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1. Introduction 

Stroke is a major healthcare issue in both industrialized and developing countries (Yach et 
al., 2004): it is the third leading cause of death, after myocardial infarction and cancer, the 
second leading cause of dementia, and the leading cause of permanent disability in Western 
countries (Pendlebury et al., 2009; Rothwell et al., 2011). Ischemic stroke accounts for up to 
85% of total stroke events (Feigin et al., 2003). Cerebral ischemia is caused by blood-clot 
obstruction of a cerebral artery. Occlusion of a brain vessel leads to a critical reduction in 
cerebral perfusion and, within minutes, to ischemic infarction. The resulting lesion 
comprises a central infarct core of irreversibly damaged brain tissue and a surrounding area 
of hypoperfused but still viable brain tissue (the ischemic penumbra), which can potentially 
be salvaged by rapid restoration of the blood flow. Intravenous thrombolysis with tissue 
plasminogen activator (tPA) within 4.5 hours of symptom onset can improve the clinical 
outcome (NINDS, 1995; Hacke et al., 2008). Endovascular strategies (e.g. thrombectomy) can 
enhance reperfusion rates in large artery occlusions, but remain to be validated in 
randomized clinical trials. Although approved by North American and European 
authorities, only a small proportion of patients receive acute revascularization therapies, 
mainly because of late diagnosis and limited access to specialized stroke units.  
Neuroprotective drugs aim at salvaging the ischemic brain by targeting multiple 
pathophysiological processes: prolonging the time window for reperfusion therapies, 
limiting reperfusion injury and the risk of hemorrhage, minimizing the deleterious effects of 
inflammation. Compounds regulating the inflammatory response are being evaluated by the 
pharmaceutical industry (Barone & Parsons, 2000). Indeed, stroke triggers a marked 
inflammatory reaction, involving several types of immune cells, including those of the 
mononuclear phagocyte system. There has been a longstanding controversy about the 
respective role of these cells, whether they are infiltrating blood-borne macrophages or 
resident microglia. On one hand, there is evidence that inflammation can contribute to 
secondary ischemic injury and worsening of neurological status (Iadecola & Alexander, 
2001). On the other hand, inflammation under certain circumstances could promote 
functional recovery, by supporting neurogenesis and plasticity (Ekdahl et al., 2009). 
Therefore, targeted intervention to control specific aspects of post-ischemic neuro-
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inflammation is a promising strategy in human stroke, with a potentially wide therapeutic 
window. A thorough understanding of these processes is required in order to develop safe 
and effective anti-inflammatory therapies for stroke patients.  
Microglial cells are the main brain-resident population of the mononuclear phagocyte 
system. Microglial activation is considered a hallmark of central nervous system (CNS) 
inflammation. Activated microglial cells become immunohistochemically indistinguishable 
from infiltrating myeloid cells (monocytes/macrophages) (Raivich et al., 1999). In particular, 
activated cells of the monocytic lineage, whether resident microglia or blood-borne 
macrophages, overexpress an outer mitochondrial membrane protein formerly known as the 
peripheral benzodiazepine receptor (PBR), now renamed “translocator protein (18kDa)” 
(TSPO 18kDa) (Papadopoulos et al., 2006). Nearly 30 years ago, radiolabeling of the 
prototypic PBR/TSPO ligand PK11195 with carbon-11 enabled in vivo imaging of microglial 
activation using Positron Emission Tomography (PET scan) (Camsonne et al., 1984), and 
paved the road for neuroinflammation imaging. However, [11C]PK11195 has shown 
limitations that until now slowed clinical application of neuroinflammation imaging by PET 
(Venneti et al., 2006). Although the field is still very active, as seen from the plethora of 
radioligands for PBR/TSPO that have been radiolabeled these last few years (Chauveau et 
al., 2008), large-scale clinical PET studies are difficult to set up in the context of emergency 
stroke management. 
In contrast, magnetic resonance imaging (MRI) is being increasingly used in the diagnosis 
and management of acute ischemic stroke patients. Abnormalities observed on diffusion-
weighted imaging (DWI) allow early identification of severely ischemic brain regions that 
typically evolve into infarction (i.e. the ischemic core). Perfusion-weighted imaging (PWI) 
provides information about the hemodynamic status of the cerebral tissue. PWI lesions are 
frequently larger than the corresponding DWI lesions during the first hours of stroke 
evolution. Subsequent infarct enlargement has been described in the region of DWI/PWI 
mismatch, supporting the hypothesis that this area represents the ischemic penumbra. 
Combined DWI and PWI imaging at the acute stage of stroke might thus help to identify 
patients with salvageable tissue, who may benefit from thrombolytic therapy. These MRI 
techniques are increasingly used for the evaluation of neuroprotectants, as PWI/DWI 
mismatch is considered a valuable estimate of penumbra in both animal models (Chauveau 
et al., 2011) and patients (Donnan et al., 2009). Given its pivotal role in the management of 
stroke patients, an additional MRI-based technique to image inflammation is thus 
particularly compelling. MRI has an unparalleled ability to image brain structure and 
function in both humans and small animals.  
This chapter focuses on the MRI techniques that have been developed so far to image 
inflammation in stroke.  

2. In vivo imaging of phagocytic cells using endogenous mechanisms 

Magnetic Resonance Imaging of inflammation was first attempted in stroke models by 
taking advantage of endogenous contrast mechanisms. Schroeter et al. (Schroeter et al., 
2001) thus used high resolution multimodal MRI to investigate inflammatory and glial 
response following focal cerebral ischemia. Images were acquired in rats, with transient 
occlusion of the middle cerebral artery 3, 7 and 14 days after stroke onset, and compared to 
immunostaining of phagocytic cells and astrocytes. This MRI approach, however, failed to 
visually discriminate inflammatory regions from healthy tissue, and highlighted the need to 
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develop new MRI techniques for specific detection of inflammatory cells. Two subsequent 
studies (Justicia et al., 2008; Weber et al., 2005) demonstrated the potential of 3D T2*-
weighted sequences for detecting regions with phagocytic activity, due to cell accumulation 
of endogenous iron, which induces strong susceptibility artifacts. However, both studies 
were performed at late stages of stroke (starting 10 weeks post-injury), in a time-window 
that was less than optimal for therapeutic intervention. 

3. In vivo labeling of phagocytic cells 

Cellular imaging of inflammation using MRI coupled with the injection of iron oxide 
nanoparticles has recently emerged as a promising non-invasive technique for pre-clinical 
and clinical studies of several inflammatory diseases. Two distinct classes of iron oxide 
nanoparticles are currently used in MRI, depending on hydrodynamic particle size: 
superparamagnetic iron oxide (SPIO) particles, with a mean particle diameter of more than 
50 nm, and ultrasmall superparamagnetic iron oxide (USPIO) particles with a smaller 
hydrodynamic diameter (Corot et al., 2006). When injected intravenously, both types of 
nanoparticles are phagocytosed by macrophages, whether within the blood-pool (circulating 
monocytes) or locally at the inflammation site (tissue macrophages/activated microglia). 
Macrophages can thus be labeled and monitored in vivo with exogenous magnetic contrast 
agents. Importantly, this technique can be applied in patients, as several (U)SPIOs are 
already being used in humans.  

3.1 Pre-clinical studies 

To date, few teams have monitored phagocytic cell trafficking after focal cerebral ischemia 
on MRI coupled with (U)SPIO injection. Investigations were mostly conducted in rats, using 
differing protocols (various stroke models, rat strains, contrast agents, magnetic field 
strengths and imaging protocols), which render inter-study comparisons difficult. Of note, 
an early study (Doerfler et al., 2000) showed no impact of USPIO injection on clinical scores 
and lesion size in a model of permanent focal cerebral ischemia in rats; the dose, however, 
was ten times as low as in the following studies, the aim being to use USPIO as a marker of 
perfusion, not inflammation.  
Table 1 synthesizes the studies published so far, using a permanent model of focal cerebral 
ischemia (pMCAO). Administration of iron oxide nanoparticles was performed at different 
times after ischemia. T2/T2*-weighted imaging was used in all studies to detect MR signal 
changes following (U)SPIO injection, typically showing decreasing signal intensity. The 
most relevant protocol in terms of T2/T2* effects involved injection at day 5 post-injury with 
a dose of 300 µmol Fe/kg, and follow-up at day 6, whether with USPIO (Ferumoxtran-10) or 
with SPIO (Ferucarbotran) (Engberink et al., 2008; Kleinschnitz et al., 2003; Saleh et al., 
2004b; Schroeter et al., 2004). This 24-hour interval between injection and imaging is 
necessary in order for the iron oxide particles to wash out from the vascular compartment 
(the half-life of Ferumoxtran 10 in plasma is 5 hours in rat). T2/T2* hypointense signals 
were usually observed at day 6 in the perilesional area (Saleh et al., 2004b; Schroeter et al., 
2004). At later time-points, these hyposignals were detected in the lesion core (Kleinschnitz 
et al., 2003). The hypothesis of passive diffusion of iron oxide nanoparticles through a 
disrupted blood brain barrier (BBB) was rejected, because post-gadolinium and post-
(U)SPIO MR signal changes did not superimpose, suggesting an active mechanism of brain 
entry, via (U)SPIO-laden infiltrating macrophages (Engberink et al., 2008; Kleinschnitz et al., 
2003).  
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Animal model Contrast Agent MRI 
Ref. 

Species 
Stroke 
model 

Name 
Dose 

(µmol/kg)
Injection

time 
Imaging 

times 
Field 

strength
Sequences 

Rat EC 
Ferumo-
xtran-10 

100 T0+5h 
D0, D1, 

D2, D4, D7
4.7T T2 map 

(Rausch 
et al., 
2001) 

Rat PT 
Ferucar-
botran 

200 
MRI-
24h 

D1-9, D11, 
D12, D14

1.5T 
T2, 3D 
CISS, 
Gd-T1 

(Kleinsch
nitz et al., 

2003) 

Rat PT 
Ferumo-
xtran-10 

300 
MRI-
24h 

D6 7T 3D T2* 
(Schroeter 

et al., 
2004) 

Rat PT 
Ferumo-
xtran-10 

300 
MRI-
24h 

D6 7T T2*, 3D T2* 
(Saleh  
et al., 

2004b) 

Rat PT 
Ferucar-
botran 

300 
T0, 

T0+2h, 
T0+24h

D1, D2, 
D5, D7, 

D14 
1.5T 

T2, 3D 
CISS 

(Kleinsch
nitz et al., 

2005) 

Rat PT 
Ferumo-
xtran-10 

300 
MRI-
24h 

D6, D8, 
D11 

4.7T 
T2 map, 

T2, 
Gd-T1 

(Engberink 
et al., 
2008) 

Mouse EC 
Ferumo-
xtran-10 

2000 T0+5h,
D0, D1,D2, 

D3 
7T 

T2, T1, Gd-
T1 

(Wiart et 
al., 2007) 

Mouse EC 
Ferumo-
xtran-10 

2000 T0+5h, D0, D1 7T 
T2, T1, Gd-

T1 

(Desestret 
et al., 
2009) 

Table 1. Literature review of USPIO-enhanced MRI in the permanent middle cerebral artery 
occlusion (pMCAO) model. EC- Electrocoagulation; PT- Photothrombosis; T0 = Occlusion 
time; T0+5h = 5h after occlusion; MRI-24h = 24h before MRI; Gd-T1: T1-weighted MRI with 
gadolinium chelate injection (to assess BBB integrity). 

Despite the number of post-ischemia time points investigated (between D0 and D14), few 

animals were followed longitudinally, because most were usually sacrificed after MRI for 

comparison with immunohistochemistry. Post-mortem analysis typically comprised 

immunostaining of phagocytic cells (ED1) and Prussian Blue (PB) staining to detect iron. 

Spatial co-location between macrophages, iron and MR hypointense signals was well 

documented at the periphery of the lesion in a photothrombosis model at D6 (Saleh et al., 

2004b). Double immunostaining on the same histological slices confirmed internalization of 

iron inside macrophages in this set-up (Kleinschnitz et al., 2003). Co-location was also 

suggested in an electrocoagulation model (Rausch et al., 2001). It should be noted, however, 

that in all cases ED1 immunostaining exceeded iron staining, suggesting that only part of 

the inflammatory response was revealed by (U)SPIO-enhanced MRI.  

We sought to investigate the feasibility of macrophage imaging in mice using MRI. USPIOs 
were injected into mice 5h after pMCAO (Wiart et al., 2007). The timing of injection and 
imaging (from D0 to D3) was early compared to previous studies, because we aimed at 
assessing the early, potentially pathological role of macrophages, anticipating future studies 
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of anti-inflammatory drugs at the acute stage. Hypointense MR signals were detected in the 
perilesional area at 48h and 72h post-injury, in accordance with published data obtained in 
rats with a similar protocol (Rausch et al., 2001). More surprisingly, USPIO-enhanced MRI 
kinetic analysis disclosed a hypointense MR signal in the contralateral hemisphere: this 
hyposignal spread along to the corpus callosum (ipsilateral to contralateral) from D0 to D3. 
Imaging data correlated with histochemical analysis at 48h and 72h post-injury, showing 
macrophage activation remote from the lesion, and macrophage ingestion of USPIO (Figure 
1). Remote inflammatory response to brain injury was previously reported in animal models 
of focal cerebral ischemia using invasive techniques (Dubois et al., 1988; Schroeter et al., 
1999) and in stroke patients using PET-scan (Gerhard et al., 2005; Pappata et al., 2000), but to 
our knowledge the present study provided the first evidence obtained in living animals. 
Whereas the accumulation of (U)SPIOs in cells is well explained by phagocytosis activity of 

macrophages, their route of transport to brain macrophages is not yet well described. Three 

hypotheses have been put forward to explain the MR signal changes observed after (U)SPIO 

injection: (i) intravascular trapping of iron particles (Bendszus et al., 2007; Kleinschnitz et al., 

2005); (ii) (U)SPIO uptake by phagocytes, on the assumption that (U)SPIOs are primarily 

taken up by circulating phagocytes (Kleinschnitz et al., 2003); and (iii) interstitial iron 

particle diffusion into damaged tissue after nonspecific leakage through a disrupted blood–

brain barrier (Engberink et al., 2008). To assess the early brain distribution of iron particles, 

MRI signal changes after intravenous USPIO injection were then compared with the 

histological iron and macrophage distribution from 6h to 24h, using the same experimental 

set-up as before (Desestret et al., 2009). In this electrocoagulation model of stroke, USPIO-

related MR signal changes were indisputably paralleled by phagocyte-associated iron 

deposits detected on histology after 24h post-ischemia, but the pattern of results suggested 

that early USPIO-related MR signal changes were mainly caused by passive diffusion of free 

USPIOs after BBB leakage or by intravascular trapping, rather than by peripheral phagocyte 

infiltration. Indeed, at early time-points after USPIO injection, BBB disruption matches the 

spatiotemporal pattern of MR signal change. These results were in accordance with a 

previous study investigating both early and delayed time-points after SPIO injection in a 

photothrombosis model in rats (Kleinschnitz et al., 2005). Intravascular trapping was found 

to be the main mechanism of particle entry into peripheral areas and lesion core. These 

findings highlight the fact that several mechanisms of (U)SPIO entry into the brain may co-

exist, so that MR data interpretation should take account of the experimental set-up used 

(post-ischemia time-points, model characteristics, and nature of the contrast agent used).  

Table 2 synthesizes the studies published so far, to our knowledge, using a transient model 
of focal cerebral ischemia (tMCAO). Transient ischemia was in all cases performed using the 
suture model, which allows mechanical reperfusion by withdrawing the suture from the 
artery. This model is thought to be more representative of the clinical situation than 
permanent ischemia models. Results of these studies are contradictory and all the more 
difficult to interpret since protocols differed on many points (in particular in terms of the 
type of iron oxide nanoparticles used, and timing of injection). The first study (Rausch et al., 
2002) presented the most unexpected results, with the observation of a transient T1 
hyperintense signal inside the lesion, without corresponding T2 hypointense signal, 
although the study was performed at high field (4.7T). Furthermore, while macrophages 
(ED1) were detected in the lesion from day 1 to day 7, Prussian Blue immunostaining was 
positive only at day 7, i.e. 5 days after the onset of the hyperintense signal. The authors 
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Fig. 1. Correlation of gradient echo (GRE) MR signals with immunohistology (Bregma 0mm 
according to Franklin and Paxinos’s atlas). A- GRE MRI 72h post-pMCAO and i.v. injection 
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of USPIO. Note the hyposignal around the lesion, the contralateral corpus callosum and the 
ipsilateral peri-ventricular area. B- Double staining with Prussian Blue and F4/80 of the 
right (ipsilateral) ventricle. Iron-stained microglia/macrophages are clearly visible along the 
lateral wall, in correlation with the hyposignal observed in GRE images (A). C- Prussian 
Blue staining for iron in the contralateral corpus callosum of the corresponding slice. 
Positive staining was observed around cell nuclei, which suggests cytoplasm uptake (insert). 
D- F4/80 immunostaining for mouse microglia/macrophages in the contralateral corpus 
callosum. Note the F4/80+ brown cells, in spatial agreement with iron+ cells (B) and MRI 
hypointense signal (A). E- F4/80 immunostaining of a non-operated control mouse in the 
left corpus callosum, with no positive staining. F- Double staining with Prussian Blue and 
F4/80: magnification of B. Microglia/macrophages, as identified by their brown color and 
typical ramified shape, were also blue-stained, suggesting USPIO intra-cellularity. From 
(Wiart et al., 2007). 

proposed the following explanations: (i) that USPIOs might be leaked by the infiltrating 
macrophages before being re-ingested by secondarily recruited macrophages, and (ii) that 
Prussian Blue might become sensitive to iron oxide nanoparticles only after degradation of 
their dextran coating, an enzymatic process that could take several days. The second study 
(Kim et al., 2008) presented results more in line with those obtained in the permanent 
model, with an hypointense signal appearing relatively late (day 3-4) after stroke onset. 
Macrophages (ED1) and focal iron deposition were detected in the lesion at these time-
points, in agreement with T2/T2* hypointense areas. However, these results obtained with 
SPIO injection failed to be reproduced with USPIO in a recent study : Farr and colleagues 
did not observed T1,T2, nor T2* signal changes, despite a three-dose assay and extensive 
ED-1-positive macrophage accumulation at the sub-acute stage (Farr et al., 2011). In line 
with this negative results, the single study performed with a mouse model of transient 
ischemia reported no detectable MRI changes in the first 72h following stroke onset (Denes 
et al., 2007). It should be noted, however, that the dose used in that study was particularly 
low (160 µmol/kg) and perhaps not optimal for MRI detection. Besides, this study 
confirmed the predominance of microglial response, demonstrated by a panoply of 
immunohistological markers, at acute and subacute stages, compared to monocytic 
infiltration (Denes et al., 2007).  
Henning and colleagues (Henning et al., 2009) used an original strategy of “in vivo pre-
labeling”. The methodology is based (i) on the fact that iron oxide nanoparticles injected 
intravenously target, amongst other phagocytic cells, those from bone marrow (Denes et al., 
2007; Simon et al., 2005); and (ii) on the hypothesis of resident macrophage turnover from 
bone-marrow progenitor cells (Priller et al., 2001). SPIO injection was performed 7 days 
before tMCAO, in order to pre-label bone marrow-derived macrophages. A T2/T2* 
hypointense signal was observed in the lesion periphery with a peak at D4 post-reperfusion 
in pre-loaded rats, and remained constant until D7 in the perilesional area. Conversely, post-
loaded animals (which received the same SPIO injection 5 minutes after occlusion) showed 
no significant signal changes. Another interesting result of the study concerned the nature of 
the subpopulation of labeled macrophages, which were confined to three distinct locations: 
the perivascular regions, the meninges and the choroid plexus. In these areas, Prussian blue 
co-located with differentiated macrophages staining (ED2 marker) rather than with the non-
specific staining of macrophages (ED1 marker) and activated microglia staining (IBA). In 
line with previous studies, Prussian Blue staining was found in only a small proportion of 
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cells. Although the exact mechanisms of cell labeling by SPIOs and migration of these 
labeled cells into the central nervous system were not elucidated in this study, the proposed 
approach is elegant in the sense that it solves the question of passive diffusion of SPIOs 
(since they are washed out from the plasma before stroke onset). Other independent studies 
are nevertheless mandatory to confirm these results. 
 

Animal 
model 

Contrast Agent MRI 
Ref. 

Species 
Extent 
(min) 

Name 
Dose 

(µmol/kg)
Injection 

time 
Imaging 

times 
Field 

strength
Sequences 

Rat 30 
Ferumo 
xtran-10 

300 T0+5h 
D0, D1, 
D2, D3, 
D4, D7 

4.7T T2, T1 
(Rausch 

et al., 
2002) 

Mouse 30/60 
Ferumo 
xtran-10 

160 MRI-2h
D0, D1, 
D2, D3 

7T 
T2, 

Gd-T1 
(Denes et 
al., 2007) 

Rat 60 
Ferucar 
botran 

200 MRI-24h
D1-6, D8, 
D10, D14

3T 
T2, 3D T2*, 

Gd-T1 
(Kim et 

al., 2008) 

Rat 30 
Ferumo 

xide 
286 

T0-
7days 

D1-4, 
D7 

7T 
T2 map, 
3D T2* 

(Henning 
et al., 
2009) 

Rat 60 
Ferumo 
xtran-10 

300 / 600 / 
1000 

T0+3days
T0+6days

D3-4, 
D6-7 

4.7T 
T2, T2*, 

T1 
(Farr et 

al., 2011) 

Table 2. Literature review of USPIO-enhanced MRI in the transient middle cerebral artery 
occlusion (tMCAO) model. All transient models were performed with the intraluminal 
thread model. T0 = Reperfusion time; T0+5h = 5h after reperfusion; MRI-24h = 24h before 
MRI; Gd-T1: T1-weighted MRI with gadolinium chelate injection (to assess BBB integrity); 
PB- Prussian Blue 

3.2 Clinical studies 

The first clinical study was published in 2004 by Saleh et al. (Saleh et al., 2004a). USPIOs 
(Ferumoxtran-10) were injected in 10 stroke patients at the end of the first week after 
symptom onset (6 to 9 days). MRI was performed at 1.5T before injection, then between 
24h and 36h and again between 48h and 72h post-injection. Parenchymal enhancement 
was observed on T1-weighted imaging in most cases (8 out of 10). However, T2/T2* 
effects were not systematically observed and seemed to be associated with vessels. As in 
experimental studies, there was a mismatch between regions showing BBB disruption (as 
assessed by post-gadolinium T1 enhancement) and regions showing USPIO enhancement. 
The authors suggested that USPIO enhancement was due to the infiltration of 
magnetically-labeled macrophages. We conducted a similar study, in which USPIOs were 
injected at D6 after stroke onset and MRI was performed 72h post-injection 
(Nighoghossian et al., 2007). In the 10 included patients, USPIO response was 
heterogeneous and not related to subacute lesion volume. As in the study by Saleh et al. 
(Saleh et al., 2004a), T1 enhancement was observed in most cases (9 out of 10), while 
T2/T2* effects were not systematically observed (5 patients out of 10) (Figure 2). No 
obvious relationship was observed between regions with BBB disruption and those 
showing USPIO-induced signal changes: for example, 3 patients without BBB disruption 
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showed enhancement following USPIO administration, whereas one patient with severe 
BBB disruption showed no USPIO-induced signal change.  
 

 

Fig. 2. A 55–year-old woman, with a past history of transient confusional state 2 months 
before admission, which was likely related to a right posterior middle cerebral artery (MCA) 
stroke, was admitted for acute left MCA stroke with nonfluent aphasia and severe right 
hemiplegia. From left to right: (1) Day 6 diffusion-weighted imaging (DWI) without 
contrast; (2) Day 9 T2*-weighted imaging; and (3) Day 9 T1-weighted imaging 72 hours after 
USPIO infusion. Right, old posterior superficial MCA ischemic infarction and recent left 
superficial MCA stroke with a large USPIO enhancement (arrow) compared with DWI 
lesion volume. From (Nighoghossian et al., 2007). 

In their second study, Saleh et al. (Saleh et al., 2007) investigated an earlier time window: 

USPIOs were injected 2 to 3 days following symptom onset and MRI was performed at 

different post-injection time points (24h-36h, 48h-72h, 10-11 days). Only 3 of the 9 patients 

included in the analysis showed signal change on post-injection MRI. None of these patients 

showed T1 enhancement following gadolinium chelate administration. As in the previous 

study, signal changes consisted in enhancement on T1-weighted images, with an increase in 

enhancement between the first two post-injection examinations, and a decrease between the 

last two. A subsequent study involving the same earlier time-window (2 days after stroke 

onset with MRI performed 48h after) confirmed these findings (Cho et al., 2007). T1 

enhancement was observed inside the lesion in only 1 of the 5 included patients. In this 

patient, post-gadolinium enhancement was more extensive than post-USPIO enhancement. 

The heterogeneity of USPIO-labeling was thought to reflect inter-individual variability of 

post-ischemic inflammation (Saleh et al., 2007). Accordingly, MRI may be of use in selecting 

patients for targeted anti-inflammatory therapies.   

Interpretation of clinical data is mainly based on experimental studies. Since (U)SPIOs have 
been found in macrophages following ischemic stroke, signal changes observed in patients 
are thought to reflect the phagocytic response. There are, however, several obstacles for 
direct translation from small animals to humans. Firstly, the animal model may not properly 
represent the clinical situation, so that the route of (U)SPIO transport to brain macrophages 
might not be the same. Secondly, there are some differences in the time-windows 
investigated: in the perspective of therapy, it is more attractive to treat in the very first days 
or even hours after symptom onset; experimental and clinical protocols performed during 
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the early stage failed to produce consistent signal changes. Thirdly, the dose used in humans 
(2.6 mg iron/kg body weight) is far less than in animals. Finally, the interpretation of MR 
signal changes may differ according to the field strength at which they were acquired. 
Animal experiments are usually performed at very high field compared to clinical studies, 
which obviously influences relaxation properties. The latter two elements (high dose/high 
field in pre-clinical studies and small dose/low field in clinical studies) could partly explain 
why T1 effects were mostly observed in clinical studies, whereas T2/T2* effects were always 
observed in experimental studies. Besides, though compartmentalization of USPIO inside 
cells is thought to induce magnetic susceptibility gradients leading to T2* effects, it seems 
that SPIO-labeled macrophages could produce T1 effects at 1.5T (Daldrup-Link et al., 2003). 
This shows the importance of performing quantitative studies in order to characterize the 
effects of compartmentalization and concentration on MR signal, at different field strengths 
for each contrast agent (Brisset et al., 2010a). In the future, the development of MR 
sequences specifically dedicated to detection and quantification of (U)SPIO-labeled 
macrophages, such as positive contrast techniques (Brisset et al., 2010b; Mani et al., 2008), 
may help data interpretation and analysis of longitudinal studies. 

4. Ex vivo labeling of phagocytic cells 

MRI techniques using intravenously injected SPIO/USPIO fail to distinguish between non-
specific diffusion of free particles and magnetically labeled phagocytes. Thus, signal changes 
might be wrongly attributed to inflammatory processes. This limitation could be overcome 
in part by magnetically labeling macrophages before their injection (ex vivo labeling). To 
date, the majority of studies using ex vivo labeling in stroke models addressed cellular 
therapy, using subventricular zone progenitor cells (Athiraman et al., 2009; Cicchetti et al., 
2007; Jiang et al., 2005; Zhang et al., 2003), embryonic neural stem cells (Hoehn et al., 2002; 
Modo et al., 2004) mesenchymal stem cells (Lee et al., 2009; Walczak et al., 2008), spleen-
derived mononuclear cells (Stroh et al., 2006) or adipose-derived stem cells (Rice et al., 2007). 
To our knowledge, only one study was published using ex vivo labeling of macrophages in 
a rat stroke model (Engberink et al., 2008): 4 rats were intravenously injected with 5 million 
SPIO-labeled monocytes after induction of cerebral ischemia by photothrombosis. MRI was 
performed at 4.7T pre- and 24h, 72h and 120h post-injection. Although visual examination of 
T2*-weighted images and Prussian Blue staining were not conclusive, quantitative analysis 
(percentage of hypointense voxels compared to baseline) showed significant differences in 
MR signal changes compared to control animals (non-injected or injected with free USPIOs). 
According to the authors, the differences observed between groups are suggestive of an 
active monocytic infiltration into the lesion. One limitation of this method is that injected 
monocytes may not reflect the actual behavior of endogenous monocytes. 

5. Conclusion 

Despite abundant evidence for an inflammatory response after stroke, anti-inflammatory 
treatments have so far failed in clinical trials (Savitz & Fisher, 2007). In this context, non-
invasive detection of inflammatory cells after brain ischemia could be helpful (i) to select 
patients who may benefit from anti-inflammatory treatment; (ii) to identify the optimal 
therapeutic time window; (iii) to develop therapies targeting specific pathophysiological 
processes. MRI coupled with (U)SPIO, a contrast agent taken up by macrophages ex vivo 
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and in vivo, appears to be a promising tool for this purpose. Current limitations of this 
approach include the difficulty in identifying non-specific signal changes. Additional 
studies on long-term monitoring of (U)SPIO-related signal changes are required. This will 
be of crucial importance for clinical trials aiming to assess immunomodulatory drugs. 
Multiple factors are likely to account for post-treatment modifications of MR signal: 
modulation of inflammation, changes in the iron microenvironment and biotransformation. 
Well-designed pre-clinical studies including dedicated quantitative MR sequences are still 
warranted before application of the technique in larger patient cohorts.  
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