non-isothermal processes the reaction rate should 

increase along with the increase in sample heating rates. This condition is not well fulfilled 

for the oxidation process of nc-TiCx unreduced with hydrogen (Fig.26a). This means that the 

samples used in measurement series differed. For the both processes of burning out the 

carbon the results consistent with theory were obtained. There should be noted that 

according to the theory, in each stage the process rate increases from zero for α(T)=0, reaches 

the maximum in temperature Tm, and then decreases to zero at α(T)→1. The temperature 

ranges determined for the stages runs on the basis of calculations are consistent with the 

ones determined experimentally.  

The analogous plots obtained for the oxidation process in air of nc-TiCx reduced with 

hydrogen are shown in Figure 27. 

 

Figure 27. Plots of r(α,T). Oxidation in air of nc-TiC reduced with hydrogen; a) oxidation of nc-TiCx, b) 

burning out of elemental carbon formed during the oxidation of nc-TiCx 

In this case, full consistency with the theory was obtained. The plots in Figure 27a show that 

nc-TiCx after reduction with hydrogen was uniform, the process rate increased along with 

the increase in sample heating rate, and the maximum was shifted into the higher 

temperature range. In both cases, the process rate, according to the theory, increases from 

zero for α(T)=0, reaches its maximum at the temperature Tm, and then decreases to zero at 

α(T)→0. The temperature ranges determined for the stages runs in measurement series on 

the basis of calculations are consistent with the ones determined experimentally. 

The obtained results show that the proposed description method of the kinetics of two 

reactions proceeding simultaneously in a certain range of temperature, allows obtaining a 

satisfactory accuracy. This method was developed for the needs of processes of oxidation in 

air of nanocrystalline TiC and nanocomposites of TiC/C with varying carbon content in the 

matrix, for evaluating the protective qualities of carbon matrix, and also to evaluate and 

compare the resistance to oxidation of carbide ceramics [17]. In Figure 28 the use of the 

kinetics knowledge for comparative evaluation of the rate of TiC/C nanocomposite 

oxidation, depending on the carbon content in the matrix is shown as an example. 
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Figure 28. Dependence of conversion degree on time - α(t). T= 823 K. Oxidation of TiC commercial and 

TiC/C nano-composites (30 nm) in air. 50, 10, 3 % by wt. of the carbon contents in composites 

respectively [17]. 

5. Conclusions 

The results of thermal decomposition of NH4VO3 in dry air have been presented. The 

measurements were carried out by TG – DSC method. The gaseous products were determined 

by MS method. Solid products were identified by XRD method. On the basis of measurement 

results the division of the process into stages has been made and the temperature ranges for 

stage courses and changes of sample masses in stages were determined. There was 

demonstrated that decomposition of NH4VO3 proceeds according to the following equation 

( ) ( )4 3 4 6 16 4 6 16 2 53 2
6NH VO NH V O NH V O 3V O→ → →  

In all the stages at different sample heating rates NH3, H2O, NO and N2O were evolved, 

which were formed as a result of NH3 oxidation. NO2 did not occur among the evolved 

gases. There should be added that N2O was formed mainly during the stage II and III.  

While performing the measurements the emphasis was placed on the possibility of 

obtaining experimental data for description of kinetics of investigated process, in 

accordance with ICTAC Kinetics Committee recommendations. 

In the case of the investigated process, the necessary results for isothermal conditions were 

not obtained because the measurements for the stage could be performed only in a few 

temperatures, while at higher temperatures the results were obtained at high conversion 

degrees. 

For non-isothermal conditions the needed data have been obtained. Kinetic calculations 

were performed using Kissinger’s method, isoconversional method and Coats-Redfern 

method. Applying Kissinger's method the activation energies were determined and the 
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kinetic models were assigned for the stages. The stages I and III are well-described by model 

A2, and the stage II by model A4. It has been also shown that the influence of heating rate of 

the sample on the course of the process can be compensated, at constant activation energy, 

by temperature range 0 1T Tα α= =÷ , which is the value determined experimentally. The 

temperature ranges were given for the stages. 

In case of the investigated process applying the isoconversional method the following 

results were obtained. The E values for the stages I and III (assimetric plots of DTG and HF) 

changed constantly along with the change of conversion degree. However, in the case of 

stage II (symmetric plots of DTG and HF), E was practically constant. It seems probable that 

the isoconversional method compensates the influence of βi on the course of the process by 

changing the activation energy. Theoretically much more interesting is the possibility to 

compensate the βi, at constant activation energy, with temperature range 0 1T Tα α= =÷ . 

While carrying out the calculations using the Coats-Redfern method the activation energies 

determined by Kissinger’s method were used as the base values. Almost constant values of 

the A and E parameters were obtained for the stages for different heating rate of the 

samples. The verifying calculations were performed. The α(T) and r(α,T) dependencies were 

determined. The good consistency with experimental data was obtained. The obtained 

results show that the Coats-Redfern equation is of great importance for the studies of the 

kinetics of heterogeneous non-catalytic processes 

Describing kinetics of the TiCx carbonisation and their oxidation, Coats-Redfern’s equation 

was applied kinetic models of stages were identified based on statistical evaluation and 

compliance to a large extent, of degrees of transformation for stages calculated and 

determined from measurements. Building the kinetic models of processes, the results of 

measurements were treated as statistic values. A system of a complex analysis of 

measurements results was developed with the use of artificial neurone networks. Based on 

the TG curves four stages have been distinguished. The first, endothermic stage proceeding 

with mass loss, corresponded to desorption of volatile products, D3 model. The second, 

exothermic stage proceeding with mass growth, was assigned to oxidation of uncarbonized 

nc-TiCx/C by the oxygen present in argon at trace level, F2 model. The third endothermic 

stage, proceeding with mass loss, referred to carbonization of nc- TiCx/C and pyrolysis of 

organic compounds, contained in the raw samples. The pyrolysis of admixtures and 

carbonization of nc-TiCx/C proceeded simultaneously. After completing the carbonization 

process at the temperature above 1573 K, oxidation of carbonized TiCx/y by oxygen present 

in argon at trace level was observed, R2 model. 

The third, basic stage preceded in non-isothermal and isothermal conditions; at lower 

conversion degrees F1 model (first-order reaction) and at the higher conversion degrees 

(above 0.98) D3 model (three-dimensional diffusion, spherical symmetry, Jander equation) 

was applied.  

Adapting to the description of the processes which took place with the participation of nc-

TiCx/C the parameters for the process of purification were determined together with the 

simultaneous carbonization of nc-TiCx in argon, in conditions which make impossible their 
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coalescence and growth to micron sizes. Kinetics and by the same, the mechanism of the 

processes of oxidation of nanocrystalline TiCx in form of powder were tested, and they were 

subjected to evaluation based on the comparison of the rate of oxidation. 

6. Nomenclature 

GRNN   - Generalized-Regresion Neural Network 

MLP   - Multilayer Perceptron  

MS   - Mass Spectrometry 

SEM   - Skanning Elektron Microscopy  

TEM   - Transmission Electron Microscopy 

TG – DSG  - Thermogravimtry and Differential Scanning Calorymetry 

XRD   - X-Ray Diffraction  

A  - pre-exponential Arrhenius factor (1min-1) 

B  - const 

C  - const 

E  - apparent activation energy (J mol-1, kJ mol-1) 

f(α)  - conversion function dependent on mechanism of reaction 

f ’(α m)  - derivative of f(α) function for maximal reaction rate 

φ (T, α,, P) ) - temperature, conversion degree and pressure function 

g(α)  - integral form of kinetic model 

h(P)  - pressure function 

k(T)  - reaction rate constant (1 min -1) 

m0   - initial sample mass for the stage (mg) 

m  - current sample mass for the stage (mg) 

mk  - final sample mass after for the stage (mg) 

r   - reaction rate (1 min-1) 

R   - gas constant (J mol-1 K) 

rp  - correlation coefficient 

t  - time (min) 

T  - temperature (K) 

T α =0, T  α =1 - initial and final temperature of the stage (K) 

Tm  - maximum conversion rate temperature for a stage (K) 

'
m

T
α

  - temperature referring to '
mα  

ΔT  - temperature range (K) 

TGu, TGun - normalized TG  

α  - conversion degree 

α m  - conversion degree for maximum rate of a stage 
'
mα  - average conversion degree for rate maxima of a stage for different   

heating rate 

Δ α  - conversion degree range 

β  - heating rate (K min-1) 

Subscripts 

m  - maximum rate of a stage 

i, j  - order 
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