
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

4

Modelling Multi-Agent System using
Different Methodologies

 Vera Maria B. Werneck1, Rosa Maria E. Moreira Costa1
and Luiz Marcio Cysneiros2

1Universidade do Estado do Rio de Janeiro,
2York University,

1Brazil
 2Canada

1. Introduction

The increasing use of multi-agent systems brings challenges that have not been studied yet,

such as: how we should adapt requirements elicitation to cope with agent properties like

autonomy, sociability and proactiveness. The agent-oriented modelling is proposed as a

suitable software engineering approach for complex organizational application domains

that deal with the need for new applications. These requirements are not broadly considered

by current paradigms. Autonomy and sociability aspects such as the dependency of an

agent on another, and how critical this condition should be, have to be analysed from the

early stages of the software development process (Wooldridge & Jennings, 1997).

This research work is included in the Agent-oriented Project that has been developed by the

Informatics and Computer Science Department of State University of Rio de Janeiro (UERJ)

and the School of Information Technology of York University (Toronto). This project aims at

studying and comparing agent-oriented software development methods and techniques

based on attributes and norms and by the models construction based on an exemplar. These

experiments enabled the development and construction of Multi-Agent Systems applied to

Health and Education areas, providing research on Systems (MAS) especially on the agent

proliferation of control, communication and availability of information and knowledge in

different computing environments.

The construction of Multi-Agent Systems allows experiments on the agent-oriented

technology in relation to development methodologies with regard to agent-oriented

programming environments. It also allows us apply this technology in practical and real

applications in Health and Education Domains. The Glycemic Monitor System based on the

Guardian Angel for aiding the diabetes treatment (Tavares et al., 2010) and the Educ-MAS

(Education Multi-Agent System) (Gago et al., 2009), (Dantas et al., 2007), a learning

education environment with multi-agents helping the teaching process on a specific topic,

are two examples of Multi-Agent Systems that have been developed in the project Oriented

Agents.

Many methodologies applying agent-oriented concepts to software development have been
proposed however, the evaluation of these methodologies is not an easy task specially to

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

78

choose the best method to be adopted in a MAS project. In this project, we have used an
exemplar proposed by Yu & Cysneiros (2002) to evaluate some methodologies and language
methods (Gaia, MESSAGE, Tropos, Adelfe, MAS-CommonKADS, MaSE, Ingenius, KAOS,
AUML) (Souza et al., 2010), (Souza et al., 2009), (Werneck et al., 2008), (Werneck et al., 2007),
(Werneck et al., 2006), (Coppieters et al., 2005), (Cysneiros et al., 2005), (Cysneiros et al.,
2005a). This exemplar is rich and complex enough to guide us to investigate to understand
them better. Now we are compiling the experiences we gathered from all the methodologies
we evaluated to try and understand where most methodologies need to improve and where
most of them are well developed. This knowledge will be modelled into an ontology and
will be used to define an Agent-Oriented Methodology Approach based on the Situation
Method Engineering (SME) that provides a flexible way of constructing a methodology
based on a set of method fragments and the situation of the project requirements. This idea
of using SME for constructing Agent-Oriented Methodology was also proposed by
Henderson-Sellers & Ralyté (2010) that describes some experiences of using SME in MAS
and object oriented methods.
This chapter provides a deep modelling overview of two different Multi-agents systems in
two different Agent-Oriented Methodologies. Our objective is to demonstrate how
modelling the problem with a methodology can improve quality and be a guide for further
MAS development.
This chapter is organized into 5 sections. Section 2 gives an overview of Multi-Agent
Systems methodologies describing the Adelfe (Bernon et al., 2003) (Henderson-Sellers &
Giorgini, 2005), and Mase (Deloach, 2001), (O’Malley et al., 2001), (Dileo et al., 2002),
(Henderson-Sellers & Giorgini, 2005) methodologies that will be shown in the next two
sections. Section 3 describes the modelling of Guardian Angel System in Adelfe focusing on
the mains aspects of agent oriented. Section 4 presents the modelling of the Educ-MAS using
MaSE. Finally section 5 analyses the systems development with those methodologies
concluding the work and also presents correlated and future works.

2. MAS methodologies

Many agent-oriented methodologies have been proposed based on a variety of concepts,
notations, techniques and methodological guidelines. Some of these methodologies rely on
standard methods or modelling languages as CommonKADS (Schreiber et al, 1999) and
UML (Rumbaugh et al., 2004). The MAS-CommonKADS (Iglesias & González, 1998),
(Henderson-Sellers & Giorgini, 2005) and AUML (2007), (Odell et al., 2001) extended
CommonKADS (Schreiber et al., 1999) and UML (Rumbaugh et al., 2004) respectively to
meet the multi-agent systems.
The agent-oriented methodologies have multiple roots (Figure 1). Some are based on the
idea of artificial intelligence coming from the knowledge engineering (KE). Other methods
originate from software engineering and they are extensions of object-oriented (OO)
paradigm. There are still those that use a mix of concepts based on these two areas and some
are derived from other agent-oriented methodologies.
Although we are going to present two methodologies based on Object Oriented in this
chapter, both Adelfe and MaSE methodologies were chosen because they are based on
common agent concepts and they are easy to understand having a good methodology guide
and a tool support. A tool is a very important issue that can be a differential in the software
development.

www.intechopen.com

Modelling Multi-Agent System using Different Methodologies

79

Fig. 1. Influences of Object-Oriented Methodologies on Agent-oriented Methodologies
(Henderson-Sellers & Giorgini, 2005)

2.1 The Adelfe methodology

Adelfe is an acronym that translated from French means "framework to develop software
with emergent functionality" (Adelfe, 2003), (Bernon et al., 2003), (Henderson-Sellers &
Giorgini, 2005) and was developed to deal with open and complex agent problems. These
systems work with composed agents that have cooperative interactions with each other and
are called Adaptative Multi-Agent Systems (AMAS). .
Adelfe uses AUML principle (Odell et al., 2001), (AUML, 2007) together with UML
(Rumbaugh et al., 2004) to express agent interaction protocols.
The development process of Adelfe is based on RUP (Rational Unified Process) (Krutchen,
2000) with some additions considering AMAS Theory specificities. For example, the
environment characterization of the system and the identification of cooperation failures are
some characteristics included in this process.
Adelfe provides some tools including one to estimate the AMAS technology adequacy. This
can be a great support to inexperienced developers in the AMAS system field. The adequacy
is studied at two levels: the global (the system) and the local (the components). Eight
parameters are taken into consideration for the global level while for the components there
are other three parameters.
Two other tools (Open Tool and Interactive Tool) are available to integrate the framework.
The Open tool is a graphic modelling tool which supports Adelfe notation to construct the
artefacts proposed in this method such as some UML diagrams and protocols of AUML
interaction. The Interactive Tool provides the developer with a guide throughout the
process application.
The Adelfe process covers all the phases of a classical software process from the
requirements to the deployment based on the RUP process adapted to AMAS. Only the
work definitions (WD) of requirements, analysis and design require modifications to be
adapted for the AMAS. The rest of the RUP can be applied without modifications.

2.1.1 Preliminary and final requirements (WD1 e WD2)

The preliminary requirements work definition (WD1) of Adelfe (Adelfe, 2003), (Bernon et
al., 2003), (Henderson-Sellers & Giorgini, 2005) is the same as proposed by the RUP (Table

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

80

1). The aim still consists of studying the stakeholders' needs to produce a document of the
stakeholders and the developers´ agreement.
The activity of the environment characterization (A6) of the final requirements (WD2) (Table
1) was added to the RUP because the environment is a very important concept in AMAS
theory. The environment has to be well comprehended and the A6 activity has the following
tasks: determine the entities, define the context and characterize the environment. The
characterization begins by the identification of the entities which interact with the system
and the restrictions of these interactions (A6-S1). An entity in Adelfe is an actor classified as
passive or active. An active entity can act in an autonomous and dynamic way with the
system. A passive entity is considered a resource of the system that can be used or modified
by active entities. The classification of the entities is essential in AMAS since the agents will
be part of the system treated as active entities.
Define context (A6-S2) is an activity that analyses the environment through the interaction
among entities and the system by defining UML sequence and collaboration diagrams. The
information flow of passive entities and the system are expressed by collaboration diagrams,
while interactions among active entities and the system are described by sequence diagrams.
The Adelfe methodology defines these diagrams based on the result of the previous step
(A6-S1) where the entities were pre-defined with the support of the set of keywords
provided in (A4).

WD1: Preliminary Requirements

• A1: Define user requirements

• A2: Validate user requirements

• A3: Define consensual requirements

• A4: Establish keywords-set

• A5: Extract limits constraints

WD2: Final Requirements
A6: Characterize environment

• S1: Determine entities

• S2: Define context

• S3: Characterize environment
A7: Determine use cases

• S1: Draw inventory of use cases

• S2: Identify cooperation failures

• S3: Elaborate sequence diagrams
A8: Elaborate UI (user interface) prototypes
A9: Validate UI prototypes

Table 1. WD1 and WD2– Preliminary and Final Requirements in Adelfe (2003)

Completing the environment characterization, the developer performs the Step A6-S3
describing the environment in terms of being accessible (as opposed to "inaccessible"),
continuous (as opposed to "discrete"), deterministic (as opposed to "non-deterministic"), or
dynamic (as opposed to "static").
Cooperative agents are a central concept in Adelfe so the developer can be able to construct
AMAS. The analysis of all the unexpected and harmful events is important to realize what
the causes and consequences of non-cooperative situations are for the agents. These
cooperation failures are exceptions. Taking this aspect into account, the determination of the
use cases is modified by adding the step (A7-S2) in which cooperation failures must be
identified using specific notation.
The elaboration of user interface (UI) prototypes activity (A8) models the graphic users
interface (GUI) specifications used in the interactions defined in A6 and A7. GUIs are
evaluated in A9 as functional or non-functional (ergonomics, design, ...) requirements.
Sometimes in this phase it is necessary to go back to activity A8 to improve UI.

www.intechopen.com

Modelling Multi-Agent System using Different Methodologies

81

2.1.2 Analysis (WD3)

Adelfe Analysis phase (Table 2) is composed by three activities: (i) AMAS adequacy
verification activity (A11) to identify agents and interaction among the entities, (ii) agents
identification activity (A12) to analyse the entities defined in A6 that will be considered an
agent in the system and (iii) the study of the interactions between entities activity (A13) to
analyse all different types of interactions between active/passive entities, between active
entities and between agents (Adelfe, 2003), (Bernon et al., 2003), (Henderson-Sellers &
Giorgini, 2005).
The Adelfe AMAS technology adequacy verification of the system activity (A11) is
performed using the adequacy tool which considers two levels of study: global (A11-S1) and
components (A11-S2). The Global analysis answers the question: “Is an AMAS technology
implementation to the system necessary?” For the local level the question is "Does any
component need to be implemented as AMAS?" If the tool answers the first question
positively, the developer can continue applying the process. If the second answer is also
affirmative, the Adelfe methodology should be applied on the components considered as
AMAS since they require evolution.
The developer identifies the components of the system studying use cases and scenarios
previously elaborated in the domain analysis (Adelfe, 2003), (Bernon et al., 2003),
(Henderson-Sellers & Giorgini, 2005).

A10: Analyse the Domain

• S1: Identify classes

• S2: Study interclass relationships

• S3:Construct preliminary class
diagrams

A11: Verify the AMAS adequacy

• S1: Verify it at the global level

• S2: verify it at the local level.

 A12: Identify Agents

• S1: Study entities in the domain context

• S2: Identify potentially cooperative agents

• S3: Determine agents
 A13: Study Interactions between Entities

• S1: Study active/passive entities
relationships

• S2: Study active entities relationships

• S3: Study agents relationships

Table 2. WD3 – Analysis in Adelfe (2003)

The cooperative agents are a central concept of AMAS system. In Adelfe the agents are
cooperative entities that satisfy at least the autonomy requirements, the local objective and
the interaction with other entities. After assessing all the possible agents, the classes are
marked with the cooperative agent stereotype.
In Adelfe, agents are not previously known thus the developer must identify them (A12).
Entities which demonstrate properties such as autonomy, local objective to pursue,
interaction with other entities, partial view of its environment and the ability to negotiate
are the ones to be considered as potential agents. To effectively turn into a cooperative
agent, the potential cooperative agent must be prone to cooperation failures. By studying its
interactions with its environments and with other entities, the developer has to determine if
this entity may encounter such situations that will be considered as non-cooperative
situations at the agent level. The entities meeting all these criteria will be identified as agents
and the classes related to them marked as agents.
The study of the interactions between entities (A13) analyses the interactions between
entities and is represented by Collaboration and Sequence Diagrams. The agents'
interactions are described by AUML Protocol Diagram.

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

82

2.1.3 Design (WD4)

The Adelfe design process (Table 3) starts by analysing the different possibilities of detailed
architecture of the system, creating packages sub-systems, objects, agents and the
relationships among them and producing the class diagrams with the new elements
(Cooperative Agent Class and the Cooperative Agent stereotype) (Adelfe, 2003), (Bernon et
al., 2003), (Henderson-Sellers & Giorgini, 2005).

A14: Study detailed architecture
and multi-agent model

• S1: Determine packages

• S2: Determine classes

• S3: Use design-patterns

• S4: Elaborate component and class
diagrams

A15: Study interaction languages

A16: Design Agents

• S1: Define skills

• S2: Define aptitudes

• S3: Define interaction languages

• S4: Define representations

• S5: Define Non-cooperative situations
A17: FAST Prototyping
A18: Complete design diagrams

• S1: Enhance design diagrams

• S2: Design dynamic behaviours

Table 3. WD4 – Design in Adelfe (2003)

In the activity A15 the developer studies the interaction languages to be able to define the
protocols used by agents to communicate between themselves. This information exchange
between agents has to be described. For each scenario defined in the A7 and A13 activities,
these exchanges are described using AUML protocol diagrams. The protocols diagrams are
attached to package (not classes) because they are generic. The language definition is not
necessary when the agents' communications are via the environment.
The Design Agents (A16) activity is an Adelfe methodology specific activity and allows the
developer to refine the CooperativeAgent stereotyped classes identified in the A12 and A14
activities. The different modules of an agent must be defined in these activities by describing
its skills, aptitudes, interaction languages, design representations, design characteristics and
design non-cooperative situations.
Methods and attributes can describe the skills of an agent with a stereotyped notation
<<skill>>. Skills are the system knowledge that allows the agent to perform an action. The
representation of aptitudes, interaction languages, design representations and design
characteristics is defined similarly to skills with a stereotyped notation. Aptitudes are the
agent´s capability to reason about a specific knowledge of the system or about a real
situation.
The developer analyses protocols defined in A15 activity and those assigned to an agent are
associated to a state-machine. The methods and attributes link with an interaction protocol
must be stereotyped <<interaction>>. The methods and attributes related to perception and
action phase are represented by <<perception>> and <<action>> respectively in (A16-S3).
The step Design Non-Cooperative Situations (NCS) (A16-S6) is the most important in the
design agents’ activity (A16), because this is a specific ability of cooperative agents. A model
guides the developer in the definitions of all situations that seem to be "harmful" for
cooperative social attitude of an agent. The table lists some types of situations like
ambiguity, incompetence, uselessness and conflict. The developer should fill up the
conditions described for each NCS. The table contains the state of this agent when detecting
the NCS, a NCS textual description, conditions permitting local detection of NCS and
actions linked to this NCS.

www.intechopen.com

Modelling Multi-Agent System using Different Methodologies

83

The Fast Prototyping activity (A17) uses OpenTool (Adelfe, 2003), (Henderson-Sellers &
Giorgini, 2005) to test the agents´ behaviour previously defined. The customized version of
OpenTool can automatically transform a protocol diagram into a state-chart that can be run
to simulate the agents' behaviour. Some methods can be implemented using a OTscript
language that is a set-based action language of OpenTool.
The last activity of design is to complete the detailed architecture enriching the class
diagrams (A18-S1) and developing the state chart diagrams required to design the dynamic
behaviours (A18-S2). The objective is to reflect the different changes of an entity state when
it is interacting with others.

2.2 MaSE methodology
The Multi-agent System Engineering (MaSE) methodology aims at supporting the designer
to catch a set of initial requirements, to analyse models and implement a multi-agent system
(MAS). This methodology is independent of any agent’s architecture, programming
language, or communication framework. The MaSE’s agents are considered object
specializations that instead of simple objects, with methods that can be invoked by other
objects, are agents that talk among themselves and act proactively in order to reach goals
(MaSE, 2010), (Deloach, 2001).
MaSE is a traditional software engineering methodology specialization with two phases
(Analysis and Design) and several activities which are shown in Figure 2 (Deloach, 2001).
The MaSE Analysis phase has three steps: Capturing Goals, Applying Use Cases, and
Refining Roles. The Design phase has four activities: Creating Agent Classes, Constructing
Conversations, Assembling Agent Classes and System Design. The highlighted items
represent the resulting models of each phase.
The first step in MaSE analysis is to capture goals that express what the system is trying to
achieve. These goals generally remain stable throughout the rest of the Analysis and Design
phases. A decomposition of goals in a hierarchy form is the MaSE goal representation.
After the goals were defined, the functional requirements are identified and represented
into use cases. Use Cases describe the behaviour of agents for each situation in MAS. In the
step Applying Use Cases, situations of the initial requirements are elicited and expressed
into Use Cases Diagrams and Descriptions, and UML Sequence Diagrams. The Sequence
Diagrams are applied to express the sequences of roles events and they represent the
desired system behaviour and its sequences of events.
The last step of Analysis phase defines a set of roles (Role Diagram) that can be used to
achieve the goals of the system level. A role is an expected abstract description behaviour of
each agent that aids in reaching the system goals. These roles are detailed by a series of
tasks, which are described by finite-state models (Concurrent Tasks Diagrams).
The Role Diagram associates at first the goals to a role by listing them below the role name.
Often, these goals are represented by numbers used in the Goal Diagram. Then the Role
Diagram is detailed by associating a set of tasks for each role, representing the expected role
behaviour. Communications between roles are expressed by the roles´ association and their
associate tasks.
The tasks definitions are built in Concurrent Tasks Diagrams based on finite automata
states. By definition, each task must be executed concurrently, while communicating with
other internal or external tasks. A concurrent task is a set of states and transitions. The states
represent the internal agent mechanism, while the transitions define tasks communications.
Every transition has an origin and a destination state, a trigger, a guard condition and a
transmission (Deloach, 2001).

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

84

Fig. 2. MaSE Methodology Phases (Deloach, 2001)

In general, the events that are sent as broadcasts or triggers are associated with events sent
to work in the same role instance, requiring an internal coordination of each task. The
messages representation sent between agents uses two special events: (i) send event that
represents the message sent to another agent and is denoted by send (message, agent) and
(ii) receive event which defines the message received from another agent denoted by receive
(message, agent).
The four diagrams proposed in the MaSE Design phase are Agent Classes, Conversations,
Agent Architecture and Deployment Diagram.
The first step in the design process involves the definition of each agent class in an Agent
Class Diagram. The system designer maps each role defined in the Roles Diagram to at least
one Agent Class because this guarantees the goals will be implemented in the system and
there is at least one agent class responsible for meeting this goal. The agent classes can be
thought of as templates defined in terms of the roles they play and as the protocols they use
to coordinate with other agents (O’Malley et al., 2001), (Gago, 2008).
The next step in the Design phase details the conversations between the agent classes and
defines a coordination protocol between two agents. A conversation consists of two
Communication Class Diagrams that represent the initiator and the responder. This diagram
is a finite state automation defining the conversation states of the two agent classes using a
similar syntax of the analysis phase:
rec-mess (args1) [cond] / action ^ trans-mess (args2)
This syntax defines: “if the message rec-mess is received with the arguments args1 and the
condition cond holds, then the method action is called and the message trans-mess is sent
with arguments args2. All elements of the transition are optional.”

www.intechopen.com

Modelling Multi-Agent System using Different Methodologies

85

The third step in the Design phase is the definition of the agent architecture that is

performed in two steps: (i) definition of the agent architecture and (ii) its components. The

designer can choose the agent architecture, such as Belief-Desire-Intention (BDI), Reactive or

Knowledge Base (Bryson & Stein, 2001).

The last activity in the Design Phase is defining the Deployment Diagram. In MaSE this

diagram shows the agents´ number, types and location in the system. The diagram describes

a system based on agent classes, and it is very similar to the UML Deployment Diagram.

This diagram defines different agents’ configurations and platforms to maximize the

processing power and a network bandwidth.

MaSE can be developed using the AgenTool (2009) tool created by Air Force Institute of

Technology (AFIT). AgenTool helps the system designer to create a series of models, from

higher level goals definition to an automatic verification, a semi-automatic generation

design and finally code generation.

3. Guardian Angel System Adelfe modelling

The Guardian Angel Project (Szolovits, 2004) was proposed as an information system

centered on the patient, rather than the service provider. The software agents group explains

the name "guardian angels” (GA). This “guardian angels” support functions for the patient’s

health, including the patient’s medical considerations, legal and financial information.

Each GA is an active process which performs several important functions: (i) verification,

interpretation and explanation of patient data collection, relevant facts or medical plans; (ii)

recommendations with the acquired experience and patient’s preferences; (iii) feasibility

study, regarding the medical effectiveness, diagnostics cost and therapeutic planning; (iv)

patient's health progress monitoring; (v) communications with other service providers

software agents; (vi) education, information and support to the patient. All these facilities

help to improve the medical diagnosis quality, increases the patient’s commitment and

reduces the disease effects and medical errors.

The Adelfe Guardian Angel (GA) modelling was developed using the Work Definitions for

the early and final requirements, analysis and design, the AMAS Adequacy tool and

OpenTool (Adelfe, 2003), (Henderson-Sellers & Giorgini, 2005). The Adelfe models

presented in this section were developed by Kano (2007) and they were also improved and

presented in Werneck et al. (2007).

3.1 Preliminary requirements

The following functional requirements were defined in the preliminary requirements phase:

(i) allow the user to make different query to databases; (ii) allow to communicate with

others sub-systems connected in the net; (iii) monitor the progress of the patient health

conditions and the effect of the treatment; (iv) periodically verify the data integrity to find

violations based on the user expectative and collateral effects; (v) expose the colleted data

from auxiliary bases to user offering a maximal context comprehension to the user involved;

(vi) customize services allowing the user objectivity, adequacy and efficiency; (vii) improve

education functionalities to the user like access to encyclopaedias and universities

researches to find knowledge from their diseases; (viii) provide alert and agenda functions

remembering the patients their appointment, dosage and contraindications of medicines;

(ix) offer to the patient the possibility to be in contact with support groups, forums and the

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

86

main medicines laboratories; (x) be able to organize of the illnesses and diseases in a

hierarchal structure using decreasing levels of severity, in order to make possible to apply

together different techniques to the patients.
In this phase, the following non-functional requirements were also defined: (i) to be able to
store physical and logical information using an enormous data volume; (ii) to make use of
visual, sonorous and touch communication capacity; (iii) the system should be available 24
hours along the 7 days of the week, 365 days per year; (iv) be multi-task and allow to answer
to several data request simultaneous at a certain average time; (v) to be conceptually
distributed (the small parts inside inhabit all the same environment, however they
represent, separately, concepts and well distinct parts); (vi) to allow the sudden appearance
and the abrupt disappearance of its components; (vii) to allow the adaptation and evolution
of its components.
The key words defined in this phase are: Monitoring, GA, Patient, Communication, Health
Professional, Insuring, and History Information.
One of the GA constraints relates to maintenance routines when the system will not be
available. Another restriction is the subnets functionality with which the system interacts.
The case of eventual problems in one of these subnets the user will be unable to access them
until they become again in operation.

3.2 Final requirements
The environment characterization activity (A6) identified the following passive entities:
World Wide Web, Library, Hospital Stay, Illness Organism Information, Idiopathic Cause
and Therapy. The active entities list are: Patient, Family, Support the Patient Group,
Government, Health Plan Insurance, Laboratory, Health Professional, Hospital, Clinic,
Pharmaceutical Industry, Ambient Factors and the proper Guardian Angel.
The central entity of the Guardian Angel is the Patient that has the ability to activate any
events in any circumstance that will be convenient, dynamically interacting with the system.
The Family is another entity that can modify the patient treatment routine depending on the
treatment results and satisfaction degree, being able to dynamically interact with the system.
The Health Professional entity has the power to trace treatment plans, to request
examinations and to prescribe medicines, dynamically interacting with the system.
The Guardian Angel can be seen as “processing cells" of the system that interact
dynamically in accordance with the recurrently perceptions of the environment. This entity
was divided in 4 specializations: (i) Analyser - GA directed towards the tasks which require
analyses, interpretation and understanding of data in one determined context; (ii) Inspector
- GA directed towards the monitoring/inspection of specific states in the system; (iii)
Diplomat - GA directed towards the reduction and treatment of Non-Cooperative
Situations. The GA Diplomat is responsible for using its "diplomacy" together with a GA
Analyser that helps to determine the priorities of the GAs´ execution, and (iv) Worker - the
GA worker is the basic processing cell with the physical operations required to modify
data/state of the system.
The Collaboration Diagrams for passive entities and the Sequence Diagrams for the active
entities were built (Kano, 2007) and figure 3 presents an example of Customize Setting to
Adapt Treatment to Patient’s Reality.
The Guardian Angel system activity of characterizing environment (A6-S3) was classified as:
(i) inaccessible because several users can be logged and they can modify data at anytime; (ii)
continuous because the users are free to make their own actions; (iii) non-deterministic

www.intechopen.com

Modelling Multi-Agent System using Different Methodologies

87

because the prescription of a treatment can be different for the same disease in different
patients, and (iv) dynamic because the system depends on the environment and that can not
be predicted by the system.

Fig. 3. Sequence Diagram: Customize Setting to Adapt Treatment to Patient’s Reality (Kano,
2007)

Then the use case diagrams were defined and divided in five groups: GA Domain, Patient,
Institutions, Administrative and Service. For each group a Use Case Diagram was modeled
involving several use cases and then for each Diagram some NCS were identified as shown
in Figure 4.

3.3 Analysis

In the GA Domain Analysis four new passive entities (Idiopathic Cause, Therapy, Hospital
Stay and Disease-Causing Organism) were found and some diagrams and documents
developed during previous steps had to be modified.
The classes identified in this phase were: User, People, Patient, Family, Health Care
Professional, Doctor, Guardian Angel (Analyser, Diplomat, Inspector and Worker), Data
Source, Clinic, Insurer, World Wide Web, Library, Government, Laboratory, Pharmacy
Industry, Hospital, Patient Support Group, Environmental Factor, Idiopathic Cause,
Therapy and Hospital Stay.
In the AMAS technology adequacy activity, the GA got the following reply from the tool in
relation to the global criterion; "Your application possesses, with a high degree, almost all
the characteristics that can justify - without any ambiguity- using AMAS". In the
components evaluation the tool reply was: "Even if your application needs using AMAS
some of its components must also be designed using this technology. We recommend you to
apply as many times as necessary the methodology to specify all those components".
The agents identify activity (A12) studied active entities and for each one a form was
defined as shown in Table 4. Thus four cooperative agents have been identified.

3.4 Design

The Design phase defined the packages and classes by elaborating the classes and
collaboration diagrams. No design pattern was applied and the activity A17 of Fast

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

88

prototype was not realized because the JAVA version of the tool does not work in the
project computer because of some incompatibility that we could not fix.

Fig. 4. Non-Cooperation Situations: User (patient) (Kano, 2007)

Guardian Angel

Autonomy:
Has autonomy because can make decisions based only on
its knowledge

Local Goal: The local goal is to perform a task that was assigned to it.

Interactions with other
Entities:

Interact with other Guardian Angels and Patient.

 Environment Partial
Overview:

Limited overview of the system

Negotiation Abilities: Capable to Negotiate with other entities.

Potential agent: An agent in potential according to Adelfe´s definition.

Dynamic environment:
Yes – it is not possible to prevent in which circumstances its
actions are taken.

Face NCS Yes - can request a service that is not available

Treat NCS
Yes- For example when a GA does not receive an answer to
a feedback request.

Table 4. WD4 – Design in Adelfe (Werneck et al., 2007)

www.intechopen.com

Modelling Multi-Agent System using Different Methodologies

89

In the activity A15 the interactions between the agents were studied and for each an AUML
Protocol Diagram was defined (an example is shown in figure 5). For each Guardian Angel
the abilities, aptitudes, representations and characteristics were identified and also defined
the protocols used in A15 activity which will be used by the agents. Finally the NCS in a
form (Table 5) were defined.

Fig. 5. Protocol Diagram of GA (Kano, 2007)

Name Permission denied

State Execute the activity

Description
An agent faces this situation when the activity that it intends to execute
cannot be accomplished with the permissions of the user in question

Conditions User with no knowledge about the system.

Actions
The agent must supply to the user a list of all the users who have
connection with this and that they have permission to execute the task.

Table 5. The Identification of NCS Form (Kano, 2007)

The diagrams in the last activity (A18) were detailed and the dynamic behaviours were also
completed by designing the State Chart Diagram where the attributes and methods were
specified to express the agents' state, conditions and actions.

4. Educ-MAS MaSE modelling

The Educ-MAS (Educational Multi-Agent System) is a learning education environment with
multi-agents that aims at helping the teaching process on a specific topic. The modelling
presented in this chapter was improved from Gago (2008) and Gago et al. (2009).

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

90

The first step in the MaSE analysis requirements modelling is to define the Goal Hierarchy

Diagram. Then the goals are decomposed in sub-goals until they can be expressed as

functions as shown in Figure 6. The main goal Promote Individual Learning was structured

based on the Intelligent Tutoring Systems classical architecture that considers four models:

Pedagogic, Expert, Student and Interface. Each model reflects the ability and the

characteristics of the Educational System (Viccari et al., 2003), (Wooldridge & Jennings,

1997): Explore Student, Plan Course, Manage Knowledge and Manage Teaching. The goals

are also decomposed into other goals. For example the goal Plan Course was partitioned

into two sub-goals (Consult Defined Goals and Define Course Plan) and the sub-goal Define

Course Plan has two sub-goals named Define Content of the Modules and Define the Plan

Presentation of the Module.

 1. Promote
Individual Learning

1.4
Manage

Teaching

1.3
Manage

Knowledge

1.2
Plan

Course

1.1
Explore
Student

1.1.1
Manage

registration

1.1.2
Mange

the
student

level

1.1.3
Monitor

activities
related to
student

1.2.1
Consult

defined goals

1.2.2
Define
course

plan 1.3.1
Define
know-
ledge

1.3.2
Retrieve

the
production

rule for
knowledge

1.3.3
Monitor

blackboard

1.4.1
Display
module

1.4.2
Evaluate

the
student

1.4.3
Address
student’s
questions

1.1.1.1
Generate

registration

1.2.2.1
Define the

contents of the
modules

1.2.2.2
Define the plan
presentation of

the module

Fig. 6. Educ-MAS Goal Diagram adapted from Gago et al (2009)

Then the goals and sub-goals were translated into use cases. Figure 7 presents an example of

Educ-MAS use case and the respective sequence diagram for the functional requirement

Teach Class, its description and also the name of Sequence Diagrams that retracts the

scenarios of this use case. The scenarios are Student’s Class, Questions Resolved and

Questions Not Resolved. For each one a Sequence Diagram has to be built showing how the

system behaves. Figure 8 shows the agent behaviour with the third scenario of the case

Teach Class The whole specification of Educ-MAS can be found in Gago (2008).

The next activity is to develop a set of roles and tasks showing how the goals are reached

based on the Goals, the Use Cases (diagrams and descriptions) and the Sequence Diagrams.

Figure 9 represents the Preliminary Role Diagram where the goals were mapped to system

roles. For example, the System Administrator role (Fig.9) achieves the goals Explore Student

(goal 1.1 in the Goal Diagram), Manage Registration (goal 1.1.1 in the Goal Diagram),

www.intechopen.com

Modelling Multi-Agent System using Different Methodologies

91

Generate Registration (goal 1.1.1.1 in the Goal Diagram), and Monitor (goal 1.1.3 in the Goal

Diagram), activities related to student.

Manage registration

Define Student’s Level

Define lesson plan

Retrieve content of module

Plan class

Teach class

Evaluate the student

Monitor activities of student

Use Cases

Student's class

Question resolved

Question opened

Sequence Diagrams

Description
Use case: Teach class
Agents: Tutor, Expert, Administrator
Pre - conditions:
1) There must be a course plan to the student.

Normal flow:
1) The Tutor asks the Administrator agent to retrieve the

course plan, the modules and their content.
2) The Tutor selects and shows the next topic to the student.
3) The student indicates that the topic is finalized, the Tutor goes

to step 2.
4) If the topics end up, the Tutor opens concept problem solving session.
5) If the student has a question, the Tutor searches for a list

with the Expert agent that contains questions
that represent the default concerns:

5.1) The student selects a question, the Tutor agent tries to answer it .
 5.2) If the student is not satisfied, the Tutor agent selects another

answer with the Expert agent.
6) The student says that he/she understands the answer and the Tutor

agent ends the session after registering the concern.
Alternative flow:
 6) If the student does not understand the answer, Tutor sends a message to a

human teacher responsible for this course.

Fig. 7. Use Case Teach Class adapted from Gago et al (2009)

:Student_interface :
Student

 :Question_solver :
Tutor

:Expert_interface
Expert

:System_Administ
Administrator

: Db_Administ .:
DB_Administrator

indicate_question
ask_for_explanation

question_rule

send_explanation
question_production

send_explanation

indicate_not understanding

save_student_open_question

notify_no_ success

save_student_open_question

notify_no_ success

:Interface

Teacher
.:

ask_for_explanation for the open question

Fig. 8. Question Opened Sequence Diagram adapted from Gago et al (2009)

In the complete Role Diagram the tasks responsible for the roles and the associations among

themselves were introduced to reach the responsible goal roles. Continuing the Analysis

phase the Concurrence Task diagrams have to be built for each task as shown in Figure 10

for the task Monitor Blackboard. This task is associated to the Expert interface role which is

responsible for the goal with the same name. This task monitors the blackboard in order to

interface the knowledge base introducing the questions and their contents.

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

92

Database_Administrator Course_coordinator
1.2.1
1.2.2
1.2.2.1
1.2.2.2
1.2

System_Administrator
1.1
1.1.1
1.1.1.1
1.1.3

Expert_interface
Student_interface

Question_solver
1.4.3

1.3.1
1.3.2
1.3.3

Assessor
1.1.2
1.4.2

Teacher
1.4.1

Fig. 9. The Educ-MAS Partial Role Diagram (Gago et al., 2009)

Idle

Notify

Verify valid content

Build production rule

Retrieve production rule

Retrieve knowledge

Task: Monitor blackboard ^send(acknowledge,ag)

^receive(requestProd(rule),ag)

receive(newKnowledge(rule),Retrieve knowledge)

^send(rule(r),Retrieve production rule)

^send(setProd(ule),ag)
[valid] [NOT valid]

Fig. 10. Concurrent Task Diagram for the task Monitor blackboard (Gago et al., 2009)

In the Design phase the Role Diagram and the Concurrence Task diagrams have to be used
to design the individual components of the agent classes as presented in Figure 11. The
agent architecture chosen was a simple BDI (Belief-Desire-Intention) agent architecture and
Figure 12 presents an example of a Tutor agent class partial structure components. The last
step in the Design phase has to develop an overall operational design by designing the
Deployment Diagram (Gago et al., 2009). The Tutor, Administrator, Coordinator and Expert
Agents are defined in an environment as a system. The Interface (Student Model) starts at
the student’s computer while the Database Management and the other part of the system are
in network computers.

www.intechopen.com

Modelling Multi-Agent System using Different Methodologies

93

Db_Manager
System_administrator
Database_administrator

Coordinator
Course_coordinator

Administrator
System_administrator

Expert
Expert_interface

Student

Student_interface

Tutor
Teacher

Question_solver
Assessor

saveRegistry

askTest

moduleRule

safeStudentInfo

updateCourse

knowledgeRule

askInfo
askAnswer

askStudentRegister

Fig. 11. The Educ-MAS Agent Class Diagram (Gago et al., 2009)

Controller

-validMsg:type

perceptMsgReceived(msg):boolean

verifyMsg(msg):

setSend(NewMsg:Message):

decidePriority(queue):

Architecture for Agent: Tutor

Question
+student:type

-question:type

perceptMsg (newInfo:Message):

getListOfQuestions ():

requestStudent(questions):

getAnswerOfQuestion():

showStudent(answer:Rule):

toAvaliator(student):

sendEmail(Doubt):

SelectQuestion

+question:type

-newAnswer:type

perceptMsg (newInfo:Message):

requestQuestion(questions):

setAnswer(answer:Rule):

sendAnswer(newAnswer):

ApplyTest
+newTest:type

+test:type

thisModule ():

perceptMsg(msg:Message):

sendTest(rule):

pop(newTest):

saveAnswer(testNumber):

sendStudent(newTest{x}):

complete(Test(test):

toCorrect(test):

SelectAnswer
+question:type

receiveQuestions (question):

addMemory(question):

IO_Interface

send(Msg:Message):

getReceive(Msg:Message):

CorrectTest
+newGab:type

+test:type

sendGab (Test):

perceptMsg (newInfo:Message):

pop(someList:List):

comparet(newTest,test):

correct(Test(test)):

Rule_Tutor

+rule:Set(type)

getRule(rule):

DefineLevel

+action:type

sendReqGab(test):

decideAct(action):

sendGetRegister(mat:Number):

getNumberOfQuestions():

getRightsTest(test)

doPercentOfRights():

queryDB(msg:Message):

sendExecute(msg):

RetriveAnswer
+testAnswer:type

getGab(Test):

getRule(rule:Rule):

sendGab(testAnswer):

Fig. 12. Tutor Agent Class Partial Structure Component (Gago et al., 2009)

5. Conclusions

This work is part of a broader project which aims at analysing important aspects of

modelling and developing different Multi-Agent Systems using several methodologies. The

first system modelled presented was a classical Multi-Agent System case study in a Medical

Domain using Adelfe methodology.

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

94

Adelfe is a methodology originated from object orientation based on UML (Rumbaugh et al.,
2004) that incorporated AUML (2007) protocols diagram and the development process RUP
(Krutchen, 2000). The Adelfe process covers the requirements, analysis and project phases
with a well defined process. Adelfe can be a powerful methodology in terms of cooperative
agents' concepts centred in Non-Cooperative Situations. This method allows the definition
of important agent concepts as autonomy, proactivity and autonomy reason. However, the
methodology needs to improve some aspects of characterized environment by adding new
diagrams that can model goals, plan and organization.
The second Multi-Agent System modelled was a learning education environment in the
MaSE that is an object-oriented methodology that supports analysis and design phases
using agent-orientated techniques. MaSE can also be considered a powerful methodology in
terms of cooperative agents' concepts (definition of autonomy, proactivity and autonomy
reason and the agent concepts are centred in the Roles Diagram and in Goal orientation.
However, this methodology is not completely defined, especially for the Early Requirements
phase it lacks on capturing, understanding and registering terminology. In DiLeo et al.
(2002) they propose to integrate ontology representation to MaSE that can solve this
weakness. Another point to be improved is related to non-functional requirements that are
not mentioned in the methodology and the MaSE protocols representation that is divided
into two diagrams so both diagrams have to be seen to understand the agent
communications.
In the future we are going to compile these experiences from all MAS development and
define a knowledge base for an Agent-Oriented Methodology Approach based on the
Situation Method Engineering (SME). This knowledge will provide a flexible way of
developing a Multi-Agent System using a methodology based on strengths and examples of
models of each method fragments and also situations when applying a respective method
artefact.

6. Reference

Adelfe (2003). Atelier de Développement de Logiciels à Fonctionnalité Emergente) at
http://www.irit.fr/ADELFE.

Agent Tool (2009). at http://macr.cis.ksu.edu/projects/agentTool , Last Updated October 2009.
AUML (2007). at http://www.auml.org/auml/ Last updated on 17 June 2007.
Bernon, C., Camps, V., Gleizes, M. P. and Piscard, G. (2003). ADELFE: A Methodology for

Adaptive Multi-agent Systems Engineering; In: Lecture Notes in Computer Science,
Volume 2577, Springer Berlin Heidelberg, ISSN: 0302-9743, pp. 156-169.

Bryson, J. & Stein, L. (2001). Modularity and design in reactive intelligence, In: International
Joint Conference on Artificial Intelligence, IJCAI-2001, Seattle (USA), pp 1115-1120.

Coppieters, A. M., Marzulo, L.A.J., Kinder, E. And Werneck, V.M. (2005). Modelagem
Orientada a Agentes utilizando MESSAGE, In : Cadernos do IME-Série Informática,
Rio de Janeiro, v.18, ISSN 1413-9014, pp. 38-46 in portuguese.

Cysneiros, L. M., Werneck, V. M. B., Amaral, J., Yu, E. (2005). Agent/Goal Orientation
versus Object Orientation for Requirements Engineering: A Practical Evaluation
Using an Exemplar, In: Proc. of VIII Workshop in Requirements Engineering, Porto,
ISBN 972-752-079-0, pp.123-134.

www.intechopen.com

Modelling Multi-Agent System using Different Methodologies

95

Cysneiros, L. M., Werneck, V. M. B.; Yu, Eric (2005a). Evaluating Methodologies: A
Requirements Engineering Approach Through the Use of an Exemplar. In: Journal
of Computer Science & Technology, ISSN: 1000-9000, USA, v. 5, n. 2, pp. 71-79.

Dantas, T. C.; Soares, G. E. ; Costa, Rosa Maria Esteves Moreira Da Werneck, Vera M. B. ;
Castro, M. C. S. (2007). AprendEAD: Ambiente para Educação à Distância Apoiado
em Agentes; In: Cadernos do IME. Série Informática, v. 23, p. 16-23, ISSN 1413-9014, in
portuguese.

Deloach, Scott A. (2001). Analysis and Design using MaSE and agentTool. In:12th Midwest
Artificial Intelligence and Cognitive Science Conference (MAICS 2001), Miami
University, Oxford, Ohio.

Dileo, Jonathan; Jacobs,Timothy; Deloach, Scott. (2002). Integrating Ontologies into
Multiagent Systems Engineering. In: Fourth International Bi-Conference Workshop on
Agent-Oriented Information Systems (AOIS-2002).

Gago, I. S. B. ; Werneck, Vera M. B. & Costa, Rosa Maria Esteves Moreira da . (2009).
Modelling an Educational Multi-Agent System in MaSE. In : Lecture Notes in
Computer Science, v. 5820, ISSN: 0302-9743, p. 335-346.

Gago, I., Utilização da metodologia MaSE na modelagem de Sistema Tutor Inteligente
Dissertation on Informatics Technology, UnderGraduation, UERJ, Rio de Janeiro,
2008 pp 114 in portuguese.

Henderson-Sellers, Brian & Giorgini, Paolo (ed). (2005). Agent-oriented Methodologies. 1ed:
Idea Group Inc, London, UK, ISBN 1-59140-581-5, p412.

Henderson-Sellers, Brian & Ralyté, Jolita. (2010). Situational Method Engineering: State-of-
the-Art Review, In: Journal of Universal Computer Science, vol. 16, no. 3, DOI:
10.3217/jucs-016-01, 424-478.

Iglesias, C.A. & González, J.C. (1998). A Survey of Agent-Oriented Methodologies In
Proceedings of the 5th International Workshop on Agent Theories, Architectures and
Languages (ATAL'98), LNAI n1555, Springer Verlag, Paris, France, 317-330.

Kano, Abrahão Yehoshua Kano, Modelagem orientada a agentes do Sistema Guardian
Angel: Sistema de Informação de Saúde centrado no Paciente. Dissertation on
Informatics Technology UnderGraduation, UERJ, Rio de Janeiro, 2007 pp 247 in
portuguese.

Krutchen, P. (2000) The Rational Unified Process: An Introduction, Reading, MA, Addison
Wesley.

MaSE (2010} at http://macr.cis.ksu.edu/projects/mase.htm access at August, 2010
O’Malley , Scott A.; Deloach, Scott A. (2001). Determining When to Use an Agent-Oriented

Software Engineering Paradigm. In : Proceedings of the Second International Workshop
On Agent-Oriented Software Engineering (AOSE-2001), Montreal, Canada.

Odell, J., Parunak, H., Bauer, B. (2001). Representing agent interaction protocols in UML, In:
First International Workshop on Agent-Oriented Software Engineering, (AOSE 2000),
Ciancarini, P., Wooldridge, M., Eds., LNCS 1957 Springer, Limerick, Ireland, 121-
140.

Rumbaugh, J., Jacobson, I. & Booch, G. (2004). The Unified Modelling Language Reference
Manual, Second edition, Addison,-Wesley.

Schreiber, G., Akkermans, H., Anjewierden, A. Hoog, R. de, Shadbolt, N., Velde, W.Van
de, Wielinga, B. (1999). Knowledge Engineering and Management: The CommonKADS
Methodology, Cambridge, MA, ISBN: 0262193009 .

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

96

Sousa, R.; Araújo, Alex L. de, Gomes Junior, Carlos A.; Costa, Rosa Maria Moreira da,
Werneck, V. M. B. (2009). Modelagem de Requisitos Orientada a Agentes utilizando
MaSE; Cadernos do IME. Série Informática, v. 28, ISSN 1413-9014, in portuguese.

Sousa, R.; da Cunha, A. L. F.; Martins, R. F. A. Cysneiros, L.M., Werneck, V. M. B. (2010).
Evaluating MaSE Methodology in the Requirements Identification; In : Proceedings
of Proceedings of the 33nd Annual IEEE Software Engineering Workshop.: IEEE
Computer Society Press, Skovde.

Szolovits, P., Doyle, J., Long, W.J., Kohane, I. e Pauker, S. G. (2004). Guardian Angel: Patient-
Centered Health Information Systems, Technical Report MIT/LCS/TR-604, at
http://groups.csail.mit.edu/medg/projects/ga/manifesto/GAtr.html

Tavares, D. G.; Eichler, J.; Pereira, L. F.; Silva, T. S.; Da Cunha, A. L. F.; Martins, R. F. A.
Cysneiros, L.M., Werneck, V. M. B. (2009). Processo de Desenvolvimento do
Sistema Multi-Agentes Monitor Glicêmico; Cadernos do IME. Série Informática, v.
28, ISSN 1413-9014, in portuguese.

Viccari, Rosa M., Floresa, Cecilia D., Silvestrea, Andre´ M., Seixasb, Louise J., Ladeirac,
Marcelo, Coelho, Helder (2003). A multi-agent intelligent environment for medical
knowledge, In: Artificial Intelligence in Medicine, 27, ISSN: 0933-3657, 335–366.

Werneck, V. M.; Pereira, L. F.; Silva, T. S.; Almentero, E. K.; Cysneiros, L. M. (2006). Uma
Avaliação da Metodologia MAS-CommonKADS, In: Proceedings of the Second
Workshop on Software Engineering for Agent-oriented Systems, (SEAS´06),
Florianópolis, Brazil, ISBN: 0164-1212; 13-24, in portuguese.

Werneck, Vera M. B. ; Cysneiros, Luiz Marcio ; Kano, A. Y. (2007) Evaluating Adelfe
Methodology in the Requirements Identification. In: Proceedings of 10TH Workshop
on Requirements Engineering. Toronto , York University Printing Services, v. 1. 13-24.

Werneck, Vera M. B. ; Cysneiros, Luiz Marcio ; Kano, A. Y. ; Coppieters, A. M. ; Fasano, A.
L. ; Marzulo, L. A. J. ; Furtado, L. O. ; Pereira, L. F. ; Lopez, M. A. C. ; Pereira,
Ricardo Augusto Gralhoz, Rafael Barros; Silva, T. S. ; Santos, T. R. M. (2008).
Metodologias Orientadas a Agentes. Cadernos do IME. Série Informática, v. 26, ,
ISSN 1413-9014. 7-16, in Portuguese.

Wooldridge, M. & Jennings, N. (1997). Intelligent Agents: Theory and Practice, at
http://www.doc.mmu.ac.uk/STAFF/mike/ker95/ker95-html.html.

Yu, E. & Cysneiros, L.M. (2002). Agent-Oriented Methodologies-Towards a Challenge
Exemplar, in Proc of the 4th Intl. Bi-Conference Workshop on Agent-Oriented
Information Systems (AOIS 2002), Toronto, pp.47-63.

www.intechopen.com

Multi-Agent Systems - Modeling, Interactions, Simulations and

Case Studies

Edited by Dr. Faisal Alkhateeb

ISBN 978-953-307-176-3

Hard cover, 502 pages

Publisher InTech

Published online 01, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent

systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic

system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous

and proactive software components. Multi-agent systems have been brought up and used in several

application domains.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Vera Maria B. Werneck, Rosa Maria E. Moreira Costa and Luiz Marcio Cysneiros (2011). Modelling Multi-

Agent System using Different Methodologies, Multi-Agent Systems - Modeling, Interactions, Simulations and

Case Studies, Dr. Faisal Alkhateeb (Ed.), ISBN: 978-953-307-176-3, InTech, Available from:

http://www.intechopen.com/books/multi-agent-systems-modeling-interactions-simulations-and-case-

studies/modelling-multi-agent-system-using-different-methodologies

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

