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1. Introduction

The Breast cancer whose region is difficult to be visually detected is a major cause of
death among women (Nishikawa, 2007). So, the quality of radiologist judgment of whether
the suspected region is malignant or benign will not be guaranteed. So far, screening
mammography has been the best available radiological technique for an early detection of
breast cancer (Siddiqui et al., 2005). However, because of the large number of mammograms
to be analysed, radiologists can make false detections. Thus, there are new solutions of
automatic detection pertaining to the problems of analysis that can be explored. In this
context, Computer Aided Diagnosis (CADi) and Computer Aided Detection (CADe) are two
systems that can solve these problems (Rangayyan et al., 2007). In fact, CADe System is based
on the detection of Region Of Interest (ROI) and decision. As for, CADi build on good isolation
of ROI, analysis and classification to have a decision and/or aid for decision.

This paper proposes a CADi System based on Texture/Shape characterization to reduce the
load of radiologists work. In fact, in the past several years the mammography process has
seen tremendous evolution. In processing and analysis techniques, many methods based on
shape characterization are adopted. So, breast tumours and masses appear in mammograms
with different shapes and characteristics. There are two kinds of tumours: malignant ones
which usually have rough, microlobulated, or spiculated contours, and benign tumours that
have commonly smooth, round, macrolobulated, or oval contours (Reston, 1998). It is true
that this type of characterization is efficient and allows good mammogram exploration, but
the quality of results is women-old dependent: if the woman is younger, it is too hard to
analyse his mammogram. For this reason, we include a texture description of the region
to cope with this problem. So, the density of the region can discriminate the malignity or
benignity of ROI by analysing the texture. Thus, the technique adopted in this work takes
into consideration both texture and shape characterisation. In general, the quality of analysis
is dependent on the quality of segmentation. However, current approaches do not guarantee
a good quality of segmentation. The majority of segmentation-methods take only edge
(inter-area) aspects into account to delimit the ROI. In this context, the manual segmentation
and semi-automatic method are widely used. In (Boujelben et al., 2009a) (Boujelben et al.,
2009b), the threshold-based segmentation is carried out by fixing a rectangular box around
the suspicious tumour area and then using Sobel filter in order to avoid noise. However,
this can affect noise and discontinuities in the border of ROI. In addition, active contours,
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depending on edge criterion, solve the problems of segmentation as noise and discontinuities
(Osher & Fedkiw, 2002). However, breast quality makes segmentation effective only by
taking both intra-area and inter-area aspects into account. To attain our objective which
is the ROI segmentation in mammographic images, we apply the Level Set method based
on external function (convergence function) that represents area and contour criteria as
much as possible. In this paper, we include the texture/shape detection in the process
of mammograms diagnosis. The main purpose of this work is the elaboration of a CADi
to reach a good identification of ROI and contribute to a better quality of analysis. This
work, is integrate within the MIPAX (Medical Image Processing and Analysis eXchange)
project which was defined as the object of CES (Computer, Electronic And Smart engineering
systems design Laboratory in National School of Engineers of Sfax) and ANIM(Numeric
Archiving and Medical Imaging in National School of Medicine) collaboration. So, this project
was split in three parts; Numeric Archiving PACS (Picture Archiving and Communication
System), Data Base of User Environment and Automatic Analysis of Medical Images. This
present work articulate around the last part. To attain our objective (CADi), we firstly
show why and how to adapt Level Set-based approach in case of pseudo-detection, which
is a semi-automatic detection by using level-set technique; and secondly, we study the
performance of boundary, region and texture features in a mammogram diagnosis process.
The remainder of this paper is organised as follows. Section 2 presents the state of the art of
shape/texture analysis; without loss of generality, we outline the most original and important
work addressing mammogram analysis. Section 3 describes the proposed block diagram
for mass diagnosis. Section 4 illustrates the deformable model, namely, Level Set approach
adopted in segmentation and its adaptation in case of breast cancer detection. Afterwards,
section 5 presents the adopted method for analysis and shows how a combination of shape
and texture features could be advantageous for a good diagnosis. As for section 6, it presents
the results obtained by the proposed scheme. Lastly, section 7 gives some concluding remarks
and draws some future work.

2. Context of state of the art

The medical imaging is an active domain that embraces various topics like image processing,
mass segmentation or detection, mass analysis and decision or aid for decision. The results
of our research can be viewed in the context of two areas of related work: the detection
of breast cancers, and the analysis of detected breast cancers. The purpose of this paper
is to examine how to differentiate the malignant tumours from the benign ones. So, the
analysis steps are related to pseudo-detection results. In this context, we attempt to present
an adaptation of Level Set technique for pseudo-detection and investigate two approaches
for shape and texture analysis. Therefore, the analysis of texture is used to qualify the
density of ROI or to have an idea about the space distribution of micro-calcification (Dheeba
& Wiselin, 2010) (Wiesmiller & Chandy, 2010)(Boujelben et al., 2011). Generally, texture
feature extraction methods can be classified into three major categories; namely statistical,
structural and spectral. In a biomedical image like mammogram, the characteristics of
the pixels in the texture pattern are not similar everywhere. To cope with this specificity,
statistical approaches for texture analysis such as the moments of gray-level histogram, based
on a Gray-Level Co-occurrence Matrix (GLCM), is used. It is computed to discriminate
different textures in mammographic images (Oliver et al., 2007) (Zwiggelaar & .R.Denton,
2004) (Lambrou et al., 2002) (Masala et al., 2007) (Ahirwar & Jadon, 2011). In this context,
Zwiggelaar et al.(Zwiggelaar & .R.Denton, 2004) include some mathematic operators like
translation and transportation in order to select a sub-set of features from GLCM to have a
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Automatic Diagnosis of Breast Tissue 3

decision about tumour characterisation. Quite close from ours, Lambrou et al. (Lambrou
et al., 2002) studied the effectiveness of GLCM and the higher-order-statistic based on twenty
features. In (Masala et al., 2007), ROI is characterised by eight features extracted from
GLCM. Thereafter, four classifiers were evaluated: Multilayer Perception (MLP), Probabilistic
Neural Network (PNN), Radial Basis Function Network (RBF) and k-Nearest Neighbours
(KNN). In opposition to (Masala et al., 2007), we evaluate the effectiveness of two classifiers:
MLP and KNN classifiers. Using statistical approaches, we extract six characteristics from
Co-occurrence matrix. Therefore, we compute the average value of each characteristic
over each orientation(0, 45, 90 and 135). The second criterion in medical image analysis
process is the analysis of shape which is built over two phases, namely boundary and
region analysis. In case of boundary, many work focused on the Radial Distance Measure
(RDM)(Rangayyan et al., 2006)Boujelben et al. (2009a)(Alvarenga et al., 2006), Convexity
(CVX), Fourier Fraction (FF) (Rangayyan et al., 1997), Fractal Dimension (FD) (Nguyen &
Rangayyan, 2005) (Nguyen & Rangayyan, 2006) and the angular measure (Yang et al., 2005)
(Denise et al., 2008) (Rangayyan et al., 2006). However, methods defined in the context of
angular measures provides so far either of the two categories: Radial Angle (RA) (Yang et al.,
2005) or Turning Angle(TA) (Denise et al., 2008) (Rangayyan et al., 2006). In this context, Sheng
Chih et al. (Yang et al., 2005) used the RA, which is the smallest angle included between the
gradient direction and the radial direction of the edge. The RA forms a good feature for a
malignant/benign discrimination. In fact, if the angle increases towards 180 degree, then it is
a benign mass. In contrast, if the angle decreases towards zero degree, then it is a malignant
mass. Nevertheless, the computation of RA takes many times. His temporel complexity
increases because alarge number of points in the perimeter of the region are taken into account
through the calculus. Unlike RA, TA tackle the problem of temporel complexity. However, the
calculus is limited to the convex points that forms the perimeter of the region(Rangayyan et al.,
2006) with preserving the result quality. Quite close from (Rangayyan et al., 2006), we propose
a novel measure denoted Index Angle (IA)(Boujelben et al., 2009b). Its based on the external
and internal angle concepts. We will show in section 5 the technical details of the IA calculus.
We will also show how the IA can be efficient to differentiate malignant mass from benign
ones. On the other hand, the RDM descriptor (Alvarenga et al., 2006) (Delogu et al., 2008)
was taken a great importance in medical imaging litterature. It is based on the computation of
the distances between contour points and gravity center of the region. However, it provides
a complete knowledge concerning circularity of the region. The RDM technique presents any
advantages like normalized computation and insensibility to affine transformations. From
the RDM, Alvarenga et al.(Alvarenga et al., 2006) and Delogu et al. (Delogu et al., 2008)
extracted many features like Roughness (R), Standard DEViation (SDEV), etc. They combined
the RDM and the region features to improve mass description. In (Alvarenga et al., 2006), the
performance and relevance of a set of shape features extracted from the RDM method and
the Convex-Hull are evaluated. In contrast, Delogu et al. (Delogu et al., 2008) evaluated the
combination of some features extracted from RDM and others like Convexity and Circularity.
The RDM is a method that can differentiate between the malignant and benign cases, but, it
can cause noise in the calculation of each boundary point. Furthermore, it can also cause a
long time of calculation. To deal with these problems, we propose to calculate the features
only in the concave and convex points. In fact, the extended RDM that we propose, XRDM
(Boujelben et al., 2009a), is shown in section 5. Like contour descriptor explained above,
region descriptor was taken a great importance in image description. It is used to describe
the regularity of the mammogram masses. However, simple morphologic features like
Circularity and Eccentricity are extracted through this descriptor (Yang et al., 2005)(Boujelben
et al., 2009b)(Delogu et al., 2008). Alvarenga et al. (Alvarenga et al., 2006) evaluated the
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performance and relevance of seven shape features; namely Perimeter (P), Normalized Radial
Length (NRL), SDEV, Area Ratio (AR), contour roughness (R), Circularity and Mshape. These
characteristics are enriched by adding some other ones in (Retico et al., 2007). The most
important added characteristics are Zero Crossing (ZC) (i.e. a count of the number of times
the radial distance plot crosses the average radial distance) and Convexity, which allows the
representation of the studied shape better than the characteristics cited above. In this chapter,
we present an approach of shape analysis in our diagnosis process of mammograms. From
region criteria we use characteristics like Circularity, which can be useful in this direction
and can give an indication on the regularity of a given mammogram mass, Internal/External
Circle (IEC), which can be used to measure the elongation of shape, and NRV. Added to
that, the features combination based on shape and texture is used in the CADi systems. In
(Maglogiannis et al., 2007), Maglogiannis et al. proposed an intelligent system for automatic
breast cancer diagnosis using Support-Vector-Machines based classifiers (SVM). The features
used are based on texture and shape criteria like radius (means of distances from centre
to points on the perimeter), SDEV of grey-scale values, Perimeter, Area, Smoothness (local
variation in radius lengths), Compactness, Concavity (severity of concave portions of the
contour), concaves points (number of concave portions of the contour), symmetry and FD.
Furthermore, 22 features based on edge-sharpness, shape and texture are extracted by Nandi
et al. (Nandi et al., 2006). They adopted Genetic Programming (GP) for features classification.
This method handles implicit feature selection. The GP is also used in (Zadeh et al., 2001)
to compare the performance of four different texture and shape feature extraction methods
which are conventional shape quantifiers, co-occurrence-based method of Haralick, wavelet
transformations and multi-wavelet transformations. Zadeh et al. (Zadeh et al., 2004) began
again their work done in (Zadeh et al., 2001) by considering 17 shape and 44 texture features.
They selected the best feature using Genetic Algorithm (GA).

In summary, the medical imaging literature is splited so far either of two orientations: many
methods independently process on contour, region and texture indexes while others attempt
a combination of all these indexes and a selection of the more important features with GA.
Yet, it is clear that the characteristic of masses has information based on these proprieties
(region, contour and texture). The subject matter is that the combination of the characteristics
of different properties can lead or not to a good quality of diagnosis.

However, the identification of breast region is important to improve the analysis process.
So, breast tumours and masses appear in mammograms with different shape characteristics.
Detecting the region can give an idea about the nature of diagnosis. However, in the
past several years there has been tremendous evolution in mammography process. In
this context, two approaches are used in the literature: automatic detection and region
segmentation. Concerning detection, Torrent et al. (Torrent et al., 2008) presents a comparison
of two clustering based algorithms and one region based algorithm for segmenting fatty
and dense tissue in mammographic images. The first algorithm is a multiple thresholding
algorithm based on the excess entropy, the second one is based on the Fuzzy C-Means
clustering algorithm, and the third one is based on a statistical analysis of the breast.
In addition, method based on multiresolution approach to the computer aided detection
of clustered micro-calcifications in digitized mammograms based on Gabor elementary
functions is illustrated in (Catanzariti et al., 2003). So, a bank of Gabor functions with
varying spatial extent and tuned to different spatial frequencies is used for the extraction
of micro-calcifications characteristics. Firstly, results show that most micro-calcifications,
isolated or clustered, are detected and secondly the classification is illustrated by an Artificial
Neural Network with supervised learning. On the other hand, Thangavel et al. (Thangavel
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& Karnan, 2005) present an Ant Colony Optimization (ACO) and Genetic Algorithm (GA)
for the identification of suspicious regions in mammograms. The proposed method uses
the asymmetry principle (bilateral subtraction): strong structural asymmetries between the
corresponding regions in the left and right breasts are taken as evidence for the possible
presence of micro-calcifications in that region. Bilateral subtraction is achieved in two steps.
First, the mammogram images are enhanced using median filter, then pectoral muscle region
is removed and the border of the mammogram is detected for both left and right images
from the binary image. Further GA is applied to enhance the detected border. So, the
nipple position is identified for both left and right images using GA and ACO, and their
performance is studied. Second, using the border points and nipple position as the reference
of mammogram images are aligned and subtracted to extract the suspicious region. In the
context of detection ROI, Schiabel et al. (Schiabel et al., 2008) proposed a methodology based
on the Watershed transformation, which is combined with two other procedures; histogram
equalization, working as pre-processing for enhancing images contrast, and a labelling
procedure intended to reduce noise. But, Jadhav et al. (Jadhav & Thorat, 2009) used statistical
feature extraction method by using a sliding window analysis, for detecting circumscribed
masses in mammograms. This procedure is implemented by taking into account the
multi-scale statistical properties of the breast tissue, and succeeds in finding the exact tumour
position by performing the mammographic analysis using first few moments of each window.
We have demonstrated that fast implementation in both feature extraction and neural
classification module can be achieved. Nevertheless, a system processes for the mammograms
in several steps is adopted in (Arodz et al., 2006). First, we filter the original picture with
a filter that is sensitive to micro-calcification contrast shape. Then, authors enhance the
mammogram contrast by using wavelet-based sharpening algorithm. Afterwards, present
to radiologist, for visual analysis, such a contrast-enhanced mammogram with suggested
positions of micro-calcification clusters. However, a multi-resolution representation of the
original mammogram is obtained using a linear phase non-separable 2-D wavelet transform
which is adopted in (Liu & Delp, 1997). This is chosen for two reasons. First, it does not
introduce phase distortions in the decomposed images. Second, no bias is introduced in the
horizontal and vertical directions as a separable transform would. Authors used coefficients
of the analysis low pass filter. A set of features are then extracted at each resolution for every
pixel. Detection is performed from the coarsest resolution using binary tree classifiers. This
top-down approach requires less computation by starting with the least amount of data and
propagating detection results to finer resolutions. In addition, wavelet coefficients describe
the local geometry of an image in terms of scale and orientation apart from being flexible
and robust with respect to image resolution and quality (Oliver et al., 2007). In addition,
Marti et al. (Marti et al., 2003) propose a supervised method for the segmentation of masses
in mammographic images. Based on the active region approach, an energy function which
integrates texture, contour and shape information is defined. Then, pixels are aggregated or
eliminated to the region by optimizing this function allowing the obtention of an accurate
segmentation. The algorithm starts with a selected pixel inside the mass, which has been
manually selected by an expert radiologist. Recently, explicit and implicit methods of
deformable model are used in different applications (Brox et al., 2009). In this context, for
breast cancer detection, Ferrari et al. (Ferrari et al., 2004) used a traditional active deformable
contour model (Snake) to limit the breast in the image. To injure the problem of initialisation,
they used an adaptative thresholding. For the elimination of the pectoral muscle, Boucher
et al. (Boucher et al., 2009) used the snake and Ball et al. (Ball & Bruce, 2007) used the
Narrow Band level set methodology with an adaptative segmentation threshold controlled
by a border complexity term. An overview of the literature shows that many methods of
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segmentation and identification are used to detect ROI. In this paper, we propose method
based on Level Set approach which includes edge and region proprieties. So, in the Level Set
approach, two major problems are usually discussed in the bibliographies: initialisation and
evolution function which is the point of interest in section 4. In the next section, we describe
the proposed block diagram for mass diagnosis.

3. Overview

The proposed approach consists of three subtasks. Firstly, the identification of ROI is done
using a level-set-based approach which includes edge and region criteria. Secondly, features
are extracted, using shape/texture descriptors. Finally, in order to take decision about
diagnosis, we are interested in MLP and KNN classifiers. Figure 1 shows the bloc diagram
of the proposed scheme. The first point of this workflow is the segmentation which will be
detailed in details in next section.

Fig. 1. Proposed Flow

4. Segmentation with deformable models

Image Segmentation is an important step to handle a good analysis. However, it is based on
homogeneity and/or edge criteria of the region. It consists of ROI extraction. So, the choice
of a segmentation technique depends on regularity/irregularity of the edge of the ROI. In
addition, the noise can affect the segmentation quality. However, we are interested in noise
avoiding. Generally, to tackle this problem in medical imaging, explicit and implicit methods
of deformable model are used.

4.1 Explicit deformable models

The active contour model, or snake, is used to detect region of interest (ROI) or contour in
image. It is an energy-minimising-spline technique. The result of this minimisation is guided
by two terms; the first term controls the aspect of the curve: it is often called internal energy.
The second term attracts the curve C towards object which one seeks the borders: it is often
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called external energy. The detail of this method is illustrated in (Kass et al., 1988). The main
concepts are:

• The snake is parametrically defined as:

v(s) = (x(s), y(s)), with s ∈ [0, 1]

• The energy is defined by:

E =
∫ 1

0
α‖ ´V(s)‖+ β‖ ´́

V(s)‖2)ds − λ
∫ 1

0
(‖∇I(V(s))‖2)ds (1)

Where:

• α, β and λ are real constants, respectively coefficients of elasticity, rigidity and contraction
(or dilation) from the curve.

• ∇I(V(s)): is the gradient of image in s.

4.2 Implicit deformable models

Contrary to the explicit models, the implicit deformable models or Level Set approach
(Casselles et al., 1997) uses a dense contour in which the implicit evolution avoids the needs to
track surface markers in relation to each other. So, the Level Set is a method which studies the
evolution of the curve and surfaces (Osher & Fedkiw, 2002). The points defining this interface
will move towards the normal at a speed F according to the following equation:

∂C(t)

∂t
= F

→
N (2)

→
N: Normal with the curve.

F: speed term depends on the curve.

The parametric curve C(t) is improved by the detection of the level zero and the function F
evolves and moves according to:

∂φ

∂t
= F‖∇Φ‖ (3)

The Evolution of this function depends on an initial curve Φ0. In this case, there are two
aspects of research which are the initialization and the function F. The former is adopted in
the present paper with a special focus on the region to be detected. In general (Sethian, 1998),
speed F depends on three terms: first, on the local curve in each point (pondered with ǫ),
second, on the term which is dependent on the image (pondered with β), and third, on a
constant term (pondered with ν). The evolution of the interface is given by the following
equation:

∂φ

∂t
= ǫ ∗ g(I)‖∇Φ‖ ∗ div(

∇φ

|∇φ|
)− β ∗ ∇g(I)‖∇Φ‖+ ν ∗ g(I)‖∇Φ‖ (4)

where: I is the point (i,j) of image matrix

ǫ, β, ν ∈ [0, 1]

g(I) = 1
1+‖∇Φ‖
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To minimize the temporal complexity of this equation, we adopt the Narrow Band and Fast
Marching method in the implementation algorithm of Level Set. Narrow band consists of
computing Level Set on evolution from contour for early inside and outside near the Level Set
zero (Osher & Fedkiw, 2002). The reasons for using this approach are twofold. The first reason
is to optimize time computation efficiency for a numerical calculation Level set method. The
second one is the fact that, in general, regions in breast are difficult to be detected. In fact,
we should focus locally near to the zero Level Set and its neighbouring Level Set because
the local contour has more information significance than distant ones. Still, to accelerate the
convergence of Level Set approach, we adopt a monotonically advancing front based on Fast
Marching approach (Osher & Fedkiw, 2002). Its idea is that if T(x,y) is the time at which the
curve crosses the point (x,y) then the surface T(x,y) satisfies the equation:

‖∇T‖.F = 1 (5)

where:

F =
1

exp(−α∇I)
(6)

This equation allows us to make a good implementation of deformable contours. Indeed,
the changes of topology are automatically managed. Thus, if the image contains several
objects, the contour is divided during its evolution including each object separately. Contour
can also become deformed in order to be adjusted with complex forms, which cannot
do explicit active contours (Snakes). Another positive point is that this method does not
depend on initialization. Nevertheless, in the case of textured images, the criteria of
gradient (edge properties) on which depends this equation (uniformity inter-region) affected
a over-segmentation. So, the presence of textures in a mammographic image generates bad
results because the small areas are privileged. But one can resort to a measurement of
containing area in order to improve the quality of detection.

4.3 Adaptation of a Level Set approach

To solve the problem of mammographic images, which also depends on the information of the
intra-region included in the information of inter-region, we added the criterion of the area. So,
the region property is adopted firstly with the notion of image and secondly with the notion
of propagation (addition of a fourth term). The evolution of the interface which has indeed
ameliorated eq 4 is given by the following equation:

∂C(t)

∂t
=ǫ ∗ g(I)‖∇Φ‖ ∗ div(

∇φ

|∇φ|
−β ∗ (∇g(I)‖∇Φ‖+

Moy(I)

Max(I)
)−ν ∗ g(I)‖∇Φ‖−Θ ∗SkewCN(I)

(7)
where: Θ ∈ [0,1]
Max(I)=maximum of gray-level in image.
Moy(I)=average of gray-level 3*3 centred in (x,y)

SkewCN(I)= SkewnessCentred
Max(Skewness)

The SkewnessCentred corresponds to the moment around the average. It measures the
deviation of the distribution of the gray-level compared to a symmetrical distribution. For
a deviation towards raised values, the Skewness-Centred is positive; whereas for a deviation
towards low values, it is negative. Then SkewCentred can be calculated as follows:

SkewnessCentred =
1

9 ∑
x

∑
y
(I(x, y)− MoY(x, y)) (8)
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Figure 2 show the result of segmentation in the proposed scheme. In the first line, the first

Fig. 2. ROI segmentation with mammogram; The first line showing from left to right: 1- the
original image without contour, 2- the original image in DDSM database detoured by an
experimented radiologic (red line), 3-the image segmented in this approach (red line). The
second line showing the ROI isolated region in three cases: texture, boundary and area.

image is the original image without contour, the second image is the original image in DDSM
database detoured by a radiologic (red line), and the third image is segmented in the context
of this approach (red line) and in the second line, in every raw, we have region isolated ROI
in the original texture, boundary and region, respectively. These three sub-images will be like
entries for the vector which is based on texture, boundary and region. Likewise, it is clear that
our results about segmentation are quite close to the manual segmentation results obtained
by the radiologist. So, what remains is to see the quality of the segmentation that can be
proven by the analysis step. Moreover, breast tumours and masses appear in mammograms
with different shape characteristics. In this context, the method can reflect the irregularity
or regularity of region and more precisely if compared to the manual process. Hence, the
performance is illustrated according to two standpoints: precision of ROI segmentation in
diagnostic relevance and computation time of optimization. After the ROI segmentation, the
extraction of features is adopted in ROI: this is the point of interest that we will focus on, in
the next section of the paper.

5. Analysis: Features extraction

In the ROI segmentation, we use an adaptation of a Level Set Approach with an edge and a
region criterion. In this section, the features extraction is illustrated on any ROI. The mass
have different shape characteristics, particularly, in breast cancer. In this framework, we can
introduce a method based on shape analysis, basically, boundary analysis. Figure 3 shows the
overall shape of benign and malignant mass. Firstly, we start with boundary information.

5.1 Boundary descriptor

Boundary analysis is often referred to in order to help to define regions according to any
criteria. To differentiate between microlobulated region from macrolobulated ones, we can
measure the convexity which is based on boundary. In fact, Retico et al. (Retico et al., 2007)
used CVX in which feature depends on region (ratio of region-air detected by perimeter/or
Air for his Convex envelop). In this subsection, we attempt to improve the importance of the
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Fig. 3. Types of ROI: (a) benign, (b) malignant

analysis of boundary shape. Besides, CVX is the ratio of Convex envelop by perimeter for its
perimeter of the region detected. When the mass tends to be round, its CVX tend to be near
the 1. Conversely, a mass with speculated edge will have a CVX smaller than 0.5. Then, the
CVX can be calculated as follows:

CVX =
Perimeter(ConvexEnvelop)

Perimeter(region)
(9)

The advantage of this feature is that it is standardized and it is invariant with any
affine transformation. After that we can differentiate between the macrolobulated and
microlobulated region. Subsequently, to describe the rough ones, any researchers use RDM
(Boujelben et al., 2009a) and Turning angle (Denise et al., 2008) (Rangayyan et al., 2006). In
fact, RDM is a well-known method used in shape analysis. However, Euclidian distances d(i)
are calculated between the gravity centre in the region and all the points in boundary region
(Figure 4). where:

Fig. 4. Illustrative figure of RDM

d(i) =
√

(Xi − Xg)2 + (Yi − Yg)2 (10)

To eliminate large calculations from characteristics, all radial distances were normalized by
using the maximum value of the radial distances.

dn(i) =
d(i)

max[d(i)]
(11)
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where n: is the number of points (pixels) of the region boundary (the perimeter of region).

Xg =
∑N X

N
(12)

Yg =
∑N Y

N
(13)

where N: is the number of points (pixels) in the region area.

dmoy =
1

n ∑
N

dn(i) (14)

The features extracted in the RDM are cited below. We will only give the expressions of the
RDM features related to this work.

• The Standard Deviation of the Normalized Radial Distance Measure (SDEV) is defined
as the variance of the distances around the ray (the average distance dmoy previously
defined) of a circle. This characteristic gives a good quality of information concerning the
irregularity of contour. Indeed, when it is about a malignant tumour, the value of SDEV
tends to move towards 0.5, and when it is in the case of benign tumour, the SDEV tends to
move towards 0.

SDEV =

√

1

N ∑
N

(dn(i)− dmoy)2 (15)

• Rugosity (R): treats angular contours (contours which contain concave segments). It is
given by the following equation:

R =
1

N ∑
N

‖dn(i)− dn(i + 1)‖ (16)

• Area ratio (Ar): this characteristic differentiates between stellar contours and smooth
contours. It is illustrated in the following equation:

Ar =
1

N ∗ dmoy
∗ ∑

N

(dn(i)− dmoy) (17)

where Ar=0, if(dn(i)≤ dmoy)

In practice, the computation of these features increases the complexity of calculation. To deal
with the problem of complexity, we propose to calculate the features only in the concave and
convex points. The RDM is a method that can differentiate between the malignant and benign
cases, but, it can cause noise in the computation of each point of boundary. Furthermore, it
can also cause a long-time calculation. To solve the problem of noise and computing time, one
can improve the method of RDM. This can be done by implementing the idea of the eXtended
Radial Distance Measure (for more details see (Boujelben et al., 2009a)). In fact, the eXtended
RDM "XRDM" is adopted. So, to solve the problem of complexity, we propose to calculate the
features only in the local concave and convex points as in Figure 5. These points are defined
as follows:

• The concave point (Pconcave (i)) of the contour is a point which have a radial distance d(i)
lower than the radial distance d(i-1) and the radial distance d(i+1).
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Fig. 5. Illustrative figure of eXtended RDM

• The convex point (Pconvexe (i)) of the contour is a point whose radial distance d(i) is higher
than the radial distance d(i-1) and the radial distance d(i+1).

More formally:
Pconcave (i) = (i; d(i) ≤ d(i − 1) et d(i) ≤ d(i + 1))
Pconvexe (i) = (i; d(i) ≥ d(i − 1) et d(i) ≥ d(i + 1))

In the speculated region, the feature like turning angle cannot be applied because of the
problem of segment tangents (Figure 5). However, RDM and XRDM can be used with regions
that have an elliptic shape. In fact the major problem is when there is a speculated region.

Fig. 6. Problem space convergence in malignant boundary

To solve this problem, we introduce a new angular characteristic named Index Angle (IA).

• The IA is the ratio of all the internal angles by external ones: the external angle is the angle
between central convex points (Convex point pi) and their "next-least" convexes points
(Convex point pi-1, p+1). In fact, the internal angle is the angle between a central convex
point and its "next-least" concave points (Figure 7). The IA is applied to make a distinction
between the edge shapes of the mass as being speculated or as being round. When the
mass tends to be round, its IA tends to be near the 1. In opposition, a mass with speculated
edge will have an IA smaller than 0.5. Then, the IA can be calculated as follows:

IA =
∑i φ(i)

∑i θ(i)
(18)
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Fig. 7. An example of Index Angle computation

So, the IA is used only in the concave and convex points and not to any other points. Our
objective is to minimize the temporal complexity differently from the radial angle used in
(Rangayyan et al., 2006). Added to that, the advantage of this characteristic is that it is
standardized and invariant with any affine transformation. In this subsection, we discussed
boundary information of opacity (boundary vector) composing on CVX, XRDM and IA, in the
next subsection, we will put our interest on the region criteria.

5.2 Region descriptor

We use Region Features to describe the mammographic masses through features extracted
region. For this reason, we illustrate a method based on Circularity (C), Internal/External
Circle (IEC) and Normalized Residual Value (NRV)

• Circularity (C): it describes the areas that can be circular. It can be useful in this direction
and can give an indication of the regularity of a given mammogram mass. This feature is
given by the following equation:

C =
4 ∗ Pi ∗ Aire

Perimeter ∗ Perimeter
(19)

where: P is the perimeter and A is the area of the segmented mass.

• Internal External Circle (IEC): This feature can be used to measure the shape elongation
used by Chettaoui et al. (Chettaoui et al., 2005). In our work, we exploit this feature to
describe mass region. The IEC feature is given by the following equation:

IEC =
In f − Radius

Sup − Radius
(20)

where: Sup-Radius represents the largest internal circle and Inf-Radius represents the smallest
external circle(Figure 8).

For a round mass, the value of IEC is close to 1 since the value of Inf-Radius is very close to
the value of Sup-Radius, whereas for a lengthened mass the value of IEC becomes close to 0
since the value of Inf-Radius is far from the value of Sup-Radius.

The advantage of this characteristic is that it is invariant with affine transformation and it is
adequate to our work. In fact, its calculation is slow, since for each form, we should pass
through all the points to determine the circle inscribed in the object which contains this point.

• Normalized Residual Value (NRV): This feature is extracted from the convex-hull by using
the residual region. NRV gives best performances compared to the characteristics that can
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Fig. 8. Illustrative figure of internal/external circle computation

be extracted from the convex-hull, and can be useful in the distinction between the regular
and irregular area. It is given by the following equation:

NRV =
Aire(Resudial − Region)

Perimeter(Convex − Envelop)
(21)

where: Perimeter is the perimeter of the convex-hull and Aire is the area of the residual
region(Figure 9).

Fig. 9. Example of breast tumour and its respective Convex-Hull

In the two last subsections, we focused on shape features which are boundary and region. In
the next subsection we will put emphasis on texture criteria.

5.3 Texture descriptor

The density (Figure 10) of breast region is an important property in ROI. To determine this
quality, we adopt the texture method. In approach to texture feature extraction, which is
frequently cited in the literature, is based on the use of CGLM. Co-occurrence matrix is a
second-order statistical measure of image variation. In this subsection, we detail the feature
of co-occurrence approach.

Fig. 10. The density of ROI opacity
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We represent our analysis by texture statistical. From this approach, we extract six
characteristics which are defined as follows:

mean =
1

N2 ∑
x

∑
y

p(x, y) (22)

where: p(x,y) denotes the gray-level in the co-occurrences matrix.

N: denote the width and the height of co-occurrences matrix. In order to reduce calcul of
co-occurrence characteristics we adopted the original matrix of region, where Gray Level
value are between 0 and maximum of Gray Level value, to adopt a region with size 32X32( i.e.
Gray Level value between 0 and 31)

Variance = ∑
x

∑
y
(x − moy)2 p(x, y) (23)

Energy = ∑
x

∑
y

p(x, y)2 (24)

Contrast = ∑
x

∑
y
(x − y)2 p(x, y) (25)

Entropy = −∑
x

∑
y

p(x, y) log p(x, y) (26)

Homogenety = ∑
x

∑
y

1

1 + (x − y)2
p(x, y) (27)

The algorithm evaluates the properties of the region of the mammographic image. We
investigate the performance of feature in texture from GLCM in diagnosis by using four
orientations 0, 45, 90, 135. From each one, we inspect six features (then we take the average of
one feature of the four orientations). In the next section, we will show the performance of the
textural and shape vector in analyzing ROI in terms of diagnosis relevance by using kNN and
MLP classifier.

6. Results and discussion

The terminology which is used to determine the performance of a CADi System is defined as
follows:

• Sensitivity: percentage of pathological ROIs which is correctly classified.

• Specificity: percentage of non-pathological ROIs which is correctly classified.

• Accuracy: percentage of correctly classified pathological and non-pathological cases.

Because of the variation in the types of breast cancer, a large number of cases can reduce the
dependency of analysis techniques versus image sets. The performance of an algorithm is
affected by the characteristics of a database like the digitization techniques which are namely
pixel size, subtlety of cases, choice of training/testing subsets, etc.

6.1 The DDSM dataset

The establishment of the DDSM allows the possibility of the common training and testing
Dataset. The DDSM is the largest publicly available database of mammographic data. It
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contains approximately 2620 screening mammography cases. From the total number of
mammographic images included in the DDSM database, we use 200 malignant images and
200 benign ones. To make a good evaluation, we use the remaining 400 images which are
divided into 200 ground malignant regions together with 200 entirely benign ones. To classify
the area segmented with Level Set Approach using DDSM dataset with vector illustrated
in the least section, one will use two classifiers which are kNN (K=7) and MLP. In the next
subsection, we illustrate the results of sensibility and specificity adopted with an analysis
method.

6.2 Experimental results: Performance in terms of diagnosis quality

The basic classification is based on two methods of classification KNN (K=7) and MLP as
shown in Table 1, Table 2 and Table 3. It represents the results from different analysis in
boundary, region and texture vector respectively.

classifier Kppv MLP

Sensitivity 87 % 92%

Specificity 88% 90%

Exactitude 88% 91%

Table 1. Results from analysis based on boundary description vector

classifier Kppv MLP

Sensitivity 92% 89%

Specificity 89% 90%

Exactitude 90% 89%

Table 2. Results from analysis based on region description vector

classifier Kppv MLP

Sensitivity 93% 90%

Specificity 87% 87%

Exactitude 89% 89%

Table 3. Results from analysis based on texture description vector

The sensitivity result varies between 87% in boundary vector and 93% in texture feature using
KNN (K=7) classifier. But the result of specificity varies between 87% using KNN classifier in
texture vector and 90% in both MLP classifier region and boundary classifier. These results
seem to be variable because of a variation of result: 6% in pertaining to sensibility and 3%
relating to specificity. In fact, breast tumour sometimes depends on the region, or/and contour
or/and texture criteria. To solve this problem, we propose to combine features vectors. The
results are shown on Table 4, Table 5 and Table 6.

classifier Kppv MLP

Sensitivity 90% 89%

Specificity 86% 89%

Exactitude 88% 89%

Table 4. Results from the analysis based on shape (boundary and region) description vector
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classifier Kppv MLP

Sensitivity 92% 87%

Specificity 92% 88%

Exactitude 92% 88%

Table 5. Results from analysis based on boundary-texture description vector

classifier Kppv MLP

Sensitivity 89% 89%

Specificity 93% 93%

Exactitude 91% 91%

Table 6. Results from the analysis based on region-texture description vector

Table 4, Table 5 and Table 6 show the results of combination of region/boundary features,
region/texture feature and boundary/texture feature, respectively. Table 4 illustrates the
importance of shape information in this analysis. The result in terms of sensitivity tends
to move towards 90% in KNN classifier. The result in terms of specificity tends to move
towards 89% using MLP classifier. So, we can assume that shape vector is a good feature in
differentiating the benign from the malignant mass. In boundary texture-combination, we
find a good result in terms of sensibility and specificity by using KNN classifier differently
from MLP classifier. Table 6 shows the result of features region-texture. In this approach we
can assume good specificity using both MLP and KNN classifiers differently from sensibility.
So, the majority of classifications that are obtained are favourable, but, the problem is in
the stability of result in terms of sensibility, specificity and accuracy. This is conducted by
the combination of all features in Table 7. However, all result are about 90% of sensibility,
specificity and accuracy. This result seems to be logical: ROIs in mammographic image
depends on taking account of region, boundary and texture properties.

classifier Kppv MLP

Sensitivity 90% 89%

Specificity 90% 90%

Exactitude 90% 89%

Table 7. Results from the analysis based on texture-shape description vector

These results are not the best result compared to local works (Boujelben et al., 2009a)
(Boujelben et al., 2009b). However, in (Boujelben et al., 2009b) the result is about 94% in
boundary information; and in (Boujelben et al., 2009a) the result is between 90% and 92%
using XRDM method. In such work, we used DDSM database but the ROI is selected from
the image by fixing a rectangular box around the suspicious lesion area and the classical
method of segmentation based on Sobel filter and thresholding. But, in this approach, we
note the stability of result which is an important quality in analysis of medical imaging.
Comparing these results with other related work, we notice important ameliorations. In fact,
Alvarenga et al. (Alvarenga et al., 2006) obtained 88% of sensitivity and 90% of specificity. In
their experiments, they used a local images dataset and LDA (Linear Discriminant Analysis)
method for classification. Additionally, Rangayyan et al.(Rangayyan et al., 1997) have used the
LDA classifier and their result reaches 95% in terms of classification accuracy. Conversely, the
result of Retico et al.(Retico et al., 2007) using a MLP classifier can reach 78.1% and 79.1% in
sensitivity and specificity, respectively. Using a SVM classifier, Chang et al. (Chang et al.,
2005) obtained 88.89% and 92.5% in terms of sensitivity and specificity, respectively. Yet,
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the characterization of mammographic masses and tumours and their classification as being
benign or malignant is difficult. In spite of acceptable results found by our proposed features,
we should not make an assumption that it is the best or the worst because we did not use the
same Database. In fact, the digitization can reflect the final result. However, we can assume
that by combining feature vector based on shape/texture, we attempt to have good stability
of results in differentiating between the benign and the malignant masses.

7. Conclusion

In this work, we attempted to improve the classification performance of shape and texture in
analyzing ROI in case of mammographic images. We introduced the adaptation of Level Set
approach to detect ROI by combining edge and region criteria. We also presented cooperation
of features to have stability of results because the ROI depends on both shape and texture
properties. The results in terms of sensitivity and specificity tend to reach 90%. The results
have been validated via two algorithms of classification: kNN (K=7) and MLP. These results
seem to be sufficient and an automatic method of detection based on a Level Set Approach
can ameliorate the CADi system to have a CADe one.
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