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1. Introduction 

fNIRS is a device designed to detect changes in the concentration of oxygenated  (oxyHb) 

and deoxygenated (deoxyHb) haemoglobin molecules in the blood, a method commonly 

used to assess cerebral activity. Over the last decade, functional near-infrared spectroscopy 

(fNIRS) has widely extended its applications due to its capacity to quantify oxygenation in 

blood and organic tissue in a continuous and non invasive manner (Chance & Leigh, 1977; 

Villringer & Chance, 1997). This technique is an effective, albeit ‘indirect’, optical 

neuroimaging method that monitors hemodynamic response to brain activation, on the 

basis that neural activation and vascular response are tightly coupled, so termed 

‘neurovascular coupling’. Different studies show that neural activity and hemodynamic 

response maintain a lineal relationship (Arthurs & Boniface, 2003; Logothetis et al., 2001), 

suggesting that these changes in hemodynamic response could provide a good marker for 

assessing neural activity. In neuroscience, functional near-infrared spectroscopy (fNIRS) is 

used to measure cerebral functions through different chromophore mobilization 

(oxygenated haemoglobin, deoxygenated haemoglobin and cytochrome c-oxidase) and their 

timing with concrete events. Due to methodological and theoretical problems associated 

with cytochrome c-oxidase functioning (Cyt-Ox) (see section 3.2.), current neuroscience 

studies on cerebral functions only assesses and analyzes oxyHb and deoxyHb mobilizations. 

These chromophore mobilizations are directly related to the cerebral blood flow (CBF) 

associated with an event and the physiological reactions provoked by the brain’s functional 

state (fNIRS measures these reaction in the cerebral cortex). The assessment of these task-

related mobilizations performed in light of a base line established by the researcher 

him/herself. The difference in oxyHb and deoxyHb concentrations at baseline and at task 

performance determines the location in the cortex of an increase or decrease in CBF. An 

increase in CBF is associated with cerebral activity, making the temporal and spatial 

correlation between CBF and task a determinant of cerebral function. This capacity to study 

cerebral functions, both spatial and temporal, is what gives name to the technique described 

in this chapter: functional near-infrared spectroscopy (fNIRS). 

fNIRS has become a valuable neuroimaging technique, novel in its easy application and 
characterized by its small size, portability, and reliability. Although relatively new to the 

www.intechopen.com



 
Neuroimaging – Methods 

 

48

field of health care, fNIRS use is growing rapidly in clinical settings and research, 
particularly in work involving higher level cognitive control. fNIRS measures of 
hemodynamic response have been used in numerous studies to assess cerebral 
functioning during resting state (Lu et al., 2010) and tasks on motor skills (Leff et al., 2011; 
Obrig et al., 1996a), vision (Gratton et al., 1995; Herrmann et al., 2008), hearing (Zaramella 
et al., 2001), speech (Cannestra et al., 2003) social skills (Ruocco et al., 2010 ), learning 
(León-Carrión et al., 2010), emotion (León-Carrión, 2006, 2007a, 2007b), and executive 
functions (Chance et al., 1993; León-Carrion et al., 2008; Nakahachi et al., 2010). fNIRS is a 
proven medical device for monitoring hemodynamic activity through the intact brain 
cortex in normal adult subjects, a powerful and original functional neuroimaging 
technique which charts cerebral functioning in a non-invasive and relatively low-cost 
manner. The application of fNIRS in cerebral functioning studies has been validated by 
other neuroimaging techniques, showing that the NIR signal maintains a strong 
correlation with PET measures of changes in regional cerebral blood flow (rCBF), and the 
fMRI Blood Oxygen Level Dependent (BOLD) signal (Hock et al., 1997; Huppert et al., 
2006; Kleinschmidt et al., 1996; MacIntosh et al., 2003; Toronov, 2001, 2003; Villringer and 
Chance,  1997). Yet compared to traditional neuroimaging technology, fNIRS is non-
invasive, safe, portable and inexpensive (Gratton, et al. 1995; Strangman, 2002; Totaro et 
al., 1998; Villringer & Chance, 1997; Wolf, et al., 2002; Zabel & Chute, 2002). Given these 
characteristics, fNIRS makes it possible for research to be done more ecologically, in 
clinical and social settings, without the restrictions of more traditional scanners. 
Furthermore, fNIRS technology is ideal for studies in which subjects may have a more 
difficult time with traditional neuroimaging techniques, namely children, patients with 
dementia, etc. The flexibility of fNIRS also makes it ideal for studies involving patients 
who are in movement (Milla et al., 2001), patients who are bed-ridden (von Pannwitz et al, 
1998), and new-borns (Goff et al., 2010). 
In this paper, we review the literature to determine the principles of fNIRS, which could 
help create experimental designs and data analysis techniques objectively and effectively. 
We also provide a description of articles carried out by our research team on the use of 
fNIRS as a paradigm in the study of cognitive functions and in clinical applications. 
Specifically, we consider fNIRS use in studies on learning processes and affective 
dimensions in dorsolateral prefrontal cortex (DLPFC), and their influence on evoked 
hemodynamic changes.  

2. The principles of fNIRS 

Spectroscopy is based on the study of light signals. Many fields of science use this technique 
to study the composition of objects, both organic and inorganic. In 1949, Hill and Keynes 
(1949) reported that  nervous system cell activity was associated with changes in the optical 
properties of light. NIRS has thus far the unique feature of being able to measure 
intravascular (oxyHb and deoxyHb) (Jöbsis, 1977) and intracellular (cytochrome c-oxidase) 
(Heekeren et al., 1999) events simultaneously. 
In the study of cerebral functioning, a ray of light is used near the visible spectrum of 
light (NIR). More specifically, a light source known as a light-emitting diode (LED), emits 
a ray of quasi-infrared light at the scalp, half the wave absorbed by the chromophores 
(oxyHb, deoxyHb and cytochrome c-oxidase) found in the nervous tissue. A photo 
detector captures the light wave resulting from the interaction with the chromophores, 
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following a banana-shaped path back to the surface of the skin (see Fig 1.) (Gratton et al, 
1994). The characteristics of this light wave have changed in respect to the original 
emitted by the LED due to the absorption and dispersion capacity of the nervous tissue 
and chromophores. 
 

 

 
 

Fig. 1. Light from the light source is guided to the head by an optode. A photo-detector will 
collect the light which leaves the head at a distance of some centimetres. The photons follow 
a banana-shaped path from light source to detector. 

The absorption spectra of light absorbing molecules (chromophores) are used to interpret 

the attenuated light levels as changes in chromophore concentration. The low absorption 

capacity of biological tissue (composed mostly of water) is one reason why light waves 

pierce different extracerebral tissue with hardly any absorption of NIR rays. In contrast, 

chromophores have characteristic optical properties which absorb rays close to the light. The 

transparency of the biological tissue, along with the absorption capacity of the diverse 

chromophores, makes it possible for optic methods to be used to measure hemodynamic 

responses (Chance, et al. 1998; Villringer and Chance, 1997). The optimal light spectrum for 

studying cognitive functions ranges between 700-900nm, which could be considered the 

biological “optical window”, framed by chromophore mobilization (Jöbsis, 1977) (see Fig 2). 

This optical window lends itself to non-invasive, low-risk methods for studying cerebral 

processes. 
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Fig. 2. Absorption spectrum in NIR window: different absorption spectra of oxyHb and 
deoxyHb at 700-900 (optical window) allow spectroscopy methods to assess their respective 
concentrations. Beyond 900 nm, the majority of the photons are absorbed by the water, 
making measurements difficult. 

One of the limitations of the fNIRS is its scarce depth measurement capacity. This depth is 
determined mostly by two factors: wavelength and interopmode distance (IOD). 
Wavelength is one of the variables which determine a light’s penetration capacity. In 
confocal microscopy at 488/514 nm, a penetration into cerebral tissue of approximately 
0.25mm can be achieved (Dirnagl et al., 1991). When using dual photon technology with an 
excitation of 830 nm (Kleinfeld et al., 1998), penetration depth can surpass 0.6 mm below the 
brain surface. Nevertheless, penetration depth is limited by the optic window, given that a 
wavelength greater than 900nm penetrates tissue poorly due to the spectrum’s high water 
absorption capacity at those depths (See Fig 2). The other parameter determining light 
penetration into nervous tissue is the distance between light source and detector. In general 
terms, the greater the source-detector distance, the deeper the penetration. However, a 
greater distance can also lead to a lower intensity of light captured by the detector. The ideal 
distance between source and detector depends on the capillary depth and demographic 
variables of the subjects being studied. Dark skin and very dark hair can absorb most 
wavelengths, hence a shorter distance between light source and detector would be 
recommended, which increases the intensity of the wavelength. 
The main interaction between light and tissue is absorption, although the latter coexists 

with another phenomenon capable of modifying the optic characteristics of a light wave. 

This phenomenon, known as dispersion, illustrates photon loss which is not due to 

chromophore absorption (the loss depending on the size of the photo detector and the 

system’s geometry). A photon’s trajectory could vary when crossing nervous tissue with 

chromophores. A few photons will reach the photo detector without undergoing any 

dispersion or absorption effects (ballistic photon), some will be absorbed by 

chromophores (absorption), others--scattered out of the sampling volume--will not reach 
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the photo detector (scatter), and the remainder will make it, but by travelling a path 

longer than the geometrical distance between light source and detector (scatter) (See Fig 

3). Dispersion alters the attenuated light wave captured by the photo detector and hence 

the reflected chromophore absorption capacity. If we interpret this light wave solely on 

the basis of chromophores absorption, we would lose analytic access to the biological 

processes which underlie cerebral functions.  

 

 

Fig. 3. Possible trajectory of a photon passing through biological tissue. 

To offset dispersion and obtain a wider analytical scope of a light wave’s optical 
characteristics, we applied the modified Beer-Lambert Law (Table 1). This version differs 
from the original in its conception of the effect of dispersion. In a typical trans-cranial study 
of the human brain, the mean path length of light is six times as long as the distance 
between sender and receiver (Duncan et al., 1995). In the modified Beer-Lambert Law, a new 
term (B) is added to represent the longest path length of light. A second modification to this 
equation is also necessary, given that not all photons reach the photo detector due to the 
dispersion effect. A second term is added (G) which measures photon loss due to dispersion. 
The process of modification of this law is as follows:  
 

Original/Modified Beer-Lambert Law Equation 

Original Beer-Lambert Law A= ε x c x d 

Modified Beer-Lambert Law A= ε x c x d x B + G 

Assuming constant B and C gives ∆A= ε x ∆c x d x B 

Table 1. Variations of the original Beer-Lambert Law due to the dispersion effect.   
A: absorbance, light attenuation (no units, since A = log10 P0 / P ); ε is the molar absorption 
with units of L mol-1 cm-1;c: concentration of the compound in solution, expressed in mol-1; 
d: path length of the sample; G: photon loss due to dispersion; B: longer path length due to 
dispersion effect.  
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3. Technical approaches for functional near-infrared spectroscopy and 
neuroimaging 

Neuroscience interprets the optical characteristics of wavelengths reflected by different 
endogenous chromophores in nervous tissue, to discern the locations of cerebral functions at 
a specific moment. The functional state of the chromophores will determine how much 
spectrum light is absorbed, thereby revealing the functional state of the cortex. For example, 
the absorption spectrum for haemoglobin depends on whether or not it is oxygenated 
(venous vs. Arterial blood) (see Fig 2). Another important chromophore is cytochrome c-
oxidase (Cyt-Ox), the terminal enzyme of oxidative phosphorylation whose absorption 
spectrum depends on its redox-state. Many other agents with absorption capacity are found 
in cerebral tissue, including melanin or water, although the spectral light of near-infrared 
rays practically nullifies their absorption capacity. 
Apart from the changes in concentration of molecules with absorption capacity, dispersion 

causes changes in light’s optical characteristics. The changes provoked by dispersion have 

been described as a result of changes in neural basal state. It is believed that rapid 

dispersion changes are temporally linked to changes in membrane potential (Stepnoski et 

al., 1991), whereas slow changes in dispersion probably reflect changes in cellular volume. 

The following section provides a description of the different parameters and elements used 

to analyze wavelengths and interpret study results.  

3.1 OxyHb and DeoxyHb 

To create cerebral activity, neurons require nutrients in order to generate energy and 

produce action potentials. Glucose, like oxygen and other substances, are sent to 

metabolically active neurons by means of blood perfusion via capillaries, which produces an 

increase in rCBF and in regional cerebral blood oxygenation (rCBO). Hence, changes in 

rCBF or rCBO can be used to map brain activity with high spatial resolution (“functional 

neuroimaging”).  

During functional activation, oxygen metabolism (cerebral metabolic rate of oxygen, 

CMRO2) increases substantially (Ances et al., 2001a; Dunn et al., 2005; Gjeddeet al., 2002) 

This increased oxygen consumption during neuronal activity results in a decrease in tissue 

oxygenation which is counteracted by the increase in O2 supply when CBF and cerebral 

blood volume (CVB) increase (Ances et al., 2001b; Enager et al., 2009; Offenhauser et al., 

2005; Thompson et al., 2003), thanks to a mechanism known as neurovascular coupling. If 

the stimulus is lasting, glucose and oxygen consumption must be kept constant by 

increasing capillary density, which in turn increases total cerebral blood volume (Clarke & 

Sokoloff, 1994; Gross et al., 1987; Klein et al., 1986). However, when the stimulus is short-

lived, the aforementioned hemodynamic and metabolic changes are not produced in the 

same manner. 

CBF and oxygen metabolism is produced not only to counteract the effects of tissue 

oxygenation, but also to oxygenate haemoglobin. When haemoglobin transports oxygen, it 

is called oxyhaemoglobin (oxyHb). When it releases oxygen via an increase in oxygen 

metabolism, it transforms into deoxyhaemoglobin (deoxyHb). A cerebral region, therefore, 

could be considered active when its rCBF increases, producing a decrease in deoxyHb and 

an increase in oxyHb (Lindauer et al., 2001; Obrig et al., 1996b), which in experimentation is 

generally associated with a specific event. 
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The increased oxygen transported to the brain area typically exceeds the local CMRO2 
utilization, causing an overabundance of cerebral blood oxygenation in active areas (Fox et 
al., 1988; Frostig et al., 1990; Lin et al., 2008; Lindauer et al., 2001; Mayhew et al., 2001). When 
there is an increase in CBF, tissue hyperoxygenation takes place (See Fig 4). Different optic 
studies using fNIRS and fMRI have reported that when neural activity commences, 
hyperoxygenation (due to an increase in CBF--increased oxyHb) is preceded by low 
oxygenation (increase in deoxyHb). This vascular response is difficult to measure and very 
controversial (Buxton, 2001; Frostig et al., 1990; Malonek & Grinvald, 1996; Obrig & 
Villringer, 2003). 
 

 

Fig. 4. Diagram of metabolic and hemodynamic changes during brain activity. 

Scientific debate ensues as to which molecule possesses the highest discriminatory capacity 
for measuring neural activity. Currently, this is attributed to the deoxyHb molecule, the 
gold standard neuroscience neuroimaging technique. The deoxyHb molecule for cortical 
activity analysis has a high correlation with the BOLD response in fMRI (R=0.98; P<10-20), 
compared to that of the oxyHb molecule (R=0.71) or the HbTOTAL (R=0.53) (Huppert et al., 
2006). These same results were obtained by other researchers (MacIntosh et al., 2003; 
Toronov 2001, 2003). In addition, concentrations of deoxyHb are reported to have more 
discriminatory power in humans than oxyHb (Herrmann et al., 2008).  
In current research, our team is studying deoxyHb mobilization in different levels of 
consciousness during general anaesthesia. This mobilization has been correlated using 
Bispectral Index System (BIS) technology, the gold standard for controlling depth of 
anaesthesia. Preliminary results show a strong correlation between an increase in deoxyHb 
and a decrease in BIS as the patient reaches the lowest levels of consciousness. These results 
highlight the discriminatory power of the deoxyHb molecule in measuring deactivation in 
different brain areas.  
As we mentioned earlier, oxyHb and deoxyHb possess characteristic optical properties in 
the near-infrared light range as well as wide-ranging sensibility to different wavelengths 
(See Figure 2), making it possible to use optics methods to quantify changes in chromophore 
concentration during neurovascular coupling (Chance et al., 1993; Chance et al., 1998; 
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Gratton et al., 1995; Hoshi et al., 1993; Villringer et al., 1993; Villringer & Chance 1997). To 
calculate the different levels of oxyHb, deoxyHb, and HbTOTAL concentration, the modified 
Beer-Lambert Law is used. The attenuation of light intensity after absorption and scattering 
by biological tissue is expressed as:  

I = GI0e−(αHBCHB+αHBO2CHBO2 )L 

where G is a factor that accounts for the measurement geometry and is assumed constant 
when concentration changes. Io is input light intensity; αHB and αHBO2 represent molar 
extinction coefficients; CHB and CHBO2 indicate concentrations of deoxyHb and oxyHb 
chromophores, respectively; and L represents the photon path, a function of absorption and 
scattering coefficients μa and μb (Izzetoglu et al., 2007). 
By measuring optical density (OD) changes at two wavelengths, the relative change of oxy- 
and deoxy-haemoglobin versus time can be obtained. If the intensity measurement at the 
initial time (baseline) is Ib, and at another time is I, the OD change due to variation in CHB 
and CHBO2 during that period is: 

∆OD = log (Ib/I) = αHB∆CHB + αHBO2∆CHBO2. 

Measurements performed at two different wavelengths allow the calculation of ∆CHB and 
∆CHBO2. Oxygenation and blood volume (HbTOTAL) can then be deduced (Izzetoglu et al., 
2007): 
1. Oxygenation = ∆CHBO2− ∆CHB 
2. Blood Volume (HbTOTAL) = ∆CHBO2 + ∆CHB 
When baseline is taken, it is important to take into account that the subject is medicated or 
anxious, variables which could have a quantitative effect on CBF. Since NIRS measures 
changes in oxyHb and deoxyHb concentrations in the arterial and venous intracerebral 
compartments, comparisons of different measurements depend on the assumption that the 
proportion of arterial and venous compartments remains constant. For this reason, factors 
that alter venous volume should be considered. Changes in head position, likely to occur in 
the clinical use of NIRS, might influence venous pressure and alter the proportion of arterial 
and venous compartments in the cerebral vasculature. In addition, body position might 
modify the tone of the resistive vessels to maintain a constant cerebral blood flow. 
According to Toraro et al (1998), cerebrovascular reactivity measurements may be 
performed without taking into account changes of head position.  
Other variables to take into account when interpreting oxyHb and deoxyHb results are 
those which affect CBF: 
1. In hypercapnia, when baseline perfusion was increased by up to 100% (stronger 

hypercapnia), the deoxyHb response almost disappeared (Jones et al., 2005). 
2. During hyperoxia, the deoxyHb outwash was significantly reduced under normobaric 

conditions (Lindauer et al., 2003) or even abolished under hyperbaric conditions of 3 or 
4 ATA (Lindauer et al., 2010), while neuronal activity and CBF responses remained 
unaltered. 

3. OxyHb and deoxyHb effects remained lineal when the stimulus lasted between 6-24 
seconds. However, during shorter stimulation periods, strong nonlinear effects came 
into play (Wobst et al., 2001). 

4. Although hypothermia reduced baseline CBF by almost 50%, neurovascular coupling 
was preserved. Reduction of functional changes in CBF, deoxyHb and CMRO2 followed 
reductions in neuronal activity during hypothermia (Royl et al., 2008) 
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5. A recent study reported that the amplitude of the functional deoxyHb decrease in rat 
somatosensory cortex was reduced when ICP was elevated to 7 mmHg. At an ICP of 14 
mmHg, the deoxyHb response was close to 0 and even reversed at an ICP of 28 mmHg 
(Füchtemeier et al., 2010). 

6. Changes in oxyHb, deoxyHb and HbTOTA correlated significantly with changes in blood 
velocity (Totaro et al., 1998). 

7. NIRS parameters, induced by CO, reflect variations in resistive vessels, and could thus 
be considered an index of cerebrovascular reactivity (Totaro et al., 1998). 

3.2 Cytochrome-c oxidase 

Cytochrome-c oxidase (Cyt-Ox), an enzyme found in the mitochondria, is responsible for 
more than 90% of cellular oxygen consumption. In isolated mitochondria, Cyt-Ox redox 
states showed transient oxidation during increased cellular activity (Chance & Williams, 
1956), indicating that Cyt-Ox redox state could provide a good approximation for assessing 
transitory changes in cellular metabolism during neuronal activity (Wong Riley, 1989). Cyt-
Ox has a characteristic light absorption pattern in the visible (Keilin, 1925) and near-infrared 
parts of the electromagnetic spectrum (band centred around 830 nm) (Wharton and 
Tzagoloff, 1964), and it is in principle feasible to measure changes in the Cyt-Ox redox state 
in vivo (Cooper et al., 1994; Ferrari et al., 1990; Jöbsis, 1977).  
Cytochrome-c oxidase theoretically could be a biological marker for cellular metabolic 

demand, with the potential to provide more direct information on neuronal activity than 

haemoglobin (Heekeren et al., 1999; Jöbsis, 1977). The theoretical advantage of using this 

enzyme as a marker for neuronal activity is that it is much more exact than oxyHb and 

deoxy-Hb, given that the demand by neurons for oxygen exceeds the need for their 

activation (Fox et al., 1988). Nevertheless, while Cyt-Ox may be a more precise marker for 

measuring neuronal activity, its use in neuroscience as a parameter has been limited by two 

fundamental issues: 

1. The use of non-invasive NIRS to detect redox changes in Cyt-Ox in response to cerebral 
activation is hampered by methodological spectroscopic issues related to the 
modification of the Beer-Lambert law. However, the separation of the haemoglobin 
signal from the Cyt-Ox signal has been regarded as questionable and mere cross talk 
(Cooper 1994, 1998; Matcher et al., 1995). Methodologically, the calculation of the 
enzyme’s redox change may be erroneous due to the simplified assumptions inherent in 
the modified Beer – Lambert approach.  

2. From a physiological standpoint, there is ongoing debate on as to whether or not the 
redox state of Cyt-Ox changes in response to the functional activation of cerebral cortex. 

Recent studies have attempted to resolve these two questions. New algorithms are being 

developed that can help discern the role of Cyt-Ox and its functions during cerebral activity. 

A recent study reported that the differential stimulation of areas rich and poor in 

cytochrome-c-oxidase content results in optical changes which cannot be solely explained by 

the presently available models of cross talk (Uludağ et al., 2004). One of the most renowned 

studies tackling the physiological question reported that the spectra obtained in a state of 

increased brain activity cannot be explained solely by the well-known changes in oxyHb 

and deoxyHb, but must include Cyt-Ox in the analysis. The inclusion of Cyt-Ox to explain 

spectra changes is also applied to explain how Cyt-Ox transient oxidation increases 

significantly during visual stimulation in 9 out of 10 subjects (Heekeren, 1999).  
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For these reasons, Cyt-Ox is not widely used in research on normal cerebral functions, 

whereas other fields are finding use for its capacity as a direct maker for tissue oxygenation 

to study pathologies related to metabolic dysfunction of the mitochondria (Atamna et al., 

2010; Levy et al., 2007; Pickrell et al., 2009). The mechanisms and control of this enzyme have 

been discussed in various reviews (Cooper, 1990; Brown, 1992). 

3.3 Fast and slow light scattering signals 
Another method used for measuring neuronal activation is known as the event-related 
optical signal, or EROS, which capitalizes on the changes in the optical properties of the cell 
membranes themselves that occur as a function of the ionic fluxes during firing (Gratton et 
al., 1995). It is well established that the optical properties of cell membranes change in the 
depolarized state relative to the resting state (Obrig & Villringer, 2003; Rector et al., 1997; 
Stepnoski et al., 1991). Optical technology can be used to study these changes.   
The ability to measure neuronal membrane depolarization provides us with the opportunity 
to study neuronal activity more directly. There are two approaches to studying neuronal 
depolarization via light wave dispersion, one with fast and the other with slow scattering 
signals. These signals differ both in terms of duration (milliseconds vs. seconds) and 
magnitude and their subsequent physiological processes. Fast light scattering signals occur 
in milliseconds (Hill & Keynes, 1949). In isolated nerves cells, Stepnoski et al. (1991) showed 
that changes in light scattering were associated with membrane potentials. Slow light 
scattering signals, reported in bloodless brain slices, occurred in seconds after the onset of 
stimulation (MacVicar & Hochman, 1991). The origin of slow light scattering is still unclear, 
although the primary candidates are changes in intracellular volume and/or in extracellular 
volume (MacVicar & Hochman, 1991; Holthoff & Witte 1996). 
The study of cerebral functions in humans using EROS signals is hampered by numerous 
limitations. The principal shortcoming is that the fast scattering signal represents the low 
signal-to-noise ratio (SNR) resulting from optical properties in the skin, skull and cerebral-
spinal fluid, which are traversed by the quasi infra-red light wave. Furthermore, basic 
sensory and motor movements such as tactile stimulation and finger tapping require 
between 500–1,000 trials to establish a reliable signal (Franceschini et al., 2004).  
Other difficulties have been encountered in attempts to replicate experiments both on fast 
and slow scattering signals, limiting data collection, for example, on the optic characteristics 
of the fast scattering signal in response to a visual stimulus among normal adult humans 
(Obrig & Villringer, 2003). A final constraint is that these methods, apart from requiring a 
more expensive and cumbersome laser-based light source, have an increased risk of 
inadvertent damage to the eyes in comparison to other systems measuring hemodynamic 
response. In spite of these current limitations, the fast optical signal continues to be an 
important area of investigation because it offers glimpses of the “holy grail” of 
neuroimaging: the direct measurement of neuronal activity with millisecond time resolution 
and superior spatial resolution (Izzetoglu et al., 2004). 

4. Instrumentation 

Functional near-infrared (fNIR) instrumentation is composed of various light-emitting 
diodes (LEDs) and photo detectors which pick up light waves after they have interacted 
with brain tissue. The fNIRS normally used for neuroimaging has numerous channels. Each 
channel represents a cerebral region covered by the light wave and which coincides with the 
separation between the LED and its corresponding photo detector. Due to the dispersion 
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effect, a photo detector, which can detect light coming from cerebral tissue, is placed 2-7 cm 
from the LED. The relative contribution of extracranial tissue decreased as the interoptode 
distance increased, for an interoptode distance greater than 4.5 cm, the extracranial 
contribution was negligible (Smielewski 1995, 1997). The contribution of the scalp might be 
minimized by applying moderate pressure on the optodes (Owen et al., 1996). The ideal 
separation between source and photo detector is 4 cm, given that the fNIR signal becomes 
sensitive to hemodynamic changes within the top 2–3 mm of the cortex and extends laterally 
1 cm to either side, perpendicular to the axis of source-detector spacing. Studies have shown 
that at interoptode distances as short as 2–2.5 cm, gray matter is part of the sample volume 
(Chance et al., 1998). 
Three distinct types of fNIR implementation systems have been developed: time-resolved, 
frequency-domain, and continuous wave spectroscopy, each with its own strengths and 
limitations. (For review, see Minagawa-Kawai et al., 2008; Wolf et al., 2007). Our research team 
used the fNIRS system developed by Drexel University’s Optical Engineering Team. This low-
cost functional neuroimaging system provides a variety of clinical, research, and educational 
applications. Our NIRS system (NIM, Inc., Philadelphia, PA) applies light to tissue at constant 
amplitude and can provide measurements of oxy- and deoxy-Hb relative to baseline 
concentrations (see Bunce et al., 2006). The fNIRS probe is 17.5 cm long and 6.5 cm wide. It 
contains four light sources surrounded by ten detectors, for a total of 16 channels of data 
acquisition, covering an area of 14 X 3.5 cm on the forehead (see Figure 1). A source-detector 
distance of 2.5 cm provides a penetration depth of 1.25 cm. The probe positioning is such that 
the line of sources is set at the line of fronto-polar electrodes [FP1–FP2] (in the International 
10–20 system). This is designed to image cortical areas that correspond to DLPFC (Izzetoglu, 
2005). The DLPFC generally occupies the upper and side regions of the frontal lobes. It is 
comprised of BA 9 and 46. Area 9 occupies the dorsal region of lateral PFC and extends 
medially to the paracingulate of humans. Area 46 is generally located at the anterior end of the 
middle frontal sulcus. The fronto-polar PFC, BA 10, is a region positioned above the Orbito 
Frontal Cortex (OFC), inferior to Area 9, and anterior to Area 46, serving as a junction point 
between the OFC and DLPFC (Krawczyk, 2002). A complete data acquisition cycle lasts 
approximately 330ms, making the temporal resolution approximately 3 Hz. 

5. fNIRS research 

5.1 Prefrontal activity and learning processes 
Understanding the processes which underlie learning has become a central theme in current 
society, whether it is in the scope of education or in the field of neurorehabilitation. The 
proper functioning of learning processes can determine the efficacy of an individual’s 
adaptation in society. By identifying these processes, we can identify learning problems 
early on in childhood and intervene. This is also true in the rehabilitation of patients with 
brain injury, or with memory-related neuropathology, where learning processes can 
determine the path of neurorehabilitation within a therapeutic program.  
During learning, different brain structures begin to function, regardless of content, channel 

or mode of information. PFC participates in memory control (Luria 1973; Blumenfeld & 

Ranganath, 2006), particularly dorsolateral PFC (DLPFC), which plays a relevant role in 

temporal integration by means of functions that are complimentary and temporally 

reciprocal. The capacity to learn and remember highlights the plastic, adaptive ability of the 

neural system to change in response to experience. This capacity to integrate information is 
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widely considered to be a product of working memory (WM) (D’Esposito et al., 1998; Owen, 

1997, 2000). The following two articles provide evidences on how prefrontal cortex is related 

to learning capacity and working memory.  

The first study (León-Carrión et al., 2010) was designed to measure the physiological effects 
of repetition on learning and working memory using an adaptation of Luria’s Memory 
Word-Task (LMWT). The study focused on the physiological effects of repetition on learning 
and working memory. We have used an adaptation of Luria’s Memory Word-Task (LMWT) 
to study functional hemodynamic changes related to learning by verbal repetition. 
Functional near infrared spectroscopy (fNIRS) is used to test the hypotheses that repeated 
verbal presentation of information will produce an increase in DLPFC activation only 
during learning, followed by a decrease in activation once the information has been learned.  
This study assessed the hemodynamic response of DLPFC in 13 healthy subjects while 
performing a Luria task. All subjects successfully completed the task. A significant result 
from our data was that during the learning process, an increase in activation takes place in 
right and left DLPFC, which then decreases or ceases when the learning is complete. Our 
findings show neural repetition suppression (NRS) (see Grill-Spector et al., 2006 for a 
review) in DLPFC after effective verbal learning, an adaptation of hemodynamic activity in 
DLPFC during multiple repetitions. The correlations between memory recall and fNIRS 
activation evidences the neurophysiological substrates related to LWMT (see Tables 1 and 
2). In psychobiological terms, this indicates that NRS must be present in successful verbal 
learning to maximize the effectiveness and accuracy of learning, and also to free up space in 
working memory. This optimization of neural responses stems from a verbal learning 
process that to be effective, requires time and repetition of the material being learned. Thus 
effective learning by repetition produces a reduced demand on WM through decreased 
DLPFC oxygenation as a consequence of a shift from controlled to automatic processing. 
Our results also point out that NRS is necessary not only to complete or close learning, but 
to keep DLPFC free and available for engagement in other tasks upon demand. 
The second study used fNIRS and the N-Back paradigm to assess prefrontal activation. The 
N-Back paradigm and its variations have been used in numerous neuroimaging studies 
investigating the neural bases of working memory processes (Owen et al., 2005). In the 
current study, a modified version of the N-back task is applied (see Fig 5), which includes 
working memory manipulation to explore PFC activation during tasks requiring working 
memory (Baddeley, 1986).  
 

The N-back task is designed to increase the manipulative character of information, 

producing more activation in regions associated with working memory. We hypothesized 

that as task difficulty increased, so would the differentiation in activation among different 

areas of DLPFC. The study included 20 healthy volunteers (14 female, 6 male), all right-

handed and between 22 – 39 years of age (mean age = 26.6; SD = 4.15). fNIRS and oxyHb 

molecule mobilization were also used to measure DLPFC activation. The preliminary results 

showed that like classic verbal N-back tasks, the modified version activated the same 

regions of PFC but with greater intensity. The main result showed that while both N-back 

tasks (modified and classic) activated the same left DLPFC regions, the modified version 

registered greater differential activation. One possible explanation for the differential 

activation could be that the modified N-back had a deeper processing of information, with 

its manipulation involving semantic category and chronological order (days of the week). 

This higher information processing implies greater executive control, and an increase in 

regional cerebral blow flow in areas related to verbal working memory. In our study, areas  
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Fig. 5. Paradigms for unmodified N-back tasks (above) and modified N-back tasks (below). The 

0-back condition for both sets of tasks required a response when the word "Domingo" appeared. 

A fixation point (+) was located between stimuli. In the unmodified 1-back condition, the 

subject had to respond when a stimulus was repeated. In the unmodified 2-back condition, the 

subject had to respond when the present stimulus coincided with the prior stimulus. The 

modified 1-back condition required the subject to respond if the stimulus coincided with day 

after the prior stimulus. The modified 2-back condition requested a response if the present 

stimulus coincided with the day after the stimulus presented two positions back.  

with significant differential activation, associated with verbal manipulation and 

maintenance, corresponded with DLPFC and left frontal operculum (Brodmann Areas 9, 10, 

45 y 46) (See Fig 6). 
Overall, these two studies carried out with fNIRS indicate the importance of DLPFC in 
learning processes. The learning of verbal information, both auditory and verbally, is 
determined by the capacity of working memory to load information temporarily and 
manipulate it. The increased load and manipulation of verbal information result in 
increased physiological activation in related zones. This increased activation translates to an 
increase in CBF in areas related to verbal tasks, mostly in the left hemisphere. 
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Fig. 6. Channels significantly activated during modified N-back task 

5.2 Prefrontal activity and the affective dimension 
The fNIRS is an excellent tool for studying the temporal dimension of hemodynamic 
activity, in terms of both reaction time (measured in ms) and residual activation after 
stimulus cessation. This residual activation could shed light on the characteristics of human 
behaviour. It is generally accepted that brain activation is elicited by direct 
cognitive/affective stimulation and that this activation decreases with stimulus cessation 
(Huettel & McCarthy, 2001). The DLPFC (Brodmann areas 9 and 46) has been selected as 
region of interest (ROI) based on a review of the literature which guarantees that emotional 
stimuli will produce some kind of activation in our ROI. These findings include DLPFC’s 
sensitivity to emotional and motivationally significant aspects of stimuli (Hikosaka & 
Watanabe, 2000; Williams et al., 2001). The following articles display DLPFC activation 
during the viewing of scenes with different emotional content.  
This first paper introduces a new paradigm in the study of emotional processes, 
emphasizing the role of affective dimensions in DLPFC and their influence on the 
neuroimaging of evoked hemodynamic changes (Leon-Carrion et al., 2007a). Two affective 
dimensions have been studied extensively in neuroimaging research on emotional stimuli: 
arousal (exciting or calming) and valence (positive or negative) (Bradley et al., 1992). 
Another question that needs to be studied is whether the value (valence) and intensity 
(arousal) of an emotional stimulus evokes the same type of neural activation. 
By using fNIRS, our intent was to image PFC oxyHb (oxygenated haemoglobin) changes 
and the duration of activation in relation to how subjects rated emotional stimuli (valence 
and arousal). We studied evoked-cerebral blood oxygenation (CBO) changes in DLPFC 
during direct exposure to emotion-eliciting stimuli (‘on’ period) and during the period 
directly following stimulus cessation (‘off’ period). Our hypothesis was that the evoked-
CBO, rather than return to baseline after emotional stimulus cessation, would show either a 
significant increase (overshoot) or a significant decrease (undershoot) in oxyHb.  
This study used visual emotional stimuli (film clips) of moderate length (approx. 20 s) and 
different emotional content to study the duration of DLPFC activation and provoke strong, 
lasting responses that could be easily registered. The content of the scenes ranged from 
mutilation, repulsive acts, and violence to walking along the street, cartoons, and scenes 
with explicit sex. The results showed that by using subjective ratings in analyzing PFC 
activation to account for individual differences in emotional response to salient stimuli, and 
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by incorporating subjective data on emotional arousal, more robust activation occurred 
within DLPFC during the ‘off’ period than the ‘on’ period. In other words, when the 
subjective degree of arousal is high, the representation of the stimulus remains in the 
prefrontal cortex, even when the stimulus is no longer present. The persistence of sources of 
DLPFC activation during the ‘off’ period is closely related to the degree of arousal that the 
subject assigns to the stimulus (Fig 7). 
 

 

Fig. 7. Figure displays relative oxyHb concentrations, interpolated from the DLPFC channels 
of data acquisition in both on and off period for each emotional condition. The brain 
templates on the left and right represent the mean oxygenation during ‘on’ and ‘off’ periods, 
respectively. Valence category: (a) for unpleasant clips; (b) for neutral; and (c) for pleasant. 
Arousal category: (d) for non-arousing; and (e) for arousing. (Leon-Carrion et al., 2007a) 
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The principle finding of this study was that an overshoot related to level of arousal in the 
DLPFC persists even when the arousing stimulus has disappeared. Our data also confirmed 
that valence and arousal have different effects on the course of evoked-CBO response in 
DLPFC. We also found significant post-stimulus overshoot related to arousal ratings. 
Significant differences between ‘on’ and ‘off’ periods of DLPFC activation based on valence 
ratings were not observed. In conclusion, our findings provide the first fNIRS evidence 
directly showing that an increment in subjective arousal leads to activation within DLPFC. 
This paper introduces a new paradigm in the study of emotional processes using functional 
neuroimaging techniques. Since arousing stimuli produce longer periods of brain activation 
than do non-arousing stimuli, neuroimaging studies must consider the duration and 
affective dimensions of the stimulus as well as the duration of the scanning. It will be 
necessary to specify how long a subject is exposed to a stimulus and how much of the 
recorded response is analyzed.  
The second study (Leon-Carrion et al., 2007b) explored DLPFC structures involved in the 
processing of erotic and non-sexual films. DLPFC plays a specific role in working memory 
in order to guide the inhibition or elicitation of sexual action. Different neurosurgery studies 
have demonstrated that frontal cortex is involved in the inhibitory control of human sexual 
behaviour (Freeman, 1973; Terzian & Ore, 1955). Here, we measured stimulus response both 
during direct viewing of the stimulus and for a short time after stimulus cessation, and 
recorded the temporal course of activation in DLPFC. Our hypothesis was that the sexual 
stimulus would produce a DLPFC overshoot during the period of direct perception (“on” 
period) that would continue after stimulus cessation (“off” period), whereas the non-sexual 
stimulus would not produce overshoot during either period. 
Changes in pre-frontal concentrations of oxygenated haemoglobin (oxyHb) were measured 
during the two experimental conditions (“on” and “off” periods). Figure 8 shows a diagram 
of stimuli presentation and the sequence of fNIRS data acquisition. At the end of the 
presentation, participants were asked to rate each scene from 1 to 9 on a 2-dimensional scale. 
The first dimension, valence, corresponded to the subject’s personal evaluation of the degree 
of pleasantness/unpleasantness of each scene, and the second, arousal, referred to how 
exciting or relaxing the subject perceived the scene to be. 
 

 

Fig. 8. Diagram of stimuli presentation and sequence of fNIRS recording. Note that to avoid 
accumulative effect, independent local baselines were recorded. (Leon-Carrion et al., 2007b) 

This is the first study to show that exposure to a sexually explicit scene produces strong 
overshoot in DLPFC, while exposure to a non-sexual scene does not. A significantly rapid 
and ascendant course in DLPFC overshoot was observed during direct viewing (“on” 
period) of the sexual scene, which became even more pronounced directly after viewing 
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(“off” period), whereas a strong undershoot was observed for the non-sexual condition 
during the “off” period. We also found that the hemodynamic response to visual sexual 
stimuli differed between genders, with men registering higher oxyHb levels in DLPFC than 
women. Men seemed to be more interested in arousing visual stimuli as soon as these were 
perceived, and they experienced greater conflict in controlling their response. Men and 
women could differ in the urgency of response to a sexual stimulus, with men experiencing 
a greater degree of urgency than women. Compared to baselines, both genders showed 
significant overshoot in response to the sexual stimulus, but men showed a higher 
activation in absolute values. In men, activation was rapid and quickly increased, right 
from the onset of the stimulus, whereas women generally had a more delayed initial 
activation, which remained more stable than in men. This indicates that women, in 
general, would be more capable than men of controlling their response once aroused, and 
that this control, in both men and women, is a function of DLPFC. We therefore conclude 
that DLPFC plays a critical role in the self-regulation of sexual arousal. This study also 
demonstrates the feasibility of examining brain activation/sexual response relationships 
in an fNIRS environment. 
Summarizing, the fNIRS is proven to be a useful tool for research on cognitive as well as 

emotional processes. Its high temporal resolution facilitates research of cerebral processes in 

their most dynamic and lasting form.  

5.3 Near-Infrared Spectroscopy and its clinical use 

In recent years, the use of near-infrared spectroscopy (NIRS) has steadily increased. It is 

now being applied in clinical settings, primarily in the field of medical monitoring and 

diagnosis (Frangioni, 2008; Kurth et al., 1995; Ward et al., 2006). One significant 

development has been the Infrascanner©, a tool which uses NIRS technology for the early 

diagnosis of cerebral haematomas (Leon-Carrion et al., 2010).  

Traumatic brain injury (TBI) is a leading cause of death and disability and a major public 
health problem in the US, Canada (Leon-Carrion et al., 2005; Zygun et al., 2005) and 
Europe (Bruns & Hauser, 2003; Tagliaferri et al., 2006). Delayed medical attention is the 
strongest independent predictor of mortality in TBI patients. Early detection and surgical 
evacuation of mass-occupying lesions have decreased mortality and improved outcome in 
these patients. This reduction in mortality and morbidity requires rapid identification of 
the patient’s cerebral and cranial status. Any further delay in haematoma evaluation 
severely increases mortality and worsens functional outcome in patients who survive 
(Seeling et al., 1985). NIRS technology could improve existing methods of identification of 
intracranial haematomas in these patients in situ. The Infrascanner test lasts 3 minutes 
and is easy to use in assessment applications as well as data organization and 
transmission. The purpose of this pilot investigation was to evaluate the Infrascanner as a 
handheld medical screening tool for the in situ detection of brain haematomas in patients 
who sustained a head injury. 
The Infrascanner includes two main components: a NIRS-based sensor and a wireless 

personal digital assistant (PDA). The sensor includes a safe Class I NIRS diode laser, 

optically coupled to the patient’s head by means of two disposable light guides in a 

‘hairbrush’ like configuration. This configuration allows the sensor to contact the skin of the 

scalp. The 4.0cm separation between light source and detector allows NIRS absorbance 

measurement (~2cm wide and 2–3cm deep) in tissue volume. The light source uses an 
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808nm wavelength. The detector is covered by a band pass filter to minimize interference 

from background light. Electric circuitry is also included to control laser power and detector 

signal amplifier gain. Signals acquired from the detector are digitized and transmitted by a 

wireless link to the PDA. This link is also used to receive and set the sensor’s hardware 

parameters. The PDA receives the data from the sensor and automatically adjusts its settings 

to ensure good data quality. The data is further processed and the results are displayed on 

the PDA screen (Fig 9). 

 

 

 

 
 

 

Fig. 9. Scanning sequence for brain haematoma. (a) The NIRS Sensor has two components: a 
808nm diode laser and a silicon detector. The NIRS light source emits a light that penetrates 
the brain and is registered by the NIRS detector connected to the scalp through two optical 
fibres. The light intensity determines approximately how much blood volume is present. 
The Infrascanner performs symmetrical readings in the four main brain lobes: frontal, 
temporal, parietal and occipital. Haematoma detection derives from the difference in optical 
density between left and right readings for each brain lobe. (b) The detected signal is 
digitized and transmitted to a Bluetooth wireless personal digital assistant (PDA) that 
displays the results on the screen. (Leon-Carrion et al., 2010). 

The results of this pilot study showed that handheld near-infrared Infrascanner 

demonstrates high sensitivity and specificity in detecting intra- and extra-axial hemorrhagic 

haematomas and, even more importantly, it could detect small haematomas (<25 mL) 

within the first 24 hours following injury. Data showed that the Infrascanner achieves 89.5% 

sensitivity when used on patients with TBI. Its on-site capacity to identify patients that have 

suffered an intracranial haematoma may be considered very high. The Infrascanner also 
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showed excellent specificity (81.2%) or the capacity to detect true negatives, identifying 

patients with TBI that have not suffered an intracranial haematoma. When compared to gold 

standard CT scans, its probability of positive predictive value was 85% and 86.7% for 

negative predictive value. This means that the Infrascanner is very accurate when 

confirming the presence or the absence of a haematoma. 

This study demonstrated that the Infrascanner is a useful tool in the initial examination and 
screening of patients with head injury. It has proven utility as an adjunct to CT scans or as a 
preliminary exam given within 24 hours post-injury, when a CT scan is not available. In 
conclusion, the data shows that the Infrascanner is a sound portable device for detecting 
pre-operative intracranial subdural, epidural and subarachnoid haematomas in intensive 
care fields and emergency care units. It could aid paramedics, emergency room physicians 
and hospital staff, permitting earlier treatment and reducing secondary injury caused by 
present and delayed haematomas. 

6. Conclusion 

fNIRS has been approved by the FDA for clinical purposes and can be used simultaneously 
with other neuroimaging technologies. Studies show that fNIRS is a valid and reliable 
assessment tool for task-associated oxygenated blood, and while it may be early to define all 
the applications of this new technology, we believe it promises to find utility far beyond this 
in clinical practice. There are several types of clinical applications that could benefit from the 
unique attributes of fNIRS neuroimaging technology (Izzetoglu et al., 2004): 
- Populations that may not be able to readily tolerate the confines of an fMRI magnet or 

be able to remain sufficiently still, e.g., schizophrenics, autistic children, neonates. 
- Populations that require the long-term monitoring of cerebral oxygenation, e.g., 

premature and other high-risk infants. 
- Studies that require repeated, low-cost neuroimaging, e.g., treatment studies that image 

the cortex for efficacy. 
- Applications where an fMRI system would be too expensive or cumbersome, e.g., for 

use in a clinical office. 
- Applications that require ecological validity, e.g., working at a computer or in an 

educational setting. 
Furthermore, its current use is widely accepted by the neuroscientific community for 
studying cerebral functions due to its high level of consistency with findings based on 
traditional neuroimaging techniques. Like these, it measures neuronal activity indirectly via 
hemodynamic response. However, fNIRS is the only technique which can measure both 
extracellular and intracellular activation, with the latter still under development. fNIRS 
holds great potential for growth and application in clinical and research settings, offering 
new possibilities in neuroimaging techniques and expanding our knowledge about the 
functional organisation of the brain.  
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