Chapter from the book *Recent Progress in Optical Fiber Research*
Downloaded from: http://www.intechopen.com/books/recent-progress-in-optical-fiber-research

Interested in publishing with InTechOpen?
Contact us at book.department@intechopen.com
Applications of the Planar Fiber Optic Chip

Brooke M. Beam1, Jennifer L. Burnett2, Nathan A. Webster2 and Sergio B. Mendes2

1University of Arizona  
2University of Louisville  
USA

1. Introduction

The planar fiber-optic chip (FOC) technology combines the sensitivity of an attenuated total reflection (ATR) element with the ease of use of fiber-optic based spectrometers and light sources to create an improved platform for spectroscopic analysis of molecular adsorbates. A multi-mode optical fiber mounted in a V-groove block was side-polished to create a planar platform that allows access to the evanescent field escaping from the fiber core and has been previously applied to absorbance and spectroelectrochemical measurements of molecular thin-films. Light generated in a surface-confined thin molecular film can be back-coupled into the FOC platform when the conditions for light propagation within the waveguide are met. In this chapter the current applications of the FOC platform will be presented including spectroelectrochemical measurements, fluorescence detection of a bioassay, a broadband fiber optic light source, and Raman interrogation of molecular adsorbates.

In recent years, both planar waveguide-based and fiber-optic-based chemical sensors and biosensors have been developed in an attempt to meet the need for miniature, multifunctional, and sensitive sensor platforms. (Bradshaw et al., 2005; Kuswandi et al., 2001; Monk & Walt, 2004; Plowman et al., 1998; Potyrailo et al., 1998; Reichert, 1989; Tien, 1971; Wolfbeis, 2006) The benefits of fiber optic platforms have led several manufactures of analytical instrumentation to develop inexpensive fiber compatible equipment such as readily available fiber-coupled light sources and spectrometers with standard distal end fiber coupling schemes. Fiber coupled sensing architectures, utilizing the fiber as the optical signal transduction platform, have been developed for various geometries including distal end, tapered, de-clad cylindrical core, U-shape de-clad cylindrical core, and biconical tapered optical fibers. (Leung et al., 2007; McDonagh et al., 2008) Simple distal end fiber optic sensors are commercially available where the exposed core on a cleaved and polished end of a fiber is used as the sensing platform. However, the distal end geometry is limited by low sensitivity due to the small interaction area, analogous to the single-pass transmission absorbance measurement. A second more fragile distal end sensor geometry uses a tapered fiber where the fiber core is etched with HF into a point. The tapered fiber increases the evanescent field amplitude and penetration depth, thus increasing the sensitivity of the platform. Tapered fiber optic sensors are primarily used as fluorescence detection platforms in biochemical and clinical applications. (Anderson et al., 1993; Anderson et al., 1994; Anderson et al., 1994; Golden et al., 1992; Grant & Glass, 1997; Maragos & Thompson, 1999; Thompson & Maragos, 1996; Wiejata et al., 2003; Zhou et al., 1997)
Previous studies, which have taken advantage of the convenience of fiber coupled instrumentation and the increased sensitivity of the total internal reflection geometry, have used a fiber optic with the cladding removed to create a sensing element around the cylindrical fiber core. The exposed core region serves as an ATR element that can be used for absorbance measurements to detect volatile organic compounds (Blair et al., 1997), probe dye solutions (Ruddy et al., 1990), monitor methane gas (Tai et al., 1987) and ammonium ion (Malins et al., 1998) concentrations, and determine solution pH using indicator doped sol-gel coatings (Gupta & Sharma, 1997; MacCraith, 1993), or an indicator doped polymer film. (Egami et al., 1996) Several investigators have worked to further increase the sensitivity of the de-clad cylindrical core fiber optic sensors by tapering the fiber optic (Guo & Albin, 2003; Gupta et al., 1994; Mackenzie & Payne, 1990; Mignani et al., 1998) or bending the sensing region (i.e. into a U-shape). (Khi Jainia & Gupta, 1998; Khi Jainia & Gupta, 2000) Fiber optic sensors using the tapered fiber geometry include a humidity (Bariai et al., 2000), temperature (Diaz-Herrera et al., 2004), hydrogen gas (Villatoro et al., 2005), and bovine serum albumin sensors. (Leung et al., 2007; Preejith et al., 2003) U-shaped fiber optic sensors have been used to detect humidity (Gupta & Ratnanjali, 2001), pH (Gupta & Sharma, 2002), and ammonium ion concentrations. (Potyrailo & Hieftje, 1998) Such fiber optic sensor architectures employ signal transduction through a fragile cylindrical probing interface, which can be problematic for several applications where a robust platform or planar deposition technologies are required. Clearly, a supported planar interface would be advantageous for using standard planar deposition technologies such as Langmuir-Blodgett (LB)-deposited thin-films (Doherty et al., 2005; Flora et al., 2005) and planar supported lipid bilayers. (McBee et al., 2006) In addition, due to its more robust supported platform, a planar design would be amenable for integration into microfluidic systems and sensor arrays. The FOC platform is schematically shown in Figure 1.

![Fig. 1. Fiber Optic Chip (FOC) schematic of a side polished fiber mounted in a V-groove where red represents the exposed fiber core sensing platform. a) Top down view; b) Side view; c) Cross section. Figure modified from Beam et al., 2007 and Beam et al., 2009.](image)

1.1 FOC manufacture
The FOC is a D-shaped, side polished fiber optic platform with access to the evanescent field escaping from the fiber core. Fabrication of the FOC begins with stripping the jacket off of a small central section, 2 to 4 cm, of an optical fiber to expose the cladding. The optical fibers used for this work are a 50 µm core/125 µm cladding multimode, step-index optical fiber (Thorlabs AF550/125Y), with 0.22 numerical aperture (NA). The stripped section of the optical fiber is then mounted in a V-groove substrate using a two-part epoxy; the V-groove acts as a platform for spectroscopic investigation as well as supports the fragile fiber during the polishing procedure. Prior to mounting the fiber, the edges of the V-groove block must be polished to a 2° taper. Using a custom built assembly jig to keep tension on the fiber
during hotplate curing, the fiber is laid into the V-groove and optical grade epoxy (Epotek 301) is applied liberally to ensure permanent immobilization of the fiber. The first generation FOC platforms were produced by side-polishing an optical fiber in a glass V-groove mount, but subsequent improvements on the FOC manufacturing process include replacing the glass V-groove with a customized etched silicon wafer support, improved polishing processing, and finally generating arrays of side polished fibers (Figure 2).

Fig. 2. Schematic for construction of FOC devices.

Initially glass V-groove mounts were purchased from Mindrum with dimensions of 40 mm long, 2 mm wide, and 1.33 mm tall; however, there was a limited supply and the glass V-grooves were not uniform requiring careful charaterization of each piece prior to use. Later V-groove mounts were produced using a chemical etching process (Kendall, 1979) to create a channel in a Si-wafer. Due to the crystalline structure of silicon, the resultant channel has two sloping walls forming a V shape. Creating the V-groove begins with a 500 µm thick Si-wafer with a minimum of a 1 µm oxidized layer. A layer of hexamethyldisilazane (HMDS) primer followed by a layer of photo-resist (Shipley 1813) is spin-coated on the wafer and cured on a hot plate. A slotted mask is placed on top of the wafer using a mask aligner (Süss MicroTec). The slots are of the desired width for the eventual V-groove. The masked wafer is then exposed to UV light for 7 seconds. The wafer is then placed in developer (Microdeposit MF-319) leaving photo-resist in the areas that the mask covered and exposing the wafer surface in the slot formation. The wafer is covered in buffered oxide etchant (BOE) to erode the oxide layer of the exposed wafer, etching the masked pattern into the oxide layer. The BOE will remove 100nm/min of the oxidized layer, so at minimum the wafer should remain in the BOE for a period of 10 minutes. The remaining photo-resist is then removed using a solvent rinse. Finally, the V-grooves are formed through chemical etch in 45% KOH, which is set on a magnetic stirrer and heated to 55° C. It should be noted that the etching rate of the KOH increases with temperature. The KOH etches the silicon at a much faster rate than the SiO₂ creating grooves only in the areas without an oxidized layer. The angle between the sloping walls and the face of the substrate, 54.74°, is set by the silicon crystalline structure. Etching will terminate once the (1,1,1) plane is reached; therefore, the depth of the V-groove is pre-determined by the width of the lines in the mask. The resultant V-groove is approximately 240 µm wide and 170 µm deep. Once the chemical etching of the V-grooves is complete, the Si-wafer is diced into approximately 40 mm by 5 mm long strips with a V-groove running longwise through the center of each or the wafer can remain intact to create a FOC array base structure.

Side polishing the fiber to create the D-shaped geometrey of the FOC is achieved using a two part lapping process, where the cladding is slowly polished away exposing the core of
the multimode fiber. All lapping and polishing steps are performed on a Lapmaseter model 12 with a cast iron lapping plate covered with a polyurethane pad. The FOC device is mounted onto a custom machined spindle carrier with brass sleeve bearings to hinder parallax motion. If this wobble is not corrected for, the FOC will not be polished evenly leading to the outer edges eroding at a faster rate. First, a coarse grit slurry composed of 1% 1-µm alumina powder (MetMaster SF-RF-1P) is used to lap the device at a rate of about 20 rpm. When the measured width of the exposed cladding is approximately 115 µm, the slurry is changed to a fine grit polishing solution composed of 1% 0.5-µm cerium oxide (Logitech OCON 260). Polishing continues until the center of the fiber is reached, measuring approximately 125 µm across the width of the exposed cladding. Once lapping is complete, FC-PC connectors are attached to the optical fiber ends on both sides of the device. The sensitivity of an FOC device is intrinsically dependent upon the specific geometry of the side-polished fiber. The fundamental limit of the elliptical flattened area is determined by the structure of the V-groove mount, evenly mounting the fiber in epoxy, and the efficiency of exposure of the fiber core through the polishing process. The depth to which the fiber has been polished is determined by measuring the width of exposed fiber. The width of the fiber is monitored using a standard optical microscope (VWR Vista Vision) and periodically measuring from the boundary of the cladding and epoxy on either side of the fiber. Measurements are taken periodically throughout the lapping process to ensure the fiber is polishing evenly.

1.2 Broadband absorbance measurements on the FOC platform

The initial application of the FOC platform was to examine the broadband absorbance characteristics of molecular thin-films. A schematic of the experimental set-up for general absorbance measurements on the FOC is shown in Figure 3a. The thin-film absorbance sensitivity enhancement of the FOC device was evaluated and compared to previously existing technologies. The sensitivity factor \( S \) of a device, defined in Equation 1, is a scaling factor of the device absorbance \( A_{\text{FOC}} \) with respect to the conventional absorbance measured \( A_{\text{transmission}} \) in direct transmission and used to quantify the sensitivity enhancement of the FOC and ATR platforms.

\[
S = \frac{A_{\text{FOC, film}}}{A_{\text{transmission}}} = \frac{A_{\text{FOC, film}}}{\varepsilon_{\text{film}} \Gamma_{\text{film}}}
\]  

Where \( \varepsilon \) is the molar absorptivity and \( \Gamma \) is the molecular surface coverage of the film under test. Absorbance of a polyion self-assembled film of poly (diallyldimethylammonium chloride) (P+) and Nickel (II) phthalocyaninetetrasulfonic acid (Ni (TSPc)) on both the FOC and ATR (Doherty et al., 2002) platforms were used to compare the sensitivity performance of the two techniques. Figure 3b shows a comparison of the P+/Ni (TSPc) absorbance spectra on the ATR and FOC normalized by interaction length. Currently, the FOC yields thin-film absorbance values comparable with ATR instrumentation; however, the FOC eliminates the complex coupling optics and alignment procedures required to make such measurements using ATR instrumentation. (Beam et al., 2007)

Further refinements in the FOC platform promise to substantially increase its sensitivity. The lower order modes of a fiber (those with optical rays propagating at a small angle from the fiber axis and described by a greater effective refractive index, \( N \)) do not provide a
Applications of the Planar Fiber Optic Chip

Fig. 3. a) Instrument schematic for FOC absorbance measurements. b) Spectra are of a self-assembled polycation film of P+ and Ni (TSPc), and the spectra are normalized by their interaction length ($L$) of 44 mm (for the ATR spectra) and 17.2 mm (for the FOC spectra). Modified from Beam et al., 2007.

strong interaction with the molecules adsorbed on the active surface of the FOC. Removing these lower order modes from the optical beam prevents collecting average absorbance measurements which are unduly weighted toward the less sensitive traveling waves inside the fiber. (Gloge, 1971; Ruddy et al., 1990) To select the modes allowed to propagate in the FOC an annular mask that only transmits a ring of light of a defined angle has been used. A mask delivering light with a low effective index, therefore working only with the highest order modes that the fiber can support, was shown to double the measured thin-film absorbance on the FOC compared to that measured for the same film without a mask. (Beam et al., 2007)

1.3 The electroactive-fiber optic chip (EA-FOC)

Spectroelectrochemical measurements provide complimentary spectroscopic and electrochemical analytical data which have found applications using fiber coupled techniques. UV-Vis (VanDyke & Cheng, 1988), FTIR (Shaw & Geiger, 1996), and Raman (Hartnagel et al., 1995) fiber coupled spectroelectrochemical measurements have been obtained using the distal end of a fiber optic probe as the working electrode. These fiber optic probes, however, suffer from the limited optical pathlength of transmission absorbance spectroelectrochemical measurements. Over the last decade the sensitivity of spectroelectrochemical measurements has been significantly enhanced by using monochromatic and broadband ATR platforms, (Doherty et al., 2002; Winograd & Kuwana, 1969) multi-mode waveguides, and single-mode waveguides. (Bradshaw et al., 2003; Dunphy et al., 1997; Dunphy et al., 1999; Itoh & Fujishima, 1988) A significant hindrance for these ATR and waveguide based spectroelectrochemical technologies has been interfacing the sensor platform with standard, commercially available spectroscopic instrumentation; thus, only one field portable instrument has been developed by Heinemann and coworkers to spectroelectrochemically detect ferrocyanide. (Monk et al., 2002; Stegemiller et al., 2003)

The first application of the FOC as a fully integrated fiber coupled spectroelectrochemical platform, was termed the electroactive-fiber optic chip (EA-FOC). To create the EA-FOC we coat the FOC with a thin-film of indium-tin oxide (ITO) as the working electrode (Figure 4a) and probe electrochemically driven changes in absorbance for surface confined redox species.
The sensitivity enhancement of the EA-FOC platform is calculated using the methylene blue (MB) redox couple. Additionally, the properties of the EA-FOC are demonstrated by probing the redox spectroelectrochemistry of an electrodeposited film of the conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT).

Fig. 4. The EA-FOC a) Schematic of the EA-FOC with labeled electrical contacts and a cross section (inset) b) comparison of the transmission spectra of an unpolished fiber with that of the EA-FOC and c) the EA-FOC out-coupled intensity as a function of potential at 665 nm in a 0.1M KNO₃ aqueous solution. Modified from Beam et al., 2009.

1.3.1 Optical effects of ITO on the FOC

The optical properties of ITO are dependent on the electrochemical properties of the material. ITO is generally transparent in the visible region where the short wavelength cut off is determined by absorption due to the band gap of the material. The long wavelength cut off is due to scattering of free electrons and is determined by the plasma resonance frequency. As the free carriers within the material increases the plasma resonance wavelength decreases. Therefore, there is a trade off between increasing the free carrier concentration of ITO to improve the electrical properties and decreasing the transmission wavelength window. (Hartnagel et al., 1995) For the ITO sputtered onto the FOC device, the minimum absorptivity coefficient was estimated to be $5 \times 10^{-3}$ at 500 nm (or a propagation loss of ~ 0.5 dB/cm). The transmission of the ITO film on the FOC will affect the optical properties of the device platform, and the broadband transmission of the EAFOC device is slightly decreased by the addition of ITO (Figure 4b).

Before discussing spectroelectrochemical measurements made on the EA-FOC, it is important to evaluate the optical background of the device. Figure 4c plots the out-coupled intensity from the EA-FOC versus potential in an electrolyte solution without electrochemically active analytes. The linear decrease of intensity with potential is attributed to a change in the ITO absorptivity, which is due to the increase in free carrier concentration within the film as the applied potential decreases. To account for the affect of applied potential on the background signal of the EA-FOC, absorbance measurements at each
potential were calculated from solvent blanks recorded at a corresponding potential. Additionally, there is a slight hysteresis between the forward and backward potential sweeps due to ion diffusion. Equilibration of the ITO electrode in the electrolyte solution after 10 potential scans stabilized the magnitude of the hysteresis allowing analytical measurements to be collected.

### 1.3.2 Spectroelectrochemical measurements

The spectroelectrochemistry of adsorbed monolayers of methylene blue (MB) has been previously evaluated on both the ATR (Itoh & Fujishima, 1988) and waveguide-based (Dunphy et al., 1997) platforms; therefore, the MB redox couple is used to compare the EA-FOC measurements with these well-known techniques. MB electrostatically adsorbs to the ITO surface in its native oxidized form. The surface adsorbed MB undergoes a chemically reversible 2-electron reduction to the transparent leuco form of the dye at \(-0.27\) V versus a Ag/AgCl reference electrode. For the micromolar solution concentrations used in this study, the bulk MB absorbance does not contribute appreciably to the EA-FOC spectroelectrochemical response. Potential dependent spectra of MB on the EA-FOC (Figure 5a) shows absorbance maxima for both the monomer (665 nm) and aggregate forms of this dye (605 nm). (Bergmann & O’Konski, 1963) Simultaneous optical and electrochemical detection of the MB redox couple allow for the calculation of the sensitivity of the EA-FOC using the the electrochemically determined surface coverage and the experimentally measured absorbance, using the Beer’s Law relationship in equation 1. The sensitivity of the EA-FOC was calculated to be 40 ± 2 or 20.6/cm, which is comparable to sensitivities calculated for the FOC devices. (Beam et al., 2009; Beam et al., 2007).

![Spectroelectrochemistry with the EA-FOC](image)

Fig. 5. Spectroelectrochemistry with the EA-FOC a) Potential dependent broadband absorbance spectra of an MB film and b) Absorbance difference (at 550 nm) versus potential for PEDOT film (inset: broadband absorbance spectra for reduced/oxidized polymer on the EA-FOC). Modified from Beam et al., 2009.

The EA-FOC was used to electrochemically polymerize an ultra-thin film, estimated to be 0.3% of a monolayer, of poly (3,4-ethylenedioxythiophene) (PEDOT) and probe its electrochemical properties. The voltammogram of ultra-thin films of PEDOT has broad voltammetric peaks which are poorly distinguishable from the non-faradaic background.
However, PEDOT undergoes a reversible oxidation from the neutral dark blue form of the polymer to the almost transparent single polaron state and upon further oxidation the bipolaron state of the polymer. (Chen & Inganas, 1996) The spectroelectrochemical measurement in Figure 5b of the change in absorbance at the $\lambda_{\text{max}}$ (550 nm) versus potential on the EA-FOC illustrates the electrochromic behavior of the polymer. The EA-FOC only monitors the appearance/disappearance of the dark blue neutral form of the polymer and does not indicate the state of the polymer upon oxidation. (Beam et al., 2009) The EA-FOC has the requisite sensitivity to monitor optical redox changes in submonolayer surface coverages of molecular thin-films.

2. Fluorescence bioassay

Fluorescence detection architectures are of particular importance for biosensing applications where the fluorescence signal is detected against a zero background enabling low limits of detection, typically in the nano- to femto-molar range. Optical transducers have the advantages of being non-destructive, sensitive, and can be used for real-time and kinetic measurements. Fluorescence signal transduction has widespread applications due to the commercial availability of a variety of fluorescent labels which only require simple modification procedures for incorporation with biomolecules. Several reviews and books have been published which discuss the different fluorescent biosensor designs and applications. (Collings & Caruso, 1997; Cunningham, 1998; Janata et al., 1994; Marazuela & Moreno-Bondi, 2002; Taitt et al., 2005; Thompson, 2006)

Commonly biosensor architectures require immobilization of the biological recognition event onto a surface for which the evanescent field of optical waveguide platforms is specifically suited. Fiber-coupled sensor platforms do not require the bulky free-space optics used for fluorescence microscopy, total internal reflection fluorescence (TIRF), and planar waveguide techniques. Therefore, integrated excitation and emission fiber optic platforms have been constructed using different structures including a de-clad cylindrical core and tapered optical fibers. The FOC is the first demonstration of a multi-mode side polished fiber as a planar integrated excitation and emission platform.

2.1 Mechanism of back-coupled fluorescence

According to Snell’s law, light traveling in a lower refractive index medium is refracted at a planar interface with angles below the critical angle in a high-index medium, such as a slab waveguide. For light to be guided within a waveguide it must be launched at angles greater than the critical angle; therefore, light from a lower refractive index medium cannot in principle be guided (Figure 6a). However, for surface confined fluorophores, the proximity of the fluorophores to the waveguiding structure allows coupling of the evanescent photons into guided modes of the waveguide termed back-coupled fluorescence. In other words, the electromagnetic near field, created by the oscillation of the excited dipole from the surface confined fluorophore, overlaps with the evanescent tail of the waveguide modes and meets the conditions for light propagation within the waveguide (Figure 6b). (Carniglia et al., 1972) Harrick and Loeb first applied the principle of back-coupled fluorescence using an ATR element to detect a fluorescently labeled self-assembled thin-film of bovine serum albumin. Fiber optic based back-coupled fluorescence biosensors were first presented by Andrade et al. in 1985 and theoretically explored by Glass et al. and Marcuse.
Fig. 6. Back-coupled fluorescence: a) light propagating from fluorophores far away from the waveguiding structure will be refracted at angles less than the critical angle, and therefore will not excite waveguide modes within the structure. b) Light propagating from fluorophores within close proximity of the waveguiding structure will back-couple fluorescence into the waveguide because the evanescent photons, or the near-field, of the fluorophore will overlap with the evanescent tail of propagating modes in the structure.

2.2 Fiber optic based fluorescence sensors

The pioneering research utilizing a de-clad quartz fiber to collect back-coupled fluorescence from immobilized biomolecules was presented by Sutherland et al., Andrade et al., and Glass et al. Biosensors based on receptor proteins (Garden et al., 2004; Rogers et al., 1991; Rogers et al., 1989), antibody-antigen interactions (Anis et al., 1993; Bier et al., 1992; Devine et al., 1995; Eenink et al., 1990; McCormack et al., 1997; Oroszlan et al., 1993; Shriver-Lake et al., 1995; Toppozada et al., 1997; Walczak et al., 1992), sandwich immunoassay (Geng et al., 2006; Kapoor et al., 2004), and oligonucleotides (Abel et al., 1996; Graham et al., 1992; Pandey & Weetall, 1995) have been presented employing the de-clad fiber geometry. However, the de-clad fiber architecture is limited by the fragile nature of the fiber platform and inefficient fluorescence back-coupling due to the sharp V-number mismatch.

The V-number, or waveguide parameter, of a waveguide platform can be used to calculate the number of modes the structure will support (Equation 2).

\[
V = \frac{2\pi r}{\lambda} \sqrt{n_{\text{core}}^2 - n_{\text{clad}}^2}
\]

Where \(\pi\) and \(\lambda\) have their usual meanings, \(r\) is the radius of the fiber, \(n_{\text{core}}\) and \(n_{\text{clad}}\) are the refractive index of the core and cladding respectively. For example, a 50 \(\mu\)m fiber with an \(n_{\text{core}}\) of 1.460 and \(n_{\text{clad}}\) of 1.443 will have a V-number of 62 at 560 nm. For the de-clad fiber sensor geometry, the value of \(n_{\text{clad}}\) should be replaced with the aqueous medium surrounding the sensing platform (1.33); therefore, the V-number is 169 at 560 nm in the sensing region. Thus, approximately 60% of the modes in the sensing region of the fiber will not propagate in the fiber. To complicate the matter further, the back-coupled fluorescence primarily propagates in the higher order modes of the de-clad fiber, which are the non-propagating modes in the clad fiber.

One method researchers have employed to minimize back-coupled fluorescence loss due to V-number mismatch is to increase the value of \(n_{\text{clad}}\) in the sensing region of a de-clad fiber. Potyrailo and Hieftje have immobilized reagents sensitive to ammonia, humidity, and oxygen in the polymeric cladding of optical fibers, thus ensuring no change in the value of \(n_{\text{clad}}\) (Potyrailo & Hieftje, 1998; Potyrailo & Hieftje, 1999). An alternative strategy to increase \(n_{\text{clad}}\) in the sensing region of a de-clad fiber is the application of a sol-gel cladding containing an analyte sensitive dye. (Browne et al., 1996; Kao et al., 1998; MacCraith et al., 1993; O’Keeffe et al., 1995)
et al., 1995) A second method to match the V-number between the clad and unclad sensing region of fiber optic sensors is to decrease $r$ in the sensing region through etching the de-clad fiber. Fluorescent fiber sensors, where the de-clad sensing region has been step- or taper-etched, exhibit a 20 to 50 fold improvement in sensitivity. (Anderson et al., 1994; Anderson et al., 1994) Tapered fiber optic biosensor platforms have been applied to sandwich assays (Golden et al., 1992; Zhou et al., 1997), immunosensors (Anderson et al., 1993; Maragos & Thompson, 1999; Thompson & Maragos, 1996), and measuring pH. (Grant & Glass, 1997) The feasibility of collecting fluorescence using a single-mode biconical tapered fiber has also been explored. (Wiejata et al., 2003) The FOC provides a planar, robust, supported, side-polished multimode fiber platform for fluorescence biosensing applications. A related platform using a single-mode fiber in a bent configuration to collect the luminescence of a rhodamine 6-G film has been previously reported; however, this device was limited to single wavelength detection and relied on frequency modulated detection. (Poscio et al., 1990) The ability to simply collect broadband fluorescence will enable the FOC device to be used in a broad range of sensor configurations using fluorescence detection systems, including on-chip, fully integrated excitation and sequential optical characterization of luminescent analytes. The first generation FOC device demonstrated back-coupled fluorescence with a drop cast film of CdSe semiconductor nanoparticles (SC-NP) as a luminescent model system. (Beam et al., 2007) Here, the FOC is applied to quantitatively characterize a biotin-Streptavidin binding event as a model bioassay system.

2.3 BSA-biotin/streptavidin-CY bioassay on the planar fiber optic chip

A bioassay of surface-adsorbed biotin with fluorescently labeled streptavidin was chosen to quantitatively explore back-coupled fluorescence collection by the FOC. The small molecule biotin interacts non-covalently with the streptavidin protein and is highly specific, with one of the largest known binding constants ($K_a \approx 10^{15} \text{M}^{-1}$). Bovine serum albumin (BSA) labeled with biotin (Sigma) adsorbs to the surface of the FOC and is transparent in the visible region. The back-coupled fluorescence is collected from the fluorescently labeled (Cascade Yellow, CY: Invitrogen) streptavidin bound to the surface adsorbed biotin. The Cascade Yellow dye was chosen for labeling due to its large Stokes shift (~150 nm) and short excitation wavelength. A fluorophore with a large Stokes shift is very valuable for back-coupled fluorescence measurements because of the magnified inner-filter effects of the fluorophores on the waveguide platform. Back-coupled fluorescence propagates in the waveguide modes; therefore, the emitted light is available in the evanescent field for re-absorption by the same film. The concentration dependence of the bioassay and the efficiency of the back-coupled fluorescence collected by the FOC are examined. A representative spectrum of a BSA-biotin/streptavidin-CY film is plotted in Figure 7a along with two control experiments. The first control confirms that there is no contribution to the fluorescence from the BSA-biotin thin-film (blue line). The second control consisted of a BSA film, which was not labeled with biotin, to be incubated with the fluorescently tagged streptavidin to test for non-specific adsorption (green line). The contribution to the back-coupled fluorescence from non-specific adsorption of streptavidin-CY was shown to be below the detection limit of the experimental set-up. Finally, to confirm the back-coupled fluorescence resulted from the Cascade Yellow dye, the corrected back-coupled fluorescence spectrum is compared with the Cascade Yellow spectrum supplied by the manufacturer.
Fig. 7. Back-coupled fluorescence for a biotin/streptavidin bioassay. a) Cascade Yellow fluorescence (black) spectra from the manufacturer (Invitrogen). Back-coupled fluorescence spectra for a BSA-biotin/streptavidin-CY film (red), background fluorescence from the buffer and biotin-BSA film was shown to be negligible (blue), and fluorescence due to nonspecific adsorption of the streptavidin was shown to be below the detection limit of the measurement (green) by using an unlabeled film of BSA. b) Bioassay calibration plot of the streptavidin-CY bulk concentration versus the average maximum collected fluorescence intensity on the FOC.

The concentration dependence of the collected back-coupled fluorescence for the bioassay was determined by varying the concentration of streptavidin-CY while maintaining the same adsorption conditions for the BSA-biotin film. The fluorescence for three BSA-biotin/streptavidin-CY films was collected for each bulk solution concentration (1, 7, 14, 19, 28, 56, and 75 µg/mL). A plot of bulk concentration versus the average fluorescence maximum intensity illustrates a linear dependence of fluorescence with bulk concentration and a $R^2$ value close to 0.97 for bulk concentrations less than 28 µM (Figure 7b). A self limiting surface coverage at bulk concentrations ≥ 28 µM was observed. The subsequent slight decline in fluorescence for the higher bulk concentrations is attributed to luminescence quenching and photobleaching of dyes in close proximity to each other. The observed bulk concentration limit of detection for the biotin/streptavidin bioassay is 15 nM, which is on the order of the LOD reported for several de-clad fiber fluorescence sensors. (Anis et al., 1993; Devine et al., 1995; Eenink et al., 1990; Graham et al., 1992; McCormack et al., 1997; Oroszlan et al., 1993; Pandey & Weetall, 1995; Shriver-Lake et al., 1995; Sutherland et al., 1984) However, the measured pathlength of the FOC is only ~ 24 mm for this device compared to the ~ 60 mm pathlength of most cylindrical core de-clad fiber sensor platforms. The de-clad fiber sensor platforms require large fiber cores (~ 600 µm) with low modal surface interaction to increase mechanical strength, and therefore, a long interaction length is necessary. The supported planar substrate of the side polished FOC increases the mechanical robustness of the platform; thus, smaller core (50 µm), more surface sensitive fibers are used. One method which could be employed to decrease the LOD of the FOC based fluorescence sensor, and to surpass the de-clad fiber platforms, is to increase the physical pathlength of the FOC device.
2.4 Back-coupled fluorescence collection efficiency

To quantify the fluorescence collection of the FOC using the BSA-biotin/streptavidin-CY bioassay an efficiency calculation was conducted. The backcoupled fluorescence collection efficiency is calculated from the power ratio of the actual fluorescence collected \( P_{\text{FOC}} \) and the calculated total power of fluorescence of the film \( P_{\text{calc}} \) (Equation 3).

\[
\text{Efficiency} = \frac{P_{\text{FOC}}}{P_{\text{calc}}} = \frac{P_{\text{FOC}}}{P_o L \left(1 - 10^{-A_{405}}\right) Q_{cy}}
\]

\( P_{\text{FOC}} \) is the area under a gaussian fit curve to the corrected fluorescence spectrum detected (mW). The values in the denominator are an expression of the calculated fluorescence power propagating in all directions, where \( P_o \) is the power launched into the fiber from the 405 nm laser (mW); \( L \) is defined as 1-Loss of the FOC; \( \left(1 - 10^{-A_{405}}\right) \) is the percent of power absorbed at 405 nm by the dye and available to be converted to fluorescence; and \( Q_{cy} \) is the quantum yield of the Cascade Yellow labeled streptavidin. The calculated back-coupled fluorescence efficiency is 0.02% of the light emitted by the Cascade Yellow dye. For comparison, only 2% of the light emitted from an isotropic emitter is typically collected with a lens. To improve device performance and decrease the detection, the FOC should be engineered to more efficiently collect back-coupled fluorescence. The back-coupled fluorescence efficiency could be improved upon by increasing the numerical aperture/refractive index of the fiber; however, the extent of V-number mismatch of the FOC platform should be evaluated in conjunction with alternative FOC architectures.

3. Bright and broadband-guided light source

Field portable optical sensing devices require light sources that are robust, compact, spectrally broad, and bright. The ideal fiber coupled light source will have high power per unit area and unit solid angle; thus, yielding high power per guided mode inside an optical fiber. Using the back-coupled light mechanism of fluorescent thin-films deposited on the FOC platform, a fully integrated broadband, bright guided light source is created. The FOC light source is produced by pumping an aluminum tris-hydroxyquinoline thin-film capped with a silicon dioxide overlayer. A directly fiber coupled broadband FOC source extending from 405 nm to 650 nm is produced with an output of 1.8 mW, which is significantly brighter than a fiber-coupled tungsten source and spectrally broader than a light emitting diode (LED) source.

3.1 Fiber optic light sources

Bright and spectrally broad light sources are currently required for several applications including optical coherence tomography, optical spectroscopies, and chemical/biological sensing. Recently, several promising technologies have been developed to fulfill those needs. In particular, superluminescent LEDs (Zhang et al., 2009), supercontinuum-generation light sources (Berge et al., 2007), and amplified spontaneous emission (Samuel & Turnbull, 2007) are becoming increasingly useful for many applications. Despite those developments, a cost-effective light source that is fiber-coupled, spectrally broad, and bright is still in quite demand, especially in the visible and ultra-violet regions of the spectrum.
3.2 Planar fiber optic chip broadband light source

The planar geometry of the FOC device is amenable to standard thin-film deposition architectures such as thermal deposition. The back-coupled fluorescence from an organic fluorophore deposited on the polished surface of the FOC platform is used to create a fully integrated fiber optic broadband light source. With the growing interest in organic LEDs and photovoltaic devices, a vast number of inexpensive, easily processable, high quantum yield fluorescent organic materials are commercially available. (Kafafi, 2005; Li et al., 2007)

These fluorescent organic compounds garner much interest because of their broad emission spectrum when compared to inorganic compounds such as GaN and Si. Tris-aluminum 8-hydroxyquinoline (Alq3) was chosen as a fluorescent material for the FOC light source due to its broad emission in the visible region. A 45 nm thick film of Alq3 was deposited on the FOC using thermal deposition. Both oxygen and water can cause degradation of the Alq3 thin-film (Burrows et al., 1994; McElvain et al., 1996); therefore, FOC light source devices must be protected from the ambient environment to ensure continued operation.

Encapsulation of the FOC device was achieved with a 100 nm film of SiO2 deposited, by electron beam evaporation, over the Alq3 film without breaking vacuum. Emission of the Alq3 film on the FOC device is achieved with pumping the film with a 405 nm GaN laser diode which is fiber coupled into the FOC platform. Figure 8a shows a picture of the active region of the FOC light source, where luminescence in the Alq3 film is back-coupled into guided modes of the fiber, next to the light out-coupled from the FOC fiber.

![Image of the FOC light source device](image_url)

Fig. 8. a) Image of the FOC light source device; b) comparison of the fiber output of the FOC light source with a fiber coupled 6V tungsten-halogen lamp.

A comparison of the out-coupled spectrum from the FOC light source with a fiber coupled 6V tungsten lamp are plotted in Figure 8b. The light from the thermal source (6V tungsten lamp) is coupled into the same patch cable as the FOC using similar high precision aspheric optics. The fluorescence from the FOC light source has an increased out-coupled intensity over a 100 nm range from 480 to 580 nm overlapping with the Alq3 emission peak compared to the fiber coupled thermal source. The spectra resulting from the FOC light source includes a large intensity peak at 405 nm for the laser used to pump the film. The measured power intensity out-coupled from the FOC light source was measured to be 1.8 mW.

While optical pumping was used for these experiments, there is the potential to use an electrically pumped system to directly drive the FOC light source producing broadband...
spectra with high brightness. Using an ITO film as a transparent electrode, organic layers could be built onto the FOC structure very similar to that of an organic light emitting diode. Combining emission spectra for multiple organic films would allow an even broader output spectrum to be achieved. With the amount of research in organic fluorescent compounds with increased quantum efficiencies and variety of wavelength ranges, improving the power output and wavelength range of future FOC light source devices will be developed.

4. Raman spectroscopy

Raman spectroscopy is a well-established analytical technique that can identify chemical and physical properties through interactions with the vibrational states of a particular analyte. This section presents investigations of excitation and collection of Raman scattering using the FOC for thin molecular films. Thin-film Raman measurements were achieved with the added signal enhancement of surface enhanced raman spectroscopy (SERS). Gold nanoparticles are deposited on the FOC surface to enhance the Raman signal of a 4-aminothiophenol film and the Raman signal was both excited and collected by the FOC in decoupled instrument schemes. In a similar approach, Raman scattering of carbon nanotubes was demonstrated, setting the stage for the FOC as a platform for interesting chemical analysis.

4.1 Raman scattering

Raman spectroscopy relies on the inelastic scattering of incident light with Raman active molecular thin-films. Typically, in an elastic event known as Rayleigh scattering, the excited molecule relaxes back to the initial ground state and light of equal energy to the incident light is reemitted. Raman scattering occurs when interactions between molecular vibrations and rotations with the incident light result in lower frequency, Stokes, or higher frequency, anti-Stokes, shifts from the incident frequency of light. Raman spectra are independent of the initial frequency of the incident light, and the resultant energy spectrum is a signature of the vibrational/rotational states of the probed molecules. Raman scattering occurs for only one out of every $10^6$-$10^8$ scattering events, making it a very weak signal. (Smith & Dent, 2005) To improve upon this small cross section, researchers have utilized the effects of localized surface plasmon resonance. A localized surface plasmon resonance occurs when small metallic structures are irradiated by light. Similar to a lightning rod, these structures induce an electric-field enhancing corona effect. This effect relies on the size of the metallic structure to be small compared to the wavelength of the incident light, and the electric-field will concentrate in areas of greatest curvature. Surface enhanced Raman spectroscopy (SERS) occurs when Raman active molecules are in the presence of roughened metallic surfaces or nanoparticles. The electric-field amplitude will generate a larger intensity of the incident light as well as amplify Raman scattering. The SERS amplification effect has lead to reported Raman signal enhancements of $10^6$ (Felidj et al., 2003), $10^{11}$ (Gupta & Weimer, 2003), even $10^{14}$ (Kneipp et al., 1997). (Willets & Van Duyne, 2007)

Increasing Raman spectroscopy sensitivity has been sought after in recent years, ultimately reaching single molecule detection. (Kneipp et al., 1997; Xu et al., 1999) Particularly, thin-film characterization is of interest to a growing number of fields yet analysis by conventional commercial Raman microscope instruments is difficult due to the convolution between analyte and substrate Raman activity. The unique geometry of the FOC allows for analyzing
Applications of the Planar Fiber Optic Chip

4.2 Fiber optic raman probes

The use of distal end fiber probes for Raman scattering has been ongoing for some time. Although mechanisms have been described for propagating the excitation beam and collected Raman scattering through a single fiber (Potyrailo et al., 1998), these devices often utilize separate launching and collection fibers. In some schemes, a single launching fiber is surrounded by a bundle of collection fibers. Raman spectroscopy using distal end fiber probes has been demonstrated in a number of chemical (Khijwania et al., 2007; McCreery et al., 1983; Tiwari et al., 2007) and biomedical (Krafft et al., 2007; Lima et al., 2008; Vo-Dinh et al., 1999) applications. However, the overlap between the illumination cone and the collection cone is often poor for these sensor platforms, weakening the already very faint Raman signal. To improve sensitivity of Raman sensors modifications such as GRIN lens application to the distal end (Mo et al., 2009) or tapered fibers (Stokes et al., 2004) have been implemented. Although these changes have shown some improvement in overall signal to noise ratio, the move to a planar fiber optic chip offers the advantages of simplifying optical alignment and providing a larger surface area for interaction.

Exposing the core of the optical probe allows for the use of evanescent field interactions of the exposed fiber core with immobilized analytes. Here the fiber core may be functionalized to capture the analyte or to enhance the Raman signal as in the case of a SERS substrate. In a D-shaped device similar to the FOC, Zhang et al. were able to demonstrate the excitation of the Raman analyte Rhodamine 6G by a SERS functionalized planar probe (Zhang et al., 2005). Near-field interactions do not rely on the optical alignment of the system; therefore, a more streamlined approach would only use a single fiber for both excitation and collection of the Raman signal. Coupled excitation and collection of SERS for an exposed core fiber has been demonstrated for thin-film and aqueous samples (Stokes & Vo-Dinh, 2000); however, the exposed fragile core limits the applications of this sensor architecture.

4.3 Raman spectroscopy with the FOC

A single fiber is used to deliver the excitation beam and collect the scattered Raman signal to form a fully integrated system. At the boundary of the exposed core of the FOC, adsorbed analytes interact with the evanescent field of the excitation light. The Raman signal of the analyte may then be launched into the fiber through near-field coupling. To test the FOC for its function in Raman spectroscopy, the excitation and collection of the Raman signal was decoupled. In the excitation scheme, laser light (632.8 nm) was launched into the fiber and the adsorbed analyte was excited. The scattered Raman signal was then collected by external optical components mounted over the FOC and delivered to a spectrometer connected to a CCD for data acquisition. For the collection scheme, external optics were used to deliver the excitation laser beam to the planar surface of the FOC. The Raman signal was then coupled into the FOC and guided by the fiber to the data acquisition set-up. Since, in both schemes, Rayleigh scattering of the laser line was generated, a notch filter was placed in the beam path before the spectrometer to remove as much of the initial laser beam as possible. Both schemes are shown in Figure 9.
As a proof of concept study, the FOC was tested in the excitation scheme for the generation of Raman scattering of bulk media. A commercial optical gel (Cargille) was chosen for its potential as a higher index capping media for thin-films. The gel was deposited in a thin, even layer across the active area of the FOC. The Raman signal of the gel was induced by the FOC and collected by the external optics as seen in Figure 10. Demonstrating the feasibility of Raman excitation by the FOC sets the stage for the chip to be employed in other bulk media investigations without the need for surface enhancement. However, the more interesting objective was to determine the utility of the FOC in generating Raman scattering of smaller volumes of analyte such as in the case of thin-films.

4.4 Surface enhanced raman of thin films with the FOC

For thin-film analysis, the FOC was first functionalized with gold nanoparticles to create a SERS substrate. A seed based method (Wei et al., 2004; Wei & Zamborini, 2004) was performed directly on the FOC platform. In short, the process required three stages. First, the FOC was functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS). Next, 5 nm gold nanoparticles were adsorbed to the MPTMS functionalized FOC platform. Finally, a gold growth solution catalyzed the growth of the nanoparticles to rods, platelets, and spheroids on the order of 20 nm in diameter.
The first analyte investigated was 4-aminothiophenol (p-ATP). Raman activity of p-ATP in the presence of gold SERS substrates has been well documented. (Baia et al., 2006; Guo et al., 2007; Wang et al., 2008) The analyte was deposited onto the FOC by submersion in an ethanol solution overnight. The FOC was washed and dried under a nitrogen flow before analysis of the thin-film. As shown in Figure 11a, the Raman signal of p-ATP was excited by the FOC and collected by external optics in the excitation scheme. Similar results were achieved by external excitation of the analyte and collection of the Raman signal via the FOC in the Collection Scheme. Both spectra are consistent with published data of p-ATP Raman activity as well as spectra of the p-ATP coated FOC collected by a commercial machine (Renishaw Invia). To attain acceptable signal-to-noise ratios, integration times of 5 to 10 minutes were used. Signal was detected for sub mW incident laser power, suggesting a low power light source could be used in a field version of the FOC Raman sensor platform.

![Fig. 11. a) Raman spectroscopy of p-ATP using both the excitation and collection schemes on the FOC. b) Excitation and collection of CNT G-band Raman signal by the FOC.](https://www.intechopen.com)

The second analyte studied with the Raman FOC device coated with gold nanoparticles was carbon nanotubes (CNT) in an isopropanol solution. In this case, the CNT were deposited by a drop cast method and remained in solution during analysis. The G-band of the CNT spectra was examined in both the excitation and collection schemes using the FOC. The data, shown in Figure 11b, was consistent with established Raman data for the CNT G-band. (Dresselhaus et al., 2005; Kneipp et al., 2004) Pairing the FOC device with the specific and nondestructive technique of Raman spectroscopy is a very desirable application.

5. Conclusion

In this chapter the current applications of the FOC platform were presented. FOC fabrication consists of an optical fiber mounted in a V-groove block, side-polished to create a planar platform that allows access to the evanescent field escaping from the fiber core. Currently, the FOC yields thin-film absorbance sensitivity comparable with existing ATR instrumentation; however, it eliminates the complex coupling optics and alignment procedures used with planar waveguide based instrumentation. Spectroelectrochemical measurements on an ITO coated FOC platform have been previously demonstrated for both the potential dependent spectra of a methylene blue film and 0.3% of a monolayer of a conductive polymer film. Additionally, light generated in a surface-confined thin molecular
film can be back-coupled into the FOC platform when the conditions for light propagation
within the waveguide are met. Back-coupled light into the FOC was used for the first time
here to expand the applications of the FOC platform to a fluorescence bioassay, a broadband
fiber optic light source, and Raman interrogation of molecular adsorbates. A BSA-
biotin/streptavidin-CY fluorescence bioassay was demonstrated on the FOC with a limit-of-
detection of 15 nM and calculated back-coupled fluorescence efficiency of 0.02%. A 1.8 mW
directly fiber coupled broadband FOC source extending from 405 nm to 650 nm is produced
with a SiO$_2$ capped Alq$_3$ film deposited on the FOC, which is significantly brighter than a
fiber-coupled tungsten source and spectrally broader than a LED source. Finally the FOC
platform was modified with gold nanoparticles to create a surface enhanced Raman
substrate for detection of 4-aminothiophenol and carbon nanotubes. Contrary to the un-clad
fiber approach, the FOC with a supported planar interface can facilitate the use of
conventional planar deposition technologies and provide a robust planar platform that is
amenable for integration into various sensor applications.

6. Acknowledgments

This work was supported by the National Science Foundation under grants Number DBI-
0352449, CTS-0428885, CHE-0517963, and CHE-0515963, the Kentucky Science and
Technology Corporation under grant KSEF-1869-RDE-012, and the Science and Technology
Center-Materials and Devices for Information Technology Research Grant Number DMR-
0120967. B.M.B. acknowledges fellowship support from a TRIF Proposition 301 (Arizona)
Graduate Fellowship in Photonics. The authors would like to thank Neal R. Armstrong, Jill
Craven, Jinuk Jang, Yevgeniy Merzlyak, Gary Paysnoe, Clayton Shallcross, and Joseph
Lynch for their scientific contributions to this work.

7. References

8, 5, pp. 249-256
Fluorescent Signal Acquisition from Tapered Fiber Optic Probes. *IEEE Transactions
on Biomedical Engineering*, Vol. 41, 6, pp. 585-591
Fluorescent Signal Acquisition from Step-Etched Fiber Optic Probes. *IEEE
Transactions on Biomedical Engineering*, Vol. 41, 6, pp. 578-584
Andrade, J. D., R. A. Vanwagenen, et al. (1985). Remote Fiber-Optic Biosensors Based on
Evanescent-Excited Fluoro-Imunoassay: Concept and Progress. *IEEE Transactions
41, pp. 843-848


www.intechopen.com
Applications of the Planar Fiber Optic Chip


This book presents a comprehensive account of the recent progress in optical fiber research. It consists of four sections with 20 chapters covering the topics of nonlinear and polarisation effects in optical fibers, photonic crystal fibers and new applications for optical fibers. Section 1 reviews nonlinear effects in optical fibers in terms of theoretical analysis, experiments and applications. Section 2 presents polarization mode dispersion, chromatic dispersion and polarization dependent losses in optical fibers, fiber birefringence effects and spun fibers. Section 3 and 4 cover the topics of photonic crystal fibers and a new trend of optical fiber applications. Edited by three scientists with wide knowledge and experience in the field of fiber optics and photonics, the book brings together leading academics and practitioners in a comprehensive and incisive treatment of the subject. This is an essential point of reference for researchers working and teaching in optical fiber technologies, and for industrial users who need to be aware of current developments in optical fiber research areas.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following: