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1. Introduction     
 

The shielding effect of buildings to electromagnetic waves is investigated by many 
researchers (Dalke etal., 2000), where the analysis of reinforced concrete walls has attracted 
special interests. In most cases, a reinforced concrete wall is treated as an infinitely extended 
periodic structure and periodic boundary conditions are used to get its transmission and 
reflection characteristics, from which the shielding effect of the wall can be evaluated. 
However, when analyzing indoor electro-magnetic environment, the surrounding 
reinforced concrete walls are not infinitely extended. Therefore, the infinitely extending 
plane structure model cannot provide an accurate enough prediction to the indoor 
electromagnetic environment, especially the fields at corners or ends of walls. Some 
numerical methods, such as method of moment (MoM) seem to be applicable for analyzing 
these kinds of problems. However, the computational cost may be too high since these kinds 
of electromagnetic systems usually not only have electrical sizes of tens or hundreds 
wavelengths, but also have very fine internal structures. 
In this chapter, we present a method to circumvent the heavy burden on computing sources 
while adequate accuracy can still be achieved. A reinforced concrete wall with fine 
structures is first divided into small blocks. Each block is treated like a multi-layered 
scatterer and is analyzed independently by using cascaded network techniques. Then, the 
electromagnetic characteristics of that block is expressed by a generalized transition matrix 
(generalized T-matrix, GTM) that is defined on a specified reference surface containing the 
block, which is different from the T-matrix introduced by Waterman (Waterman, 2007). The 
mutual coupling effects among blocks are evaluated by using the generalized transition 
matrices of all blocks directly. The scattered fields of the whole system are calculated using a 
generalized surface integral equation method (GSIE). Furthermore, we will show that 
characteristic basis functions (CBF) and synthetic basis functions (SBF) can be used to 
accelerate the evaluation process effectively.  
The following contents are included in this chapter: (1) description of the basic concept of 
generalized transition matrix and the generalized surface integral equation method, (2) the 
cascading network technique in analyzing multi-layered media, (3) the implementation of 
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GSIE in conjunction with CBF\SBF, and (4) as an application example, the evaluation of the 
shielding effect of a 2D reinforced wall with the proposed method. 

 
2. Generalized Surface Integral Equation 
 

The electromagnetic problem under consideration is shown in Fig. 1. A 2-D cavity is 
surrounded by a 10 10   concrete wall.  The wall is 1.0  thick and is uniformly 
reinforced by 36 circular steel cylinders with radius of 0.1  and conductivity of 61.1 10    
Sm-1. The relative permittivity of the concrete is 10 2.8r j   . The excitation is assumed to 
be a TM type plane wave with incident angle of  . 
In order to calculate the electromagnetic fields in the cavity, the wall is divided into 36 cells. 
Each cell consists of a steel cylinder and a concentric concrete cylinder with square cross 
section of 1.0 1.0  , as is sketched in Fig. 1. A cell is a multilayered scatterer and its 
scattering characteristics can be fully described by a generalized transition matrix, which 
relates the scattered tangential fields to the incident tangential fields directly, as   is   shown   
in   Fig. 2.   
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Fig. 1. A 2-D cavity surrounded by a concrete wall. The wall is uniformly reinforced by 36 
circular steel cylinders with radius of 0.1  and conductivity of 6 11.1 10 Sm .  
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Fig. 2. A block is modelled with its associated generalized transition matrix  biT . Si


J and 

Si


M  are equivalent surface electric current and magnetic current, respectively.  

 

A scatterer with two layers of homogeneous media is illustrated in Fig. 3(a), where 1V  
denotes the medium between interface 1S  and 2S , with permittivity 1  and permeability 1 . 
For a block of the concrete wall, 1S  is the air-concrete interface and 2S  the concrete-steel 
interface. The normal unit vectors of all interfaces are chosen to point outwardly. The 
outermost medium, denoted by 0V  is assumed to be free space.  
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Fig. 3. (a) A scatterer with two layers.  (b) One-port device model. 
 

We examine the field scattering problem on interface 1S at first. The incident fields may 
come from both sides of the interface, and being scattered to both sides of it, as is shown in 
Fig. 4(a). The interface may be modelled as a generalized two-port device, with its two 
reference surfaces being chosen as  1S

  and 1S
 . The notation 1S

 means approaching 1S from 
outside while  1S

  means approaching 1S from interior area. 
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Fig. 4. (a) Scattering on interface 1S , with incident fields from both sides of it. (b) 
Generalized two-port device model, with its two reference surfaces approaching 1S from 
outer or interior medium. 
 
Define the rotated tangential components of incident fields and rotated tangential 
components of scattered fields of a block as follows (Xiao et al., 2008):          
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Note that the normal unit vector for 1S

 is chosen to be ,1ˆna . Based on Huygens’ equivalence 
source principle, the scattered fields from interface 1S can be expressed in terms of their 
tangential fields on the interface using the dyadic Green’s function, 
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in medium lV , l l lk    and 0,1l  . The fields have to satisfy the following boundary 
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  
1 1

2 2 2
11 ,1 1 1 ,1 1 1

1 ˆ ˆ' '
2 n nS S

g dS j dS           
E a E a G H .                      (12) 

 
 Integral equations for rotated tangential magnetic fields can be expressed in similar way, 
 

  
1 1

1 1 1
01 ,1 0 1 ,1 0 1

1 ˆ ˆ' '
2 n nS S

j dS g dS           
H a G E a H ，    (13) 

 
1 1

2 2 2
11 ,1 1 1 ,1 1 1

1 ˆ ˆ' '
2 n nS S

j dS g dS            
H a G E a H ．     (14) 

 
The same process can also be applied to the incident fields. For example, according to the 
Huygens’ principle and the distinction theorem, we have  
 

   
1 1

1 1 1
01 ,1 0 1 ,1 0 1

1 ˆ ˆ' '
2 n nS S

g dS j dS           
E a E a G H ，  (15) 

  
1 1

1 1 1
01 ,1 0 1 ,1 0 1

1 ˆ ˆ' '
2 n nS S

j dS g dS            
H a G E a H ．  (16) 

 
With these integral equations, we are able to establish a set of coupled surface integral 
equations on interface 1S . Firstly, we consider the case that an incident field illuminates on 

1S  from the outer side only, i.e., 1 2
1 10, 0   
X X . Combining (11)-(16) and eliminating  

1 1
1 1, E H
 

gives 
 

   
1 1

2 2 1
0 1,1 0 1 1 ,1 0 1 1 1ˆ ˆ' 'n nS S

g g dS j j dS             
a E a G G H E ，    (17) 

             
1 1

2 2 1
0 1,1 0 1 1 ,1 0 1 1 1ˆ ˆ' 'n nS S

j j dS g g dS                
a G G E a H H ．      (18) 
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It is not difficult to check that (17) and (18) are equivalent to PMCHW formulation (Rao etal., 
1982) by denoting 2 2,s ms

     
J H J E . Symbolically, the rotated tangential scattered fields 

on interface 1S
  can be expressed in terms of the incident fields as

  
 

  2 1
1 1 1           
 
X X .                                                    (19) 

 
Therefore, the rotated tangential scattered fields on interface 1S

  is obtained by 
 

   1 1
1 1 1             
 
X I X .                                                  (20) 

 
I is the identity tensor. It is natural to interpret  1     as a transmission operator and 

    1           I  a  reflection operator.  

Secondly, we consider the case that incident field illuminates on  1S  from interior side only, 

i.e., 1 20, 0   
X X . It can be proven that the rotated tangential scattered fields are subject 

to the following coupled surface integral equations, 
 

         
1 1

1 1 2
0 1,1 0 1 1 ,1 0 1 1 1ˆ ˆ' 'n nS S

g g dS j j dS               
a E a G G H E  ， (21) 

       
1 1

1 1 2
0 1,1 0 1 1 ,1 0 1 1 1ˆ ˆ' 'n nS S

j j dS g g dS                
a G G E a H H . (22) 

 
Comparing (21) (22) with (17) (18), we can write that 
  1 2

1 1 1           
 
X X ,  (23) 

               2 2
1 1 1             
 
X I X .   (24) 

 
In general situations, incident fields come from both sides of an interface, the total scattered 
fields are obtained by field superposition, which can be written in matrix form as 
 

 
    

   
1 1

1 11 1

2 2
1 11 1

 
 

 
 

                                     
 

 
IX X

X XI
.        (25) 

 
It can be re-arranged in field transfer equation, 
 

  1 2
1 1

11 2
1 1

 
 

                
 

 
X X

X X
� ,          (26) 

 
where  l   �  may be interpreted as a transfer operator.  

 

The scattered fields 2 2
1 1,s sE H
 

will transfer to interface 2S  and serve as the incident fields 

on 2S , i.e., 1 1
2 2,  
E H , as is illustrated in Fig. 5. Similarly, the scattered fields 1 1

2 2,  
E H from 

interface 2S  will transmit through the medium layer and illuminate on 1S  as the incident 

fields of 2 2
1 1,  
E H . From Huygens’ principle, the scattered fields associated with 2 2

1 1,  
E H  

are 

     
1 1

2 2 2
11 1 1 1 1' 's

S S
g dS j dS          E r E G H ,  (27) 

      
1 1

2 2 2
11 1 1 1 1' 's

S S
j dS g dS          H r G E H .  (28) 

 

2 2
1 1,  
E H2 2

1 1,  
E H

1 1
2 2,  
E H

,2ˆna

1S

, 1ˆna

1 1, 
1V 2S

1 1
2 2,  
E H

2 2, 

 
Fig. 5. Field transmission between interface 1S  and 2S .  
 
Using the definition of rotated tangential components, we get  
       

1 1

1 2 2 2
12 ,2 1 2 ,2 1 1 ,2 1 1ˆ ˆ ˆ' 's

n n nS S
g dS j dS                E a E r a E a G H , (29) 

     
1 1

1 2 2 2
12 ,2 1 2 ,2 1 1 ,2 1 1ˆ ˆ ˆ' 's

n n nS S
j dS g dS                H a H r a G E a H . (30) 

 
Equations (29) and (30) describe the field transmission from 2 2

1 1,  
E H  to 1 1

2 2,  
E H . Similarly, 

the relationship between the incident fields on the inner side of 1S  and the scattered fields 
from 2S can be derived as 
  

2 2

2 1 1
11 ,1 1 2 ,1 1 2ˆ ˆ' 'n nS S

g dS j dS           
E a E a G H ,  (31) 

       
2 2

2 1 1
11 ,1 1 2 ,1 1 2ˆ ˆ' 'n nS S

j dS g dS          
H a G E a H .  (32) 

 
Symbolically we denote 
 

    2 1
1 12 2
           

 
X X ,  (33) 
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It is not difficult to check that (17) and (18) are equivalent to PMCHW formulation (Rao etal., 
1982) by denoting 2 2,s ms

     
J H J E . Symbolically, the rotated tangential scattered fields 

on interface 1S
  can be expressed in terms of the incident fields as

  
 

  2 1
1 1 1           
 
X X .                                                    (19) 

 
Therefore, the rotated tangential scattered fields on interface 1S

  is obtained by 
 

   1 1
1 1 1             
 
X I X .                                                  (20) 

 
I is the identity tensor. It is natural to interpret  1     as a transmission operator and 

    1           I  a  reflection operator.  

Secondly, we consider the case that incident field illuminates on  1S  from interior side only, 

i.e., 1 20, 0   
X X . It can be proven that the rotated tangential scattered fields are subject 

to the following coupled surface integral equations, 
 

         
1 1

1 1 2
0 1,1 0 1 1 ,1 0 1 1 1ˆ ˆ' 'n nS S

g g dS j j dS               
a E a G G H E  ， (21) 

       
1 1

1 1 2
0 1,1 0 1 1 ,1 0 1 1 1ˆ ˆ' 'n nS S

j j dS g g dS                
a G G E a H H . (22) 

 
Comparing (21) (22) with (17) (18), we can write that 
  1 2

1 1 1           
 
X X ,  (23) 

               2 2
1 1 1             
 
X I X .   (24) 

 
In general situations, incident fields come from both sides of an interface, the total scattered 
fields are obtained by field superposition, which can be written in matrix form as 
 

 
    

   
1 1

1 11 1

2 2
1 11 1

 
 

 
 

                                     
 

 
IX X

X XI
.        (25) 

 
It can be re-arranged in field transfer equation, 
 

  1 2
1 1

11 2
1 1

 
 

                
 

 
X X

X X
� ,          (26) 

 
where  l   �  may be interpreted as a transfer operator.  

 

The scattered fields 2 2
1 1,s sE H
 

will transfer to interface 2S  and serve as the incident fields 

on 2S , i.e., 1 1
2 2,  
E H , as is illustrated in Fig. 5. Similarly, the scattered fields 1 1

2 2,  
E H from 

interface 2S  will transmit through the medium layer and illuminate on 1S  as the incident 

fields of 2 2
1 1,  
E H . From Huygens’ principle, the scattered fields associated with 2 2

1 1,  
E H  

are 

     
1 1

2 2 2
11 1 1 1 1' 's

S S
g dS j dS          E r E G H ,  (27) 

      
1 1

2 2 2
11 1 1 1 1' 's

S S
j dS g dS          H r G E H .  (28) 

 

2 2
1 1,  
E H2 2

1 1,  
E H

1 1
2 2,  
E H

,2ˆna

1S

, 1ˆna

1 1, 
1V 2S

1 1
2 2,  
E H

2 2, 

 
Fig. 5. Field transmission between interface 1S  and 2S .  
 
Using the definition of rotated tangential components, we get  
       

1 1

1 2 2 2
12 ,2 1 2 ,2 1 1 ,2 1 1ˆ ˆ ˆ' 's

n n nS S
g dS j dS                E a E r a E a G H , (29) 

     
1 1

1 2 2 2
12 ,2 1 2 ,2 1 1 ,2 1 1ˆ ˆ ˆ' 's

n n nS S
j dS g dS                H a H r a G E a H . (30) 

 
Equations (29) and (30) describe the field transmission from 2 2

1 1,  
E H  to 1 1

2 2,  
E H . Similarly, 

the relationship between the incident fields on the inner side of 1S  and the scattered fields 
from 2S can be derived as 
  

2 2

2 1 1
11 ,1 1 2 ,1 1 2ˆ ˆ' 'n nS S

g dS j dS           
E a E a G H ,  (31) 

       
2 2

2 1 1
11 ,1 1 2 ,1 1 2ˆ ˆ' 'n nS S

j dS g dS          
H a G E a H .  (32) 

 
Symbolically we denote 
 

    2 1
1 12 2
           

 
X X ,  (33) 
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  1 2
2 21 1
           

 
X X .  (34) 

 
(33) and (34) depict the relationship between the fields of two consecutive interfaces, with  ij   being the transmission operator. The first subscript of      indicates the 

destination interface, while the second subscript indicates the source interface. This 
convention is used throughout this chapter. Obviously, the homogeneous medium layer can 
be considered as a section of generalized transmission line, with  21    and  12     being 
its forward and backward transmission operators, respectively.  
Since the innermost layer 2V  is homogeneous, the scattering problem on 2S  can be 

considered as a special case of the above scattering problem with 2
2 0 
X . The scattered 

fields are only related to the incident fields from the outer side of the interface by equation 
(20),  which is rewritten as follows 
 

    1 1 1
2 2 2 2 2                        
  
X I X X .                                       (35) 

 
Therefore, the two-layered scatterer is modelled as a cascaded network of two generalized 
devices connected by a transmission line, as is shown in Fig. 6.  
 

 1�฀

 21

 2฀

Interface-1 Layer Interface-2 

 12

1V 2S1S

1
2


X1
1


X

1
1


X 1
2


X

 
Fig. 6  A cascaded network model for a two-layered scatterer. 
 

Assume that all field components are expanded and tested with a kind of vector basis 
functions on the reference surface S. The generalized transition matrix  biT  of block i  is 
defined according to 
 

              i bi iX T X        .                                                        (36) 

  bT  can be used to describe the scattering characteristics of a scatterer with arbitrary shapes 

and materials. At a given frequency,  bT  is calculated independently only once for each 

block and can be re-used if necessary.  For homogeneous media, the entries of   bT  can be 
found from (17), (18) by applying Galerkin’s scheme directly. For scatterers with complex 

 

structures,  bT  may be obtained using properly chosen method (Creticos & Schaubert, 2006; 
Lean, 2004; Polewski etal., 2004; Taskinen & Ylä-Oijala, 2006; Umashankar etal.,1986;). In this 
chapter, the generalized transition matrix of a two-layered block is obtained using the above 
described cascaded network technique. 
Assume that all rotated tangential fields on the interface lS  are expanded with a set of 

vector basis functions  ,l jf r


as follows:  
 

    , ,
1

lN
u u
l l j l j

i
e 


E r f r


,               , ,

1

lN
u u
l l j l j

j
h 


H r f r


,                      (37) 

 
where lN  is number of vector functions used  on interface lS  and 1,2u  . Functions  ,l if r


 

are also used as test functions. For the sake of convenience, we denote 
 
    , ,

i

u u
l i l l it
e dS   E r f r


  ,            , ,

i

u u
l i l l it
h dS   H r f r

  ,              (38) 

 
where it is the support of vector basis function  ,l if r


. It can be derived that  
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Here  lP is a Gramm matrix formed by the inner products of the basis functions and test 
functions on the surface lS . The  entries of the Gramm matrix are defined as 
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Applying Galerkin’s method to (17) (18) yields 
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where all elements of the coefficient matrices have their conventional form of double surface 
integrations on the corresponding meshes. For example, on 1S  we have 
        1 1, ,1 0 1 1,ˆ, '
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A generalized transmission matrix  lτ can be defined as  
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(33) and (34) depict the relationship between the fields of two consecutive interfaces, with  ij   being the transmission operator. The first subscript of      indicates the 

destination interface, while the second subscript indicates the source interface. This 
convention is used throughout this chapter. Obviously, the homogeneous medium layer can 
be considered as a section of generalized transmission line, with  21    and  12     being 
its forward and backward transmission operators, respectively.  
Since the innermost layer 2V  is homogeneous, the scattering problem on 2S  can be 

considered as a special case of the above scattering problem with 2
2 0 
X . The scattered 

fields are only related to the incident fields from the outer side of the interface by equation 
(20),  which is rewritten as follows 
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Therefore, the two-layered scatterer is modelled as a cascaded network of two generalized 
devices connected by a transmission line, as is shown in Fig. 6.  
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Fig. 6  A cascaded network model for a two-layered scatterer. 
 

Assume that all field components are expanded and tested with a kind of vector basis 
functions on the reference surface S. The generalized transition matrix  biT  of block i  is 
defined according to 
 

              i bi iX T X        .                                                        (36) 

  bT  can be used to describe the scattering characteristics of a scatterer with arbitrary shapes 

and materials. At a given frequency,  bT  is calculated independently only once for each 

block and can be re-used if necessary.  For homogeneous media, the entries of   bT  can be 
found from (17), (18) by applying Galerkin’s scheme directly. For scatterers with complex 

 

structures,  bT  may be obtained using properly chosen method (Creticos & Schaubert, 2006; 
Lean, 2004; Polewski etal., 2004; Taskinen & Ylä-Oijala, 2006; Umashankar etal.,1986;). In this 
chapter, the generalized transition matrix of a two-layered block is obtained using the above 
described cascaded network technique. 
Assume that all rotated tangential fields on the interface lS  are expanded with a set of 

vector basis functions  ,l jf r
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as follows:  
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where lN  is number of vector functions used  on interface lS  and 1,2u  . Functions  ,l if r


 

are also used as test functions. For the sake of convenience, we denote 
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where it is the support of vector basis function  ,l if r
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Here  lP is a Gramm matrix formed by the inner products of the basis functions and test 
functions on the surface lS . The  entries of the Gramm matrix are defined as 
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Applying Galerkin’s method to (17) (18) yields 
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where all elements of the coefficient matrices have their conventional form of double surface 
integrations on the corresponding meshes. For example, on 1S  we have 
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A generalized transmission matrix  lτ can be defined as  
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Although  lτ  is frequency-dependent, it does not depend on incident fields. The 
generalized transfer matrix of interface lS  can then be defined accordingly,  
 

     
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  .       (44) 

 
The same mesh structure and vector basis functions are applied when evaluate field 
transmission between consecutive interfaces. We still consider the two-layered scatterer 
shown in Fig. 5. Applying Galerkin’s method to integral equations (29)-(32) yields  
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where  21D is the field transmission matrix from interface 2S to 1S .  
Tracing the field transmission route illustrated in Fig. 5 leads to,  
                 12 1 1 2
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Denote  
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The generalized T-matrix for a bock is found to be  
 

     121 22 11 12
1 1 1 1 1 1bT

                           F F F F .                                (49) 

 
Generally speaking, a multilayered scatterer can also be handled in this recursive way. A 
multilayered scatterer interacts with the surrounding environment all through the 
outermost interface. It is natural to use the generalized transition matrix  T  defined on the 
outermost interface to describe the whole scattering characteristics of the scatterer. For 
arbitrary incident fields, the rotated tangential scattered fields can be found from the rotated 
tangential incident fields directly by multiplying the generalized T-matrix. 
This technique is used to analyse the block of the reinforced concrete wall. The scattering 
problem at the interface between concrete and air is solved by using surface integral 
equations (17)-(22), with its transfer matrix obtained by (44). The scattering problem at the 
surface of the steel bar is treated with the same approach. Coordinate transform may be 

 

applied to overcome the numerical problem caused by high conductivity of the steel (Li & 
Chew, 2007). The generalized transition matrix  2T of the steel bar is determined according 
to equation (20). The field transmission flow chart is illustrated in Fig. 7. 
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Fig. 7. Field transmission between interfaces 1S  and the surface of the steel core 2S .  
 
After the scattering characteristics of all blocks are represented by their generalized T-
matrices, the scattered fields of the whole wall can be analysed by taking into account of the 
mutual couplings between all blocks, as is shown in Fig. 8, where M  scatterers are 
considered. The generalized transition matrix of scatterer m  is denoted by  mT . It is 
defined on the reference surface mS , and has been calculated independently in advance.   
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Fig.8  Total incident fields on scatterer-m , including the original incident fields and all 
scattered fields from other scatterers. 
 
The total incident fields for scatterer-m  include the original incident fields on its reference 
surface mS  and all scattered fields from other scatterers, i.e., 
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where  mnD  are field transmission matrix from scatterer- n  to scatterer- m . They are 
defined like (29) (30), except that the integral areas are replaced by the corresponding 
reference surfaces of mS  and nS . Denote  
 

  ee eh
mn mn

mn he hh
mn mn

D D
D

D D

                 
.     (51)   
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Although  lτ  is frequency-dependent, it does not depend on incident fields. The 
generalized transfer matrix of interface lS  can then be defined accordingly,  
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The same mesh structure and vector basis functions are applied when evaluate field 
transmission between consecutive interfaces. We still consider the two-layered scatterer 
shown in Fig. 5. Applying Galerkin’s method to integral equations (29)-(32) yields  
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where  21D is the field transmission matrix from interface 2S to 1S .  
Tracing the field transmission route illustrated in Fig. 5 leads to,  
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Generally speaking, a multilayered scatterer can also be handled in this recursive way. A 
multilayered scatterer interacts with the surrounding environment all through the 
outermost interface. It is natural to use the generalized transition matrix  T  defined on the 
outermost interface to describe the whole scattering characteristics of the scatterer. For 
arbitrary incident fields, the rotated tangential scattered fields can be found from the rotated 
tangential incident fields directly by multiplying the generalized T-matrix. 
This technique is used to analyse the block of the reinforced concrete wall. The scattering 
problem at the interface between concrete and air is solved by using surface integral 
equations (17)-(22), with its transfer matrix obtained by (44). The scattering problem at the 
surface of the steel bar is treated with the same approach. Coordinate transform may be 

 

applied to overcome the numerical problem caused by high conductivity of the steel (Li & 
Chew, 2007). The generalized transition matrix  2T of the steel bar is determined according 
to equation (20). The field transmission flow chart is illustrated in Fig. 7. 
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Fig. 7. Field transmission between interfaces 1S  and the surface of the steel core 2S .  
 
After the scattering characteristics of all blocks are represented by their generalized T-
matrices, the scattered fields of the whole wall can be analysed by taking into account of the 
mutual couplings between all blocks, as is shown in Fig. 8, where M  scatterers are 
considered. The generalized transition matrix of scatterer m  is denoted by  mT . It is 
defined on the reference surface mS , and has been calculated independently in advance.   
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Fig.8  Total incident fields on scatterer-m , including the original incident fields and all 
scattered fields from other scatterers. 
 
The total incident fields for scatterer-m  include the original incident fields on its reference 
surface mS  and all scattered fields from other scatterers, i.e., 
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where  mnD  are field transmission matrix from scatterer- n  to scatterer- m . They are 
defined like (29) (30), except that the integral areas are replaced by the corresponding 
reference surfaces of mS  and nS . Denote  
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All entries are evaluated with double surface integrals. For example, we have 
 

     0,ˆ,
p q

ee
mn n m q n p mt t
D p q a G f dS f dS        

 r r ,  (52) 

 
where  'qf


r  and  pf


r  are basis functions on the reference surface of scatterer- n  (source) 

and scatterer-m  (destination),  respectively, and ,ˆn ma  is the normal unit vector of mS .  cmP  
is the Gramm matrix on the surface of scatterer-m . The total scattered fields of scatterer-m  
on the specified reference surface is then obtained by  m m mX T X        . By virtue of 

equation (36) and the surface integral equations (17) (18), we can derive the discretized form 
of the surface integral equation defined on surface mS  as follows 
 

     
1,

bN
inc

m n mn n m m
n n m

X T D X T X 
 

            .                                  (53) 

 
inc
m  X   is the original incident field on mS . It can be proved that the equivalent sources 

satisfy a similar equation, 
 

        
1,

bN
inc

Sm n mn Sn n n
n m n

I R D I R X
 

     .                                   (54) 

 
Here bN  is the number of blocks, SmI are the expanding coefficient of equivalence surface 
sources, where       n nR I T  ,  I  is the identity tensor. Equation (53) or (54) is the matrix 

form of the generalized surface integral equation formulation of a complex multi-scale 
system. For perfect conducting surfaces, equation (54) is more convenient to use because 

0Sm 
M  in these cases. A complex multi-scale electromagnetic system may be divided into 

sub-blocks with proper sizes and reference surfaces. Small objects are usually grouped 
together and contained in one reference surface. Large bulk of 
inhomogeneous/homogeneous media or conducting media can be divided into smaller 
blocks. The generalized transition matrix of each block is then found using relevant method 
according to its structure; each block is assumed to be placed alone in the infinite 
homogeneous background media with parameters of 0  and 0 . The total electromagnetic 
characteristics of the system can be evaluated using the generalized surface integral 
equations, i.e., equation (53) or (54). With this method, the unknowns involved in the final 
linear system are significantly reduced. 

 
3. Field Transmission Matrices between Adjacent Blocks 
 

Assume that block-m  and block- n  share a common interface mnS , as is shown in Fig. 9, 
where ,ˆn ma  and ,ˆn na   are normal unit vectors of surface mS  and nS , respectively. The 

 

scattered fields from block-m   are expressed in terms of the rotated tangential fields on 
surface mS  using equations (5)-(6). Taking into account the singularity of the dyadic Green’s 
function when the source point and observatory point overlap on surface mnS , we can write 
that  
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Fig. 9   Block-m  and block- n  share a common interface mnS . 
 
Assume that the rotated tangential fields are expanded and tested with vector basis 
functions ,m jf


 and ,n if


  on surface mS  and nS , respectively, then (55) (56) can be cast into 
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here,  nmD    corresponds to the Cauchy principal value of the field transmission matrix 

from block-m  to block- n , which can be calculated with numerical integrations.   nmP  is a 
Gramm matrix with entries defined by  
 

   , ,, dnm m j n iti
P i j S  f f

 
  .   (58) 

Apparently,  1
2 nmP  corresponds to the residual term caused by the singularity of the dyadic 

Green’s function.  , 0nmP i j   for non-adjacent blocks.  
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from block-m  to block- n , which can be calculated with numerical integrations.   nmP  is a 
Gramm matrix with entries defined by  
 

   , ,, dnm m j n iti
P i j S  f f

 
  .   (58) 

Apparently,  1
2 nmP  corresponds to the residual term caused by the singularity of the dyadic 

Green’s function.  , 0nmP i j   for non-adjacent blocks.  

www.intechopen.com



Advanced Microwave and Millimeter Wave 
Technologies: Semiconductor Devices, Circuits and Systems218

 

4. Characteristic Basis Functions and Synthetic Basis Functions 
 

Characteristic basis functions (CBFs) (Prakash & Mittra, 2003) are used to further reduce the 
unknowns in the final linear system. In this example, the CBFs are created in the following 
way: determine a neighbour domain for each block at first, which consists of Nadj nearest 
blocks. Since the generalized transition matrix of each block is readily available, the 
scattered fields of the small system consisting of an individual block and its neighbour 
domain can be calculated easily by solving a small linear equation system as follows, 
 

        
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            .  (59) 

 
The rotated tangential scattered fields (or equivalent surface sources if equation (54) is used.) 
are then selected as the characteristic basis function of that block, denoted by C

mX   , and the 

total rotated tangential fields are expanded with 
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C
m m

m
X X       .   (60) 

 
Therefore, equation (53) is cast into a linear system with only Nb unknowns,  
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where the interaction factor between block-m  and block- n  is defined by 
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and   *tinc C inc
c m mX m X X        .  The upper script t stands for transpose operation and * for 

conjugate. 
Synthetic basis functions (Matekovits etal., 2007) can also be applied to reduce the number 
of unknowns involved in the generalized surface integral equation (53). In order to 
implement SBFs with GSIE, we have to generate a response space for a block using the 
method described in (Matekovits etal., 2007),  where it is pointed out that the degree of 
freedom of the SBFs for a block is less than the total unknown number mN  for the block 
expressed with low-order basis functions. Therefore, based on equivalence principle, an 
auxiliary source space may be used to handle the effect from all other scatterers in the 
system except the one under consideration, and it is possible to use SBFs fewer than  mN  for 
that block. This may be considered as an information compression process. The 
characteristics of the practical structure should be fully made use of in order to achieve a 
large compression ratio. In radiation problems, the fact that near fields evanesce rapidly 
from a scatterer is a key factor to use to compress the response space. Hence, the auxiliary 

 

sources should be put as far as possible away from the scatterer under consideration.  On 
the other hand, the input condition and the connecting circuits are all key factors of the 
problem that may have significant effect on the response space and should be included in 
the compression procedure.  However, the method is hard to implement in cases when sub-
blocks are tightly connected, because the auxiliary sources should be put exactly on the 
interface of a sub-block in these cases. As a result, the compression ratio is usually found to 
be very low. We have supposed a modified scheme to implement SBFM, which is in 
somewhat similar to the method described in (Tiberi etal., 2006)). Instead of using point 
sources, sN  plane waves with incident angles of 2s ss N  , 1, , ss N   are chosen as the 
auxiliary sources, as is illustrated in Fig. 10. In cases we have checked, we found that if same 
number of SBFs are used, this arrangement provides better accuracy than putting auxiliary 
sources directly on the boundary of the sub-block. 
 

mBlock

PW s

 bmT

 
Fig. 10 Auxiliary plane waves are used to generate the SBFs of block-m .  
 
The scattered fields of each incident plane wave are collected together to form a response 
space of block-m , which is a m sN N  matrix and denoted by PWmX    .  Applying singular 

value decomposition (SVD) operation gives 
 

    HPWmX U S V    .                                               (63) 

 
The singular values of PWmX     is stored in the diagonal entries of  S  in descending order, 

while their corresponding eigen functions are stored in the related columns of   U . We use 

the following criterion given in (Matekovits etal., 2007) to generate the SBFs,  
 

    , / 1,1 ,     1, , svdS p p S p N   .                                   (64) 
The first svdN  eigen functions corresponding to the first svdN  singular values are selected as 
the  SBFs of block-m , i.e., 
 

   ,       1, ,sbf
mp svdp
X U p N      ,  (65) 

  pU  denotes the pth column of  U .  
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The rotated tangential fields on the reference surface of block-m  are then expanded with 
SBFs as follows, 

 
1

svdN
sbf

m mp mp
p

X X


       .                                          (66) 

 
Substituting (66) into (53) and testing it with SBFs (Galerkin’s scheme) result in a size-
reduced linear system, the unknown number of which equals to the total number of SBFs on 
all blocks.  The interactions between block-m  and block- n  are also defined by equation (62), 
except that SBFs are used to replace CBFs.  
In SBFM, because the most significant SBFs for the system are selected once for all, and the 
mutual coupling is treated rigorously, the numerical accuracy of SBFM is well controlled 
compared to CBFM.  

 
5. Numerical Results 
 

The field in the cavity illustrated in Fig. 1 is calculated using the above-discussed 
generalized surface integral equation method. The wall is divided into 36 blocks and the 
surface of each block is segmented to 40 segments, roughly 10 segments per wavelength. 
The z-axis polarized TM plane wave with unit magnitude is assumed to excite at Φ= 45°. 
Triangle-shaped vector basis functions ,m if


 are used to expand all tangential electric field 

components, while ,ˆn m ia f


  are used to expand all tangential magnetic field components. 
The generalized transition matrix of each block is calculated using cascaded network 
techniques. The total electric fields in the cavity are first calculated using equation (53) 
directly, with totally 2880 unknowns involved. The calculated electric field is plotted in Fig. 
11, from which it can be seen that the fields in the cavity are attenuated from -20dB to -55dB 
due to the shielding effect of the walls.  

 

 

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

0.02

0.04

0.06

0.08

 Ein

 
Fig.11. Calculated magnitude (Units: dB) of the total electric field in the internal area of the   
cavity (8λ×8λ).  
 
Characteristic basis functions are used to re-calculate the field in the cavity. The neighbour 
domain of each block contains the nearest 3 blocks at one side. Therefore, a small system 
consisting of 7 blocks has to be solved to create a characteristic basis function.  The final 

 

linear system resulting from equation (61) has only 36 unknowns. For large complex multi-
scale system, this reduction rate of unknown number is really substantial. For comparison, 
the discrepancy of the scattered fields in the cavity calculated by using the two methods is 
plotted in Fig. 12 (in decibels).   
 

 
Fig. 12. The discrepancy of the electric fields calculated with the two methods. (Units: dB) 

 
6. Conclusions 
 

A generalized surface integral formulation for analyzing large 2-D cavity with reinforced 
concrete walls is presented. The wall is divided into small blocks and each block is described 
by an associated generalized transition matrix defined on its reference surface. Detail 
structure of each block is analyzed locally only once, and is replaced by a simpler reference 
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The rotated tangential fields on the reference surface of block-m  are then expanded with 
SBFs as follows, 

 
1

svdN
sbf

m mp mp
p

X X


       .                                          (66) 

 
Substituting (66) into (53) and testing it with SBFs (Galerkin’s scheme) result in a size-
reduced linear system, the unknown number of which equals to the total number of SBFs on 
all blocks.  The interactions between block-m  and block- n  are also defined by equation (62), 
except that SBFs are used to replace CBFs.  
In SBFM, because the most significant SBFs for the system are selected once for all, and the 
mutual coupling is treated rigorously, the numerical accuracy of SBFM is well controlled 
compared to CBFM.  

 
5. Numerical Results 
 

The field in the cavity illustrated in Fig. 1 is calculated using the above-discussed 
generalized surface integral equation method. The wall is divided into 36 blocks and the 
surface of each block is segmented to 40 segments, roughly 10 segments per wavelength. 
The z-axis polarized TM plane wave with unit magnitude is assumed to excite at Φ= 45°. 
Triangle-shaped vector basis functions ,m if


 are used to expand all tangential electric field 

components, while ,ˆn m ia f


  are used to expand all tangential magnetic field components. 
The generalized transition matrix of each block is calculated using cascaded network 
techniques. The total electric fields in the cavity are first calculated using equation (53) 
directly, with totally 2880 unknowns involved. The calculated electric field is plotted in Fig. 
11, from which it can be seen that the fields in the cavity are attenuated from -20dB to -55dB 
due to the shielding effect of the walls.  
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Fig.11. Calculated magnitude (Units: dB) of the total electric field in the internal area of the   
cavity (8λ×8λ).  
 
Characteristic basis functions are used to re-calculate the field in the cavity. The neighbour 
domain of each block contains the nearest 3 blocks at one side. Therefore, a small system 
consisting of 7 blocks has to be solved to create a characteristic basis function.  The final 

 

linear system resulting from equation (61) has only 36 unknowns. For large complex multi-
scale system, this reduction rate of unknown number is really substantial. For comparison, 
the discrepancy of the scattered fields in the cavity calculated by using the two methods is 
plotted in Fig. 12 (in decibels).   
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