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1. Introduction

In recent times, while markets are reaching their saturation limits and customers are be-
coming more demanding, a paradigm shift has been taking place from mass production
to customized mass production. The concept of customization focuses on satisfying a cus-
tomer’s unique needs with the help of new technologies. Typically, the products are similar
but they differ in some parameters which make manual teaching and manual preparation
of the manufacturing programs not acceptable. The customized mass production requires
that all production phases are prepared in advance during the design phase of the specific
product. This requires that standard production procedures are modified and prepared for
each specific product. It is also required that the adaptation is done automatically without
any human intervention. In modern production systems, CAD models of the product are
used to generate specific machining programs. In the case of industrial robots, automat-
ically generated programs have to consider various limitations, such as joint limits, wrist
singularity and possible collisions of the robot with the environment. Although the off-line
programming enables detection of such situations during the program preparation, it does
not solve the basic goal - the automatic generation of feasible collision free trajectories. One
of the most promising approaches to solving these problems is based on redundancy resolu-
tion control schemes, where the primary task is assigned to the trajectory tracking while the
secondary task optimizes robot trajectories using various optimization goals, such as obstacle
and singularity avoidance, staying within the available join limits, etc..
The basic definition of the kinematic redundancy is that the robot has more degrees of free-
dom than needed to accomplish the specific task. In the past, many control schemes were
presented which use kinematic redundancy for the optimization of secondary tasks, such as
obstacle avoidance, torque optimization, singularity avoidance, etc. All these schemes rely
on a non-square Jacobian, which maps the joint velocities to the task space, which is in most
cases described by the Cartesian coordinates. If the redundancy of the task can be easily
described in Cartesian coordinates, i.e. the task is redundant in one of the Cartesian coordi-
nates, then the solution is trivial an we can directly apply one of the existing control schemes.
But there are tasks, such as brushing, polishing, grinding, sawing, etc. where the kinematic
redundancy is hidden. It reveals when the circular shape of the tool is considered. Note that
all six Cartesian coordinates are still needed to describe and to accomplish the given task.
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Many authors have noticed this type of redundancy, but an efficient way how to solve it was
not yet proposed (Kapoor et al., 2004; Nemec & Zlajpah, 2008; Sevier et al., 2006). As a solu-
tion to this problem we propose a virtual mechanism approach, where the tool is described
as a virtual kinematic chain. In this case, the task space preserves its dimension, while the
dimension of the joint space is increased by the dimension of the virtual mechanism. This
approach has two major advantages. First, we can use existing robot Jacobian, which is as-
sumed to be known. Second, the augmented part of the Jacobian, which describes the virtual
mechanism, has a very simple structure in most cases. Using this formalism, we can directly
apply any control and optimization algorithms developed for the kinematically redundant
manipulators.
Additionally, we present some optimization procedures for secondary motion optimization.
It is shown how to generate collision and wrist singularity free trajectories and how to avoid
joint limits. We discuss also the case, where the given task redundancy does not allow to
meet all optimization goals simultaneously. In such a case, we propose an on-line adaptation
method, which reassigns a part of the primary tasks to the secondary task. The proposed ap-
proach is validated with illustrative experiments and examples - automated cell for finishing
operations in the shoe production, shoe grinding cell and object tracking with the humanoid
robot equipped with humanoid vision.

2. Task redundancy resolution

Robotic systems under study are n degrees of freedom (DOF) serial manipulators. We con-
sider redundant systems, which have more DOF than needed to accomplish the task, i.e.
the dimension of the joint space n exceeds the dimension of the task space m, n > m and
r = n − m denote the degree of the redundancy. Let the configuration of the manipulator be
represented by the a vector qr of n joint positions, and the end-effector position (and orien-
tation) by m-dimensional vector xr of the robot tool center point positions (and orientations).
The relation between the joints and the task velocities is given by the following well known
expression

ẋr = Jrq̇r (1)

where Jr is the m×n manipulator Jacobian matrix. The solution of the above equation for q̇r

can be given as a sum of particular and homogeneous solution

q̇r = J̄rẋr + Nrξ (2)

where
J̄r = W−1JT

r (JrW−1JT
r )

−1. (3)

Here, J̄r is the weighted generalized-inverse of Jr, W is the weighting matrix, Nr = (I − J̄rJr)
is a n×n matrix representing the projection into the null space of Jr, and ξ is an arbitrary n
dimensional vector. We will denote this solution as the generalized inverse based redundancy
resolution at the velocity level (Nenchev, 1989). The homogenous part of the solution belongs
to the null-space of the Jacobian. Therefore, we will denote it as q̇n, q̇n = Nrξ .
Now consider the case where the robot Jacobian matrix Jw is defined in Cartesian (world)
coordinate system and the dimension of the Jacobian is 6×n, but the task is described in
the another coordinate system, denoted with p. The relation between the task velocities and
cartesian velocities can be described as

ṗ = Jtẋ, (4)
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where Jt represents the task Jacobian. Let consider the case where the dimension of the task
space m is less than the dimension of the Cartesian space, which is 6. It follows

ẋ = J̄tṗ + Ntµ. (5)

Here, Nt is the 6 × 6 task null space matrix and µ an arbitrary 6 dimensional vector. The
redundancy resolution for such case can be expressed as

q̇r = J̄w(J̄tṗ + Ntµ) + Nrξ, (6)

where vectors ξ and µ can be used for the secondary task accomplishment. The problem
with the above approach is that the task Jacobian Jt becomes very complex even for a sim-
ple relation between then task and the cartesian coordinates. In many cases the analytical
solution might even not exist.
We will demonstrate this with the shoe bottom roughing task. In the shoe bottom roughing
process, we have to press the shoe bottom against a rotary grindstone and control the contact
force and the contact position between the shoe bottom and the grindstone. Robot holds
the shoe, while the position/orientation of the tool, grindstone in this case, is fixed. In
general, the contact position on the grindstone can be freely chosen. Let define a polar task
coordinates system, which describes rotary brush, as shown in the figure 1 The cartesian

Fig. 1. Polar coordinate system of the rotary tool

coordinates are described with the xr = (x, y, z, φ, θ, ψ)T and the polar coordinates with
the p = (R, y, ϕ, φ, ν, ψ)T , where φ, θ, ψ are the roll, pitch and yaw angles respectively, R is
the radius of the polar coordinates, ϕ is the angle of the polar coordinate and ν = θ + ϕ.
Coordinates x0, y0 and z0 denote displacement of the center of the grindstone from the robot
base. Obviously, coordinate ϕ can be freely chosen, because it does not matter which part of
the rotary brush is used for the grinding. In general, also the coordinate y could be freely
chosen, but since the grindstone is narrow in most cases, we will treat it as a restricted
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coordinate. The resulting task Jacobian, where the third line is canceled due to the task
redundancy, has the form

Jt =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−
(x − x0)

(−z0 + z)
√

η

(−z0+z)2

0 −
1

√

η

(−z0+z)2

0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

−z0 + z

η
0 −

x − x0

η
0 1 0

0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where we used the substitute

η = (z0 − z)2 + (x − x0)
2.

We can notice that even for the simplest case, the task Jacobian Jt becomes rather complex.
In the case for the toroidal shaped brush we were not able to find the analytical solution of
the task Jacobian using the Matlab symbolical computation toolbox.
As an alternative approach we propose to model the tool as a serial kinematic link. Let
consider more general case where the robot holds the object to be machined and the work tool
is fixed, as illustrated in Fig. 2. In such a case, we can define direct kinematic transformation
as

Fig. 2. The case when the robot holds an object and the work toll is fixed

xr +
[

R I
]

xo = xd + xv (7)

where xr is the robot Cartesian position and orientations, R is the robot tool rotation 3 × 3
dimensional matrix, xo is the 6 dimensional vector of the object position and orientation, xv is
the 6 dimensional vector of position and orientation of the top of the virtual mechanism and
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6 dimensional vector xd describes the distance and orientation between the base coordinates
system and the work tool coordinate system. Let consider robot and virtual mechanism as
one mechanism with n + nv degrees of freedom, where nv is the degree of freedom of the
virtual mechanism. The configuration of the virtual mechanism can be described with the nv

dimensional vector qv. The new Cartesian position is

x = xr − xv (8)

The Jacobian of this new mechanism can be expressed as

J = [Jr

... − Jv] (9)

where Jr is the Jacobian of the robot and Jv Jacobian of the virtual mechanism is defined as

Jv =
∂xv

∂qv
. (10)

Note that we assume that the work tool rotation remains fixed during the execution of the
task. Vector qv of dimension nv corresponds to the joints of the virtual mechanism.
As we can see, the task space preserves its dimension, while the joint space is increased with
the dimension of the virtual mechanism. This approach has two major advantages. First,
we can use existing robot Jacobian, which is assumed to be known. Second, the augmented
part of the Jacobian has very simple structure in most cases. Another benefit of the pro-
posed approach compared to the approach described with the equation 6 is that we have one
larger null-space instead of two small null-spaces, which is more convenient for the trajectory
optimization using the null-space motion.
As an example we present the direct kinematic transformation for the work cell shown in
Fig. 5. The surface of the grinding disc is naturally described with outer surface of the torus,
where R and r are the corresponding radii of the brush, as shown in the Fig. 3 and x is the
task (Cartesian) coordinate of the whole system. Assuming that the robot tool position and

Fig. 3. Rotary brush presented as torus
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robot Jacobian is known, the forward kinematics can be easily expressed as

x = xr +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

sϕ (R + r cγ)

r sγ

cϕ (R + r cγ)

0
−ϕ

γ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (11)

and the corresponding Jacobian is

J =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Jr

cϕ (R + r cγ) −sϕr sγ

0 r cγ

−sϕ (R + r cγ) −cϕr sγ

0 0
−1
0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (12)

Here, we used the abbreviation cϕ = cos (ϕ), cγ = cos (γ), sϕ = sin (ϕ) and sγ = sin (γ).
Note that Eq. 7 does not handle orientations correctly, since orientation vectors can not
be simply added in general case. If orientations are important, we can use equation 7 for
the calculation of positions only, while the orientations have to be calculated using rotation
matrices as follows.

Ro = Rv
TR (13)

Here, Ro and Rv are 3 × 3 rotation matrices describing object rotation against virtual mech-
anism and virtual mechanism rotation expressed in the robot base coordinate system. The
corresponding orientation vector can be than obtained using the transformation of the rota-
tion matrix to the orientation vector described with euler or roll pitch yaw notation. On the
other hand, orientation angles are additive for small angles. Let denote roll, pitch and yaw
angles with φ,θ and ψ respectively. If angles are small, it holds

⎡

⎢

⎢

⎢

⎣

∆φrv

∆t

∆ϕrv

∆t

∆ψrv

∆t

⎤

⎥

⎥

⎥

⎦

≃

⎡

⎢

⎢

⎢

⎣

∆φv

∆t

∆ϕv

∆t

∆ψv

∆t

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

∆φv

∆t

∆ϕv

∆t

∆ψv

∆t

⎤

⎥

⎥

⎥

⎦

= Jrot
r qr + Jrot

v qv. (14)

Here, subscript r and v denotes the robot and the virtual mechanism respectively and rot
denotes rotational part of the corresponding Jacobian. Equation 14 shows that even if rotation
angles are not additive, velocities and thus Jacoians of the robot and virtual mechanism are
additive and equation 9 hold also for the orientations. Therefore, we can directly apply any
control algorithm based on Jacobian matrices and thus control and optimization algorithms
developed for the kinematically redundant manipulators.
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3. Control

As we mentioned in the previous section, we can directly apply any control algorithm for
the kinematically redundant robot. Here we will briefly present a control law, based on the
generalized inverse redundancy resolution at the velocity level in the extended operational
space. Redundancy resolution at the velocity level is favorable because it enables direct
implementation of the gradient optimization scheme for the secondary task. Although the
control law using generalized inverse-based redundancy resolution at velocity level can not
completely decouple the task and the null space (Nemec et al., 2007; Oh et al., 1998; Park
et al., 2002), it enables good performance in real implementation. The joint space control law
is

τc = HJT(ẍd + Kvėx + Kpex + K fe f − J̇q̇) +

HN(q̈nd + Knėn − Ṅq̇) + h+ JTf (15)

where J̄ is the inertia weighted pseudo-inverse of the Jacobian matrix J, H is n × n the
inertia matrix, h is n-dimensional vector of the centrifugal, coriolis and gravity forces, F is
n-dimensional vector of the external forces acting on the manipulator’s end effector and Kp,
Kv, K f and Kn are the corresponding n × n diagonal matrices with the positional, velocity,
force and the null-space feedback gains. The first term of the control law corresponds to the
task-space control τx, the second to the null-space control τn and the third and the fourth
correspond to the compensation of the non-linear system dynamics and the external force,
respectively. Here, ex = xd − x is the task-space tracking error, e f = fd − f and ėn =
q̇nd − q̇n are the force and the null-space tracking error. xd and q̇nd are the desired task
coordinates and the null space velocity, respectively. The details of the control law derivation
can be found in (Nemec et al., 2007).
An attention should be paid on the selection of the inertia of the virtual link. The inertia
matrix H has the form

H =

[

Hm 0
0 Hv

]

(16)

where Hm is the manipulator inertia matrix and Hv is the diagonal matrix describing the
virtual mechanism inertia. Clearly, Hv can not be zero, but arbitrary small values can be
chosen describing the lightweight virtual mechanism. Selection of the inertia matrix of the
virtual mechanism affects only the null space behavior of the whole system. Heavy virtual
links with high inertia will slow down the movements of the virtual links. Therefore, low
inertia of the virtual links makes suitable choice. On contrary, we can assume that the virtual
links have no gravity and no coriolis and centrifugal forces and the corresponding terms in
the vector h can be set to zero. Control law 15 assumes the feedback from all joints, including
non-existing virtual joints. There are multiple choices how to provide the joint coordinates
and the joint velocities of the virtual link. A suitable method is to build a simple model
composed of a double integrator

q̇v =
∫

H−1
v τcv (17)

qv =
∫

q̇v

where τcv is the part of the control signals corresponding to the virtual link.
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4. Null space motion determination trough optimization

As we mentioned previously, one of the main problems in automatic trajectory generation is
the inability to assure that the generated trajectory is feasible using a particular robot, either
because of possible collisions with the environment or because of the limited workspace of
the particular robot. Limitations in the workspace are usually not subjected to the tool posi-
tion, but rather to the tool orientation. Another sever problem are wrist singularities, which
can not be predicted in the trajectory design phase on a CAD system. A widely used solu-
tion in such cases is off-line programming with graphical simulation, where such situation
can be detected in the design phase of the trajectory. Unfortunately this is a tedious and
time consuming process and therefore not applicable in customized production, where al-
most each work piece can vary from the previous one (Dulio & Boer, 2004; Nemec & Zlajpah,
2008). The problem can be efficiently solved using the kinematic redundancy and null space
motion, which changes the robot configuration, but does not affect the task space motion.
The force and the position tracking are of the highest priority for a force controlled robot and
are therefore considered as the primary task. The secondary task can be defined as a result
of the local optimization of a given cost function. Here we will use the gradient projection
technique, which has been widely implemented for the calculation of the null space velocity
that optimizes the given criteria. The reason for this is that a variety of performance criteria
can be easily expressed as gradient function of joint coordinates.
Let be the desired cost function, which has to be maximized or minimized. Then the veloci-
ties

q̇n = NH−1 ∂p

∂q
k, (18)

maximize cost function for any k > 0 and minimize cost function for any k < 0 (Asada &
Slotine, 1986), where k is an arbitrary scalar which defines the optimization step. In our case
we have selected a compound p which maximizes the distances between obstacle and the
robot links or robot work object, maximizes the distance to the singular configuration of the
robot and maximizes the distance in joint coordinates between current joint angle and joint
angle limit.
For the obstacle avoidance we use approach based on the potential field pointing away from
the obstacle as illustrated in the figure 4 (Khatib, 1986; 1987).

pa =
1
2
dT

i di (19)

where di is the shortest distance between the obstacle and the robot body. In our case the
desired objective is fulfilled if the imaginary force is applied only on the robot joints and we
can obtain the cost function gradient in a simple form as

∂pa

∂q
= dT

1 J
pos
0,1 + dT

2 J
pos
0,2 + ..... + dT

n−1J
pos
0,n−1, (20)

where J
pos
0,i denotes Jacobian matrices between base (the first index in the subscript) and i-th

joint (the second index in the subscript) regarding the robot positions only.
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Fig. 4. Obstacle avoidance using potential field approach

The cost function for the joint limits avoidance is defined as (Chaumette & Marchand, 2001;
Nemec & Zlajpah, 2008)

pl =
1
2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(qmax − q)2, |qmax − q| < ǫ

0

(qmin − q)2, |qmin − q| < ǫ

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(21)

where ǫ is a positive constant defining the neighborhood of joint limits. Cost function gradi-
ent for obstacle avoidance is thus

∂pl

∂q
= qlim − q, (22)

where qlim denotes closed joint limits, that can be either qmax or qmin.
For the singularity avoidance we use the manipulability index defined as (Asada & Slotine,
1986)

ps =
√

|JJT |, (23)

where the gradient can be expressed as (Park et al., 1999)

∂ps

∂q
= ps[trace(

∂ps

∂q1
J̄) trace(

∂ps

∂q2
J̄) ...... trace(

∂ps

∂qn
J̄)]. (24)

Note that in most cases the singularity is due to the spherical wrist of the robot and the
equation 24 can be reduced by taking into the consideration only the last three joints which
correspond to the wrist movement. Unfortunately, the partial derivative ∂ps

∂q is not easy
to calculate. However, we can use the numerical derivative of the manipulability measure
instead.
In practice we deal only with one optimization goal at the time, depending on which sec-
ondary task is the most critical one. Note that simple addition of different optimization
gradients my not be appropriate, although it is often used in practice. Namely, it could
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happen that two optimizations gradients act in opposite, e.g. obstacle avoidance might push
joints toward the physical limits.
It might happen that there is no enough redundancy to fulfil the required secondary task.
It the secondary task is critical, like obstacle avoidance or joint limit avoidance, the task ex-
ecution has to be interrupted. The only possibility in such a case is to modify the primary
task. For some tasks like polishing it is not necessary to assure the strict orientations of
the tool. Therefore we can define orientation tracking as a secondary task. Using this ap-
proach we obtain additional degrees of redundancy, which can be successful used for the
accomplishment of the critical secondary task. In such a case we have to assure that the tool
orientation follows the desired orientation whenever it is possible. To do this, we define ori-
entation tracking as an optimization procedure, where we minimize the difference between
the desired orientation vector xod and actual orientation vector xo.

po =
1
2
(xod − xo)

T(xod − xo) (25)

∂po

∂q
= −(xod − xo)

TJrot (26)

The dimension of the vector xo depends from the specific application depending on how
much redundancy we need in order to accomplish the most critical secondary task. Jrot

denotes the corresponding rotational part of the Jacobian which relates to the selected com-
ponents of xo.

5. Shoe grinding example

In the shoe assembly process, in order to attach the upper with the corresponding sole, it is
necessary to remove a thin layer of the material off the upper surface so that the glue can
penetrate the leather. To do this, the robot has to press the shoe against the grinding disc
with the desired force while executing the desired trajectory. In the past, there were several
approaches how to automate this operation. For mass production, there are special NC ma-
chines available. Their main drawback is relatively complicated setup and are therefore not
suitable for the custom made shoes. Required flexibility is offered by the robot based grind-
ing cell. In the EUROShoeE project (Dulio & Boer, 2004), a special force controlled grinding
head has been designed. The robot manipulated with the grinding head while the shoe re-
mained fixed on the conveyor belt (Jatta et al., 2004) The main drawback of this approach
is relatively heavy and expensive grinding head. Additionally, force control can be applied
only in one direction. In our approach, the robot holds the shoe and presses it against the
grinding disc of a standard grinding machine as used in the shoe production industry. The
impedance force control was accomplished by the robot using universal force-torque sensor
mounted between the robot wrist and the gripper which holds the shoe last. It is well known
that the kinematic redundancy enables greater flexibility in execution of complex trajecto-
ries. For example, also humanoid hand dexterity is subjected by its kinematical redundancy.
We used Mitsubishi Pa10 robot with 7 D.O.F in our roughing cell, which has one degree of
redundancy. Additional two degrees of redundancy were obtained by treating the grinding
disc as a virtual mechanism. The surface of the grinding disc can be naturally described with
the outer surface of the torus, where R and r are the corresponding radius of the grinding
disc, as shown in the Fig. 3. Thus we have 9 degrees of freedom, 6 of them are required to
describe the grinding task, while the remaining three degrees of freedom are used for the
obstacle avoidance, joint limits avoidance and singularity avoidance. The prototype of the
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Fig. 5. Experimental cell for shoe bottom roughing

cell is shown in figure 5. It consists of the Mitsubishi Pa10 robot with a force/torque sensor
Jr3 mounted in the robot wrist, a grinding machine, a Pa10 robot controller and a cell control
computer, which coordinates the task and calculates the required robot torques. The control
computer is connected to the robot controller using ArcNet. The frequency rate of the control
algorithm (Eq. 15) and the motion optimization algorithm (Eq. 18) is 700 Hz. The grinding
path is obtained from CAD model of the shoe. For this purpose, the control computer is
connected to the shoe database computer using Ethernet. Unfortunately, CAD model itself
can not supply all necessary data for the grinding process. CAD models are usually available
for the reference shoe size, therefore, non-linear grading of the shoe shape is necessary for
the given size. Additionally, some technological parameters such as material characteristics
and shoe sole gluing technology have to be taken into account during the grinding trajectory
preparation. For this purpose, we have developed a special CAD expert program, which en-
ables the operator to define additional technological and material parameters. The program
then automatically generates the grinding trajectory. In order to show the efficiency of the
proposed algorithm, we defined the shoe grinding trajectory as seen in the Fig 4. Note that
without using trajectory optimization is is very hard to execute the given task without split-
ting the desired trajectory in two or more fragments. Fig 5 shows how the system rotated
joints of virtual mechanism in order to avoid the joint limits and to minimize joint velocities
of the robot and virtual mechanism.

6. Automation of finishing operations in shoe assembly

Finishing operations in shoe manufacturing process comprises operations such as application
of polishing wax, polishing cream and spray solvents, and brushing in order to achieve high
gloss. These operations require skilled worker and are generally difficult to automate due
to the complex motion trajectories. The finishing cell consists of the shoe polishing machine,
machine for application of polishing creme, spray cabin for application of the polishing sol-
vents and an industrial robot, as seen in Fig 4. The 6. d.o.f robot is a commercially available
product from ABB, rest of the cell components were not available and had to be developed
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Fig. 6. Shoe grinding trajectory

Fig. 7. Virtual mechanism angles q8 and q9

especially for this purpose. Customized mass production differs from the mass production
because virtually any product item can differ from the previous one. Therefore, manual
teaching and manual preparation of the manufacturing programs is not acceptable. The cus-
tomized mass production requires that all production phases are prepared in advance during
the design phase of the specific shoe model. Modification of the part programs for the spe-
cific shoe model, required for the customization, has to be done automatically without any
human intervention. Therefore, new CAD tools for finishing operations had to be developed.
One of the main problems in automatic trajectory generation is the inability to assure that
the generated trajectory is feasible using a particular robot, either because of the possible
collisions with the environment or because of the limited workspace of the particular robot.
Limitations in the workspace are usually not subjected to the tool position, but rather to the
tool orientation. Another sever problem are wrist singularities, which can not be predicted
in the trajectory design phase on a CAD system. A widely used solution is such case is
off-line programming with graphical simulation, where such situation can be detected in the
design phase of the trajectory. Unfortunately this is a tedious and time consuming process
and therefore not applicable in customized production, where almost each work piece can
vary from the previous one (Dulio & Boer, 2004). The problem was efficiently solved using
the trajectory optimization based on kinematic redundancy of the manipulator (Nemec &
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Fig. 8. Finishing cell

Zlajpah, 2008). For a given task, the obstacle avoidance can be accomplished only if the robot
is redundant. Note that the degree of redundancy depends on the task the robot is per-
forming. For example, a 6 D.O.F robot is kinematicaly redundant for spraying and creaming
operations in shoe production. Due to the circular shape of the cream application brush and
spray beam, roll angle or the robot is free to choice. For brushing operations, there is another
type of redundancy due to the circular shape of felt rollers, as illustrated in Fig. 1. Namely,
the tool centre point is not restricted to be a fixed point, rather it can be freely chosen at the
circumference of the tool. Unfortunately, in general one degree of redundancy is not enough
to satisfy simultaneously all secondary tasks - obstacle avoidance, singularity avoidance and
preserving the joint angles within their physical limits. More flexibility is offered by the fact
that for some tasks it is not necessary to assure strict orientations of the tool. This can be in-
terpreted as two additional degrees of redundancy. In robot trajectory generation, we define
primary and secondary task. Primary task is the position of the TCP of the robot. We have
multiple secondary tasks, such as a) Maximizing the distance between the robot joins and

Fig. 9. Batch trajectory generation
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the environment objects-obstacles. This task prevents the robot to collide with the obstacles
b) Maximizing the distance between the joint position and join limits. This task prevents the
robot to come to the join limits. c) Maximizing the distance between the actual and singular
pose, which avoids wrist singularity d) Minimizing the difference between the desired and
actual tool orientation. Secondary tasks generate robot tool orientation based on the gradi-
ent optimization in Jacobian null-space. Since we did not have access to the low level robot
control, we implemented virtual mechanism approach as a batch procedure in the trajectory
optimization module, as illustrated in the figure 9. Due to the physical limitations of the
robot it is possible that the procedure does not converges. In such a case the optimization
stops and off-line programming system is used to check and verify the robot configuration
and the desired task trajectory. In most cases after the successful accomplishment of the tra-
jectory optimization the verification with off-line programming system is not necessary and
the trajectory can be downloaded directly to the robot controller.

7. Humanoid head control

The task of the robot head (Figure 10) is to keep the object in the center of both narrow-
angle camera images. The head has to assure proper gaze direction of both eyes (cameras).
Therefore, the task has four DOFs, since the gaze direction of each eye is defined by two
parameters. A humanoid head typically has more DOFs, e. g. seven on the head of Fig. 10
and the degree of redundancy is three. Gaze direction is a function of a 3-D point in space
as well as the position of the eye (see Figure 10). When the head is moved, the position of
the eye change and that affects the gaze direction. Thus the task is a function of a point in
space as well as a function of the head configuration. The above statement of the problem
is not the most common way to describe a task - in general, a task is not a function of a
robot configuration. To solve such problems in a systematic way, we have used the virtual
mechanism approach (Omrcen & Ude, 2009). Let us explain the virtual mechanism approach
on a simple pointing example, where finger points to an object. The task has one DOF and
can be defined as an angle of the line from the finger to the object. If the object moves,
the angle has to change in order to maintain the correct pointing direction. Similar, when
the hand moves, the angle also has to change. The task is therefore a function of the hand
and the object position. By adding a virtual prismatic link to the finger, we require that
the extension of the finger touches the object. The system now has two DOFs (the angle of
the finger and the length of the virtual mechanism). Using that notation, the task can be
described as a positioning task; the end of the virtual link has to touch the object. The task
now has two DOFs and the description of the task is now only the position of the object and
not a function of the hand position. The introduction of the virtual mechanism increases
the DOFs of the mechanism by one; however, it also increases the degree of the task. The
degree of redundancy remains the same, while the description of the task has now been
simplified and systematized: instead of specifying the desired pointing direction, we can
consider the problem as a classic inverse kinematics task. In the case of a robot head we
define a new virtual mechanism in each eye that points from the robot’s eye to a point in
space (see Figure 11). Virtual mechanism is a prismatic link, which adds a new degree of
freedom to the system. The length of the new link is the distance from the eye to the 3-D
point in space. Due to the two new DOFs added to the system, the system now has nine
DOFs (one additional per each eye). However, the degree of the task has also increased.
The task is not defined as a gaze direction of each eye but as the positioning of the end of
the virtual link. Instead of controlling the gaze direction, the task is simplified to a simple
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Fig. 10. Humanoid head

position control in space. Degree of redundancy should and does remain the same. Figure
11 schematically shows the kinematics of the head with additional virtual mechanisms.

Fig. 11. Schematics of humanoid head with virtual mechanisms

8. Conclusion

In the chapter we deal with the automatic trajectory generation for industrial robots. Auto-
matically generated programs have to consider various limitations of the robot mechanism,
such as joint limits, wrist singularity and possible collisions of the robot with the environ-
ment. The required flexibility required to solve the above problems is offered by the kine-
matic redundancy. We proposed a new method of solving the kinematic redundancy which
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arises from the shape of the work tool. The main benefit of the proposed method is the
simplicity and efficiency. It can be used on the existing robot controllers with very moderate
changes of the control algorithm. The proposed approach is particularly efficient for the tasks
which require automatic trajectory generation, since it helps to generate fault-tolerant trajec-
tories The proposed approach was implemented in various industrial and non-industrial
applications. We have outlined three illustrative examples : shoe bottom roughing task, au-
tomation of finishing operations in shoe assembly and control of a humanoid head. Two pos-
sible modes of implementation were proposed. Implementation of the proposed approach in
the control loop allows real time optimization procedure, e.q. obstacle avoidance and to ac-
complish the given task at the same time. Another, perhaps for the practical implementation
even more attractive possibility is to use the proposed approach in the trajectory generation
module rather than in the control algorithm. Doing so, we get benefits of the kinematic re-
dundancy due to circular shape of the tool without any modification of the robot controller.
This latter approach was successfully implemented in the cell for custom finishing opera-
tions in shoe assembly. Unfortunately, in this case we have to deny to the real-time trajectory
modifications, which can be only implemented in the control loop.
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