
2 

Dynamic Parameter Identification for  
Parallel Manipulators 

Vicente Mata1, Nidal Farhat1, Miguel Díaz-Rodríguez2, 
 Ángel Valera3 and Álvaro Page4, 

Universidad Politécnica de Valencia, Departamento de Mecánica y Materiales Valencia1, 
Universidad de los Andes, Facultad de Ingeniería, 

 Departamento de Tecnología y Diseño Mérida2,  
Universidad Politécnica de Valencia, Departamento de Ingeniería  

de Sistemas  y Automática Valencia3, 
 Universidad Politécnica de Valencia, Departamento de Física Aplicada Valencia4,  

España1,3,4,  
Venezuela2 

1. Introduction 

The information provided by robot manufacturers regarding the dynamic parameters of 
robotic systems (the inertial properties of the links and friction parameters at the kinematic 
joints) is limited and even nonexistent. For instance, friction parameters are generally not 
provided. Thus, it is necessary to develop efficient procedures for their measurement. The 
direct measurement of these parameters is not practical since it would imply disassembling 
the robot. On the other hand, obtaining these parameters from the CAD models has the 
disadvantage that some parts can not be modeled in full detail and parameters that depend 
on operational conditions, like friction, can not be determined. For these reasons, parameters 
identification has turned out to be a widely accepted technique for determining the dynamic 
parameters. This chapter provides an overview of parameters identification processes 
applied to parallel manipulators. Practical implementation issues are also considered. In 
addition, an approach that considers the identification problem as a nonlinear constrained 
optimization problem is presented. Moreover, an evaluation of the accuracy of the solution 
of parameters is also addressed.  
The importance of inertial and friction parameters lies in their application in most of the 
recent literature for advanced model-based control algorithms. The accuracy of dynamic 
parameters plays an important role in the precision, performance, stability and robustness of 
these control algorithms (Khalil & Dombre, 2002). On the other hand, they are important in 
dynamic simulation. It is known that the validation of the direct dynamic problem depends 
considerably on the precision of the dynamic parameters of the mechanical system. An 
accurately modeled robot permits the substitution of the real mechanical system by a virtual 
one thus avoiding the expensive experimental tests used to adjust the operational 
parameters for this system (Hiller et al., 2002). Additionally, another important field in 
which accurate knowledge of the dynamic parameters is needed is in path planning 
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algorithms that take into account robot dynamics. The predicted forces depend greatly on 
the accuracy of the estimated inertial and friction parameters. Hence, inaccurate estimates of 
the dynamic parameters may lead to an overloaded robot (dynamically or statically), which 
is the case in approximately 50% of  industrial robots (Swevers et al., 2002). 
Initially, dynamic parameter identification procedures for estimating the dynamic 
parameters of open loop mechanical structures were developed in the middles eighties 
(Khosla & Kanade, 1985; Atkeson et al., 1986; Olsen & Bekey, 1986; Gautier & Khalil, 1988). 
Since then, they have been widely used and several contributions to serial robot dynamics 
application control and simulation have been made. 
Identification procedures can be classified into two main groups: indirect and direct 
approaches. On the one hand, indirect procedures act sequentially in several stops. In each  
step, parameters of a different nature (basically friction and some inertial terms) are 
identified by means of specifically designed experiments. On the other hand, in the direct 
approach, all the parameters are identified in the same stage. A detailed comparison 
between the direct and the indirect approaches, applied to a PUMA industrial robot, can be 
found in Benimeli et al. (2006). The indirect approach has the disadvantage that errors due 
to the noise in the measured data are being accumulated throughout the different stages 
(Khalil & Dombre, 2002). Moreover, it is difficult to maintain the working conditions 
constant not only throughout these stages, but also within the same one. 
For parallel manipulators, the direct approach has been applied (Renaud et al., 1993; 
Guegan et al., 2003; Farhat et al., 2008). Meanwhile, the indirect approach has been proposed 
(Grotjahn et al., 2004; Abdellatif et al., 2007). However, apart from error accumulation in 
each step, the separation of the parameters of a different nature is not straightforward as for 
open chain manipulators. Due to the fact that the direct approach allows parameters 
identification in one single experiment, removing the accumulation of error between steps, 
this chapter will be focus on the direct approach applied to parallel manipulators. 
The first part of the chapter deals with conventional direct dynamic parameters 
identification processes. Thus, the dynamic model, suitable for identification purposes, is 
developed in its linear form with respect to the dynamic parameters. Due to the fact that the 
number of parameters is usually greater than the dimension of the equations of motion, an 
overdetermined system is developed. This overdetermined system is rank deficient, 
therefore it has to be reduced to another equivalent system that only contains independent 
columns. These columns correspond to a subset of parameters called the base parameters. 
Reduction process can be held symbolically (Khalil & Bennis, 1995) or numerically (Gautier, 
1991). For experiment design and in order to reduce the sensitivity of the system to the noise 
signal, procedures have been developed for the trajectories to be executed by the 
manipulator (Gautier & Khalil, 1992; Swevers et al., 1997). Finally, the dynamic system in its 
reduced matrix form is solved for the base parameters using the Least Square Method 
(LSM). 
The parameters dynamic identification procedure outlined in the previous paragraph has 
two main disadvantages: firstly, results could contain non-physically feasible parameters 
and secondly, it is also limited to linear friction models. Non-physical feasibility can be 
detected by obtaining a base parameters solution that does not have any physical 
interpretation when compared with corresponding combinations of the inertial parameters; 
masses lower than zero or non positive-definite local inertial matrices (Yoshida & Khalil, 
2000). This issue not only affects the stability of some of the advanced model-based control 
algorithms, but is also crucial in the dynamic simulation tasks.  
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The second part of the chapter will focus on two identification procedures. First, a 
procedure based on the parameters identification formulated as a nonlinear constrained 
optimization problem is reviewed. This approach allows not only the implementation of 
nonlinear friction models to model friction phenomenon at robot joints, but also the 
consideration of constraint equations in order to ensure the physical feasibility of the 
identified parameters. The second procedure is established upon the accuracy of the 
parameter solution, which is called here the identifiability of the parameters. Experiments 
will be held on a class of parallel manipulator. The main conclusions and further research 
concerning parameters identification for parallel manipulators are presented at the end. 

2. Dynamic model 

The starting point of the identification process depends on obtaining the dynamic model of 
the mechanical structure in its linear form with respect to the inertial and friction 
parameters. For this purpose, the dynamic model can be developed basically by two 
methods (Kozlowski, 1998); the integral and the differential methods. The integral method is 
derived from the energy equation and requires measurements of positions, velocities and 
applied forces on the actuated joints. Measurements of accelerations are not required. This 
method has been applied on serial manipulators (Gautier & Khalil, 1988; Sheu & Walker, 
1989; Khalil et al., 1990; Sheu & Walker, 1991) and extended for parallel manipulators 
(Bhattacharya et al., 1997). Olsen and others also used the integral method (Olsen & 
Petersen, 2001; Olsen et al., 2002) where they proposed the use of the maximum likelihood 
method instead of the conventional Least Squares Method (LSM) in the identification 
process.  
On the other hand, the differential method takes the advantage of the equations of motion as 
a base in the development of the identification process algorithms. As a result, acceleration 
appears explicitly and needs to be measured. It is known that the equations of motion can be 
constructed implementing various dynamic principles. Models suitable for the identification 
process have been developed by means of; the Newton-Euler formulation (Luh et al., 1980; 
Atkeson et al., 1986; Olsen & Bekey, 1986; Khosla, 1989), the Lagrange formulation (Ha et al., 
1989; Sheu & Walker, 1991), Jourdain’s principle of Virtual Power (Grotjahn et al., 2004), 
Gibbs-Appell equations of motion (Benimeli et al., 2003) and recently (Hardeman et al., 
2006), a finite element based approach along with Jourdain’s principle of Virtual Power was 
used to develop an automatic generation of the dynamic models for identification. 
In order to study the advantages/disadvantages of the integral and differential methods, a 
comparison was carried out. The experiments were held considering a two degrees of 
freedom serial manipulator (Prufer et al., 1994). From the results, they concluded that the 
differential method has advantages over the integral one. Thus, the differential model is 
used here for parameters identification of parallel manipulators.  

2.1 Rigid body model 

The equation of motion that describes the dynamic behavior of an open chain manipulator 
can be obtained by means of Gibbs-Appell equations of motion. For a serial robot (Mata et 
al., 2002), the rigid body dynamic model can be written as follows, 
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where τk  and kq$$ are the generalized forces and accelerations of the joint k, respectively, ωi i
f$  

is the angular acceleration, and 
i

i
Gr
f$$ is the acceleration of the center of gravity, im  is the 

mass and 
i

i
GI  is the inertial tensor of  the center of gravity, and the superscript/subscript (i) 

stands for the link number. All of them expressed with respect to the ith local reference 
frame. The Denavit-Hartenberg modified convention has been considered for modeling the 
system and i = k..n indicates the sum over all links above joint k, including itself. 
For dynamic parameters identification, a linear form with respect to dynamic parameters is 
necessary. To this end (Atkeson et al., 1986), the linear acceleration of the center of gravity of 
the ith body  is expressed as a function of the linear acceleration of the link coordinate frame 
ith. Moreover, the link inertial tensor is also expressed about the link coordinate frame by 
means of parallel axis theorem. 
In addition, the following notations are introduced. On the one hand, the cross product 
a b× ff  is expressed using the skew symmetric matrix a# . Thus, a b× ff = a b⋅#  where, 

 
z y
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y x
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a a 0 a
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On the other hand, a⋅B
f

= â B⋅ f  where,  
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By doing the above mentioned, upon substituting (2)-(3) in (1) and using some vector 
identities, the dynamic model linear with respect to dynamic parameters can be written as 
(Mata et al., 2005), 
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where ( )i i i i
i i i iˆ ˆ ˆη = ω + ω ω$ #  y  ( )i i i i

i i i iη = ω ω + ω$# # # # . 

In equation (4), 
i i

i
O Gr
f

 locates the center of mass of the ith link with respect to its own 

reference system. 
i

i
Or
f$$  is the acceleration of the origin of the ith local reference system. k

iR  is 

the rotation matrix between the ith and kth reference systems. 
k i

i
O Or#  is the position vector 

from the ith reference system to the kth reference system with respect to the ith reference 

www.intechopen.com



Dynamic Parameter Identification for Parallel Manipulators 

 

25 

system. [ ]Tk
kz 0 0 1=f . P and R denote the type of the corresponding joint, revolute or 

prismatic, respectively. Equation (4) can be written in the following matrix form, 

 ( ) ⋅Φ = τfj j j j$ $$
rbq,q,qK   (5) 

K can be denoted as the observation matrix of a single configuration; this matrix depends on 
the generalized kinematic variables. The vector of dynamic parameters Φf rb  regroups the 

elements of the inertia tensor ⎡ ⎤⎣ ⎦T

xx xy xz yy yz zzI I I I I I , calculated with respect to the 

local reference frame, the mass m  and the first mass moments with respect to the center of 

gravity [ ]T
mx my mz , for all the bodies contained in the system. 

Equation (5) can be applied for the dynamic parameter identification of open chain 
manipulators. Under other circumstances, such as parallel manipulators, its application is 
not straightforward. For parallel manipulators, the dynamic model can be obtained by 
making a cut at one or more joints so that the manipulator can be dealt with as an open-
chain mechanical systems with a tree structure. By doing so, equation (5) can be applied for 
the several open chain mechanical systems obtained after the cut. However, the constraint 
equations representing the union at the cutted joints should be fulfilled. These equations 
have the following form, 

 = =i 1 2 nf (q ,q ,...,q ) 0 i 1,2,...,m   (6) 

where 1 2 n(q ,q ,...,q )  are the generalized coordinates and m is the number of independent 

constraint equations. The degree of freedom (nDOF) of the system is obviously (n-m). Taking 
the first and the second time derivatives of the previous equations, the following the 
acceleration constraint equations are obtained, 

 ⋅ − =f ff f f f$$ $(q) q b(q,q) 0A   (7) 

where A is the Jacobian matrix of the constraint equations with respect to the generalized 
coordinates, and 

f
b  is a vector that contains all the terms that remain after removing all the 

acceleration dependent terms from the acceleration constraint equations. Regrouping the 
terms of the matrix A, according to the coordinated partition, in independent/dependent 
generalized accelerations,  

 [ ]⎡ ⎤ =⎢ ⎥⎢ ⎥⎣ ⎦
f$$ f
f$$

i
i e

e

q
b

q
A A   (8) 

where Ai and Ae are obtained when the above mentioned coordinated partition is applied to  
the Jacobian matrix of the constraint equations.  
Similarly, regrouping equation (5) but this time according to the independent and 
dependent generalized coordinates, 

 i rb i e rb e⋅Φ = τ ⋅Φ = τK K
f fj j   (9) 
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The subindices i and e refer to independent and dependent generalized coordinates 
respectively.  
In a similar way to that introduced in (Udwadia & Kalaba, 1998), and starting from equation 
(4) and equation (5), it can be proved that the dynamic equation for parallel manipulators in 
its linear form with respect to the dynamic parameters can be written in the form,  

 ⎡ ⎤− ⋅ ⋅Φ = τ − ⋅ τ⎣ ⎦ f j jT T
i e rb i eK X K X   (10) 

where −= ⋅1
e iX A A . 

If the dependent generalized forces correspond to passive joints then, they can be dropped 
form the equation. Hence, equation (6) is reduced to, 

 ⎡ ⎤− ⋅ ⋅Φ = τ⎣ ⎦ f jT
i e rb iK X K   (11) 

The observation matrix for a given trajectory can be found by appending this equation over 
all the configurations (npts) of the trajectory. This gives, 
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K X K

K X K
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  (12) 

The left-hand side of this equation is the observation matrix for a given trajectory (Wrb) and 
the right-hand side is the corresponding applied forces ( τf ), or in a compact form, 

 ( ) ⋅Φ = τff f f f$ $$
rb rbq,q,qW   (13) 

2.2 Friction models 

Several friction models have been proposed in the literature (Olsson et al., 1998). The 
classical friction model used for identification is a linear model which includes Coulomb 
and viscous friction. Equation (14) represents a general asymmetrical linear model 
(Armstrong, 1988) for both Coulomb and viscous friction, 

 c v
f

c v

F F q q 0
F

F F q q 0

+ +
− −

⎧ + >⎪= ⎨− − <⎪⎩
$ $
$ $

  (14) 

where cF  and vF  stand for the Coulomb and viscous friction coefficients, respectively. (+ve) 

and (-ve) superscripts correspond to the velocity sign. Considering different coefficients for 
the different velocity sign, this model is asymmetrical. Applying the friction model to all 
joints and for all the configurations (npts),  

 ( ) ⋅Φ = τff f$
f f fqW   (15) 
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The previous equation is applicable in the case of linear friction model. In the other case, if 
the friction at joints seems to have nonlinear tendency, nonlinear friction models can be 
used. In the identification process different nonlinear friction models have been used. For 
example  the following models (Grotjahn et al., 2001), 

 
1 2 32 C v v vF (v) F F v F atan(F v)= + +   (16) 

where, 
1 2C v vF ,F ,F  and 

3vF  are friction model parameters. On the other hand, another model 

proposed (Farhat, 2006) for friction modeling has the form,  

 c v
f

c v

F F v v 0
F

F F v v 0

δ+
δ−

⎧ + >⎪= ⎨− − <⎪⎩
  (17) 

where, cF , vF  are Coulomb and viscous parameters and δ  a geometry dependent variable 
that takes into account the Stribeck effect. 

2.3 Actuator dynamics 
In some cases, a considerable part of the actuator torque is consumed by accelerating or 
decelerating its rotor inertia ( riJ ) and its driven system (for instance, a ball screw drive , sJ ). 
Then, the rotor and the driving system inertia have to be considered. The corresponding 
equation for the actuator of the  ith joint can be written as follows, 

 ( )ri ri s iJ J qτ = + ⋅ $$   (18) 

Equations (18) is linear. The actuator dynamic for all the joints and for all the configurations 
(npts) can be expressed in matrix form as, 

 ( ) ⋅Φ = τff f$$
r r rqW   (19) 

2.4 Complete robot model 
If only linear friction models are considered in the identification process, equations (13), 
(15), and (18) can be grouped. Thus the complete dynamic model of the manipulator can be 
express as follows, 

 [ ] TT T T
rb f r rb f r⎡ ⎤Φ Φ Φ = ⋅Φ = τ⎣ ⎦W W W W

f f f f f   (20) 

In equation (20), W is the observation matrix of the system and Φf  is the vector grouping all 
the dynamic parameters. In the case that nonlinear friction models are considered, the 
complete dynamic model of the manipulator can be expressed in the form, 

 [ ] ( ) ( )
i e i e

T
T T T T

rb r rb r f f f fF F F F⎡ ⎤Φ Φ + − ⋅ = ⋅Φ + − ⋅ = τ⎣ ⎦ f f f ff f f f
W W X W X   (21) 

where 
ifF
f

and 
efF
f

 stand for the friction in the independent and dependent joints, 

respectively. These vectors include the friction parameters ( fΦf ).Φf , in this case, contains the 
body and the actuator dynamic parameters.  
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2.5 Base parameters 

An important characteristic of the system expressed by equation (20) is that some inertial 
parameters do not affect the dynamics of the manipulator and others have a relative effect 
with respect to the other parameters on the external generalized forces. Mathematically, this 
can be expressed by the presence of zero columns in the observation matrix (W) and the 
dependence that exist between others. Hence, this system never could be considered as a 
determined one. The minimal number of parameters that are needed to determine uniquely 
the dynamics of the system has to be calculated. This set of parameters is known as the base 
parameters and can be considered as a combination with the others that have an effect. The 
number of base parameters is equal to the rank of the observation matrix. 
The base parameter combination can be calculated principally in two ways; analytically 
(Khalil & Bennis, 1995) or numerically using the Singular Values Decomposition (SVD) or 
QR factorization (Gautier, 1991). The analytical analysis will not be considered here since for 
a parallel manipulator its application is not direct. Analytical calculation of the base 
parameters have already been presented for close chains mechanical systems (Khalil & 
Bennis, 1995), however, the method is applicable only to some particular topologies. The use 
of SVD is characterized by its precision, while the QR factorization by its low computational 
cost. The first case is of interest to us since the precision of the resulting inertial parameters 
identified is more important. 
As an example, consider the 3-DOF RPS (revolute, prismatic and spherical joints) parallel 
manipulator depicted in Fig. (1), this manipulator (a virtual model and an actual one) are 
used here for the experimental evaluation of the dynamic parameter identification process.  
As can be seen in the figure, this parallel manipulator consists of a fixed base and a moving 
platform interconnected by three RPS limbs. The axes of rotation of the revolute joints are 
assumed to share the same plane of the base. Spherical joints are modeled as three 
successive revolute joints with the corresponding axes of rotation passes through the center 
of the spherical joint. The linear motion of each prismatic joint of the actual parallel robot is 
achieved through a ball screw linear actuator driven by a DC motor. 
This parallel robot consists of 7 bodies: 3 limbs in which two of then contain two bodies and 
one with 3 bodies including the platform. Then, considering linear friction models and for a 
trajectory of npts configurations, the manipulator dynamic model in its linear form is 
appended in the following matrix form, 

 
DOF pts fric J fric J DOF pts(n n ) (70 n n ) (70 n n ) 1 (n n ) 1× + + + + × ×⋅Φ = τW i i

f j  (22) 

As described before and because of the dependence between the inertial parameters the 
SVD has been used to reduce this model to its base form (reduced form) expressed by the 
following equation, 

 ( )red baseq,q,q ⋅Φ = τW
ff f f f$ $$   (23) 

where Wred is the reduced matrix and baseΦf  is the base parameters vector. This vector is 

composed of the 25 parameters listed in Table (1). It has been found that friction parameters, 
as well as the screw and rotor inertial parameters, are linearly independent. 
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Fig. 1. The 3-DOF RPS parallel robot; ADAMS model on the left and Actual 3-RPS parallel 
robot on the right (built at the Polytechnic University of Valencia).  

 
No Base Parameters No Base Parameters 
1 mx(1) 14 mx(4) 
2 my(1)*, ** 15 my(4)* 
3 Izz(1)+Iyy(2)*, ** 16 Iyy(5)+ Izz(4)* 
4 mx(2) 17 m(5)-2.531my(3)+m(3)+m(2)*,**,† 
5 mz(2)* , ** 18 mx(5) 
6 Ixx(3)-0.3952my(3)* , ** 19 mz(5)* 
7 Ixy(3)+0.2282my(3) 20 mx(6) 
8 Ixz(3)   

9 Iyy(3)+0.3952my(3)-
0.2082(m(3)+m(2))    * , ** 21 my(6)* 

10 Iyz(3) 22 Iyy(7)+ Izz(6)* 
11 Izz(3)-0.2082 (m(3)+m(2))* , ** 23 m(7)+2.531my(3)* , **,† 

12 mx(3)+0.5774my(3) -
0.4563(m(3)+m(2))     * , **,† 24 mx(7) 

13 mz(3) 25 mz(7)* 

Table 1. Rigid body base parameters of a 3-RPS robot. 

3. Experiment design 

An accurate and efficient dynamic parameter identification process requires special design 
experiments. The trajectories to be executed by the robot not only have to be able to reduce 
the sensitivity of the identification solution to the noise signal, but also the data processing 
(position and forces) needs to be kept as simple and accurate as possible.  
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The condition number of a matrix can be considered as an upper limit for input-output error 
transmissibility (Horn & Johnson, 1985). Therefore one of the criteria for designing a “well 
excited” trajectory is to minimize the condition number of the matrix Wred. This can be 
treated as an optimization process where the objective function can be written as,  

 ( ) ( )=f f f$ $$
redf q,q,q Cond W   (24) 

As can be observed from equation (24), the variables of the optimization process are the 
generalized coordinates and there time derivatives. Several approaches have been proposed 
(Armstrong, 1989; Gautier & Khalil, 1992; Presse & Gautier, 1993) in which the trajectory is 
parameterized. However, the finite Fourier series trajectory parameterization proposed by 
(Swevers et al., 1996) is the most widely implemented.  

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

H

H
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n
ij ij

i i0
j 1

n

i ij ij
j 1

n

i ij ij
j 1

a b
q t q sin 2 f j t cos 2 f j t

2 f j 2 f j

q t a cos 2 f j t b sin 2 f j t

q t 2 f j a sin 2 f j t 2 f j b cos 2 f j t

=

=

=

⎡ ⎤= + π ⋅ ⋅ − π ⋅ ⋅⎢ ⎥π ⋅ π ⋅⎣ ⎦
⎡ ⎤= π ⋅ ⋅ + π ⋅ ⋅⎣ ⎦
⎡ ⎤= − π ⋅ ⋅ ⋅ π ⋅ ⋅ + π ⋅ ⋅ ⋅ π ⋅ ⋅⎣ ⎦

∑
∑
∑

$

$$

  (25) 

where  t is the time, qi0, aij and bij are the coefficients of the Fourier series that will be the 
new variables of the optimization process, nH is the harmonic number and f is the 
fundamental frequency.  
Generally, there exist many limitations on the movement of the actual manipulator. These 
can be converted to constraints in the optimization process. Depending on their complexity 
with respect to the variables of the optimization process they could be linear or nonlinear. 
For example, limitations on the displacements and the velocity of the prismatic joints 
(actuators) – if exist – are linear, meanwhile limitations to avoid the singularity regions or 
physical constraints such as the aperture angle of the spherical joints are nonlinear.  
It will be important to mention that the condition number of the observation matrix is not 
the only criteria for finding exciting trajectories. In a statistical frameworks the covariance 
matrix of the maximum likelihood has been used (Swevers et al., 1997). The criteria for 
optimization is called d-optimality criterion and has the following form, 

 ( ) ( )( )t 1f q ,q ,q log det −= − ΣW W
f f f$ $$   (26) 

where Σ  is the diagonal covariance matrix of the measured actuator forces. Recently, this 
criteria was used for the case in which the parameterization of the trajectories was based on 
combining Fourier series and polynomial functions (Park, 2006). 
As mentioned previously above, the exciting trajectories must allow simple and accurate 
data processing. This can be achieved if measurement position is fitted to the finite Fourier 
series.  
For the considered parallel manipulator presented in the previous section, the exciting 
trajectories were obtained according to the criteria of minimization of the condition number 
of the reduced observation matrix. The trajectory was parameterized by means of a finite 
Fourier series with 11 harmonics functions. Limitations on the movement of the actual 
manipulator that were introduced as constraints in the optimization process can be outlined 
as follows,  
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1. Limitations on the stroke of the linear actuators, upper and lower bounds.  
2. Limitations on the velocities of the linear actuators, upper and lower bounds. 
3. Limitation on the aperture angle of the spherical joints. Observe that this is a 

sufficient condition to avoid singularity regions of this manipulator.  
The optimization process was carried out in FORTRAN environments using a nonlinear 
Sequential Quadratic Programming (SQP) optimization routine provided by the NAG 
commercial library.  
It is important to mention that in the optimization process, one can take use of methods for 
scaling the reduced observation matrix. The scaled matrix can be obtained as follow,  

 ( )red redeq
= ⋅ ⋅W R W C   (27) 

where R is the r×r diagonal matrix and C is the b×b diagonal matrix, both including row and 
column scaling factors on their diagonal, respectively. r and b are the dimensions of redW . 
To keep on the benefits of the condition number reduction of redW , scaling must be 
introduced into the identification process. Another approach that can be used for scaling 

redW  is the normalization of the matrix by means of the division of its columns by their 
norms.  The use of scaling factors or the normalization rescale has to be taken into account in 
the identified model parameters afterwards.  
For the purpose of experimental parameter identification, several trajectories were found. 
For example, one of the trajectories that have been obtained had the condition number of 
595. It is depicted in Fig. (2).  

4. Physical feasibility 

Once an optimized trajectory has been found and it is applied to the manipulator, data is 
measured so that the dynamic system represented by equation (23) is ready to be solved. At 
this point an important issue in the dynamic parameters identification arises: the physical 
feasibility of the identified parameters. Because of the incompleteness of the dynamic model 
and the existence of noise in the measurements, the solution of equation (23) by LSM, or the 
identified base parameters, is susceptible to have no physical interpretation when compared 
with corresponding combinations of the inertial parameters; masses lower than zero or non 
positive-definite local inertial  matrices (Yoshida &  Khalil,  2000). This issue not only  affects 
the stability of some of the advanced model-based control algorithms, but it is also a crucial 
one in the case of dynamic simulations. 
To insure the physical feasibility of the identified parameters a nonlinear constrained 
optimization process, instead of the LSM, could be implemented to solve equation (1). The 
corresponding physical feasibility constraint equations have the following form, 

 ( )
( ) ( ) ( ) ( )i

i

g
xx

2g g xy
xx yy xy

2 22g g g g g g g g g g g gi
G xx yy zz xy xz yz xx yz yy xz zz xy

m 0

I 0

I I I 0

det I I I 2 I I I I I I I I I 0

>
>
− >

= + − − − >I

  (28) 

where g g g g g
xx xy xz yy yzI ,  I ,I ,I ,I  and g

zzI  are the components of body inertia matrix 
i

i
GI  calculated 

with respect to its center of gravity. 
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Fig. 2.  An optimized trajectory with a Condition Number of 595. 
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Note that in equation (28), local inertia matrixes are calculated with respect to the center of 
gravity, meanwhile the inertia matrix terms of the identified base parameters are calculated 
with respect to the origin of the local reference system. Hence, to verify the physical 
feasibility of a set of numerical values of the base parameters, they must be compared with 
the corresponding combinations of the inertial parameters. That is to say, if it is possible to 
obtain a set of inertial parameters that verify the equality between the linear combinations 
and the numerical values of the base parameters then this set of base parameters – 
numerical values – is judged to be physically feasible, and vice versa. A scheme was 
proposed (Yoshida & Khalil, 2000) to judge whether the values of the base parameters 
correspond to a set of physically feasible inertial parameters, or not. This scheme evaluates 
the physical feasibility after the parameter identification process has been carried out. Other 
authors subject formulate the identification process as a nonlinear constrained optimization 
problem (Mata et al., 2005; Farhat et al., 2008). This approach allows on the one hand, 
ensuring the physical feasibility of the identified parameters. On the other hand, it permits 
the implementation of nonlinear friction models, like the one expressed by equations (16) 
and (17), to model friction phenomenon at robot joints. To this end, the objective function of 
the identification problem has the form,  

 ( ) ( ) ( ) ( )( )i e

I I T
red base f feq

Nonlinear friction vectorLinear part

f q,q,q, F Fτ = τ − ⋅ Φ + − ⋅W X
j jf f f j j$ $$
'**(**)'**(**)

,  (29) 

constrained by equation (28) applied to all links constituting the robot.  

5. Practical issues  

5.1 Measurements 

Recall that the inputs of the identification process are the external forces, positions and there 
time derivatives, all measured for an optimized trajectory. Generally, the external forces or 
the torque exerted by motors is not directly available. An acceptable approach is to assume a 
linear relation between the current and the torque, 

 m m mK iτ =   (30) 

where mτ  is the motor torque, mi  is the motor current and mK  is the torque constant which 
can be found, among other methods, by means of a previously performed experiments on 
the dismounted motors or by in situ experiments (Corke, 1996).  
On the other hand, for kinematic variables, most industrial robots are provided with a 
precise position sensor. However, the direct measurement of joints velocities and joints 
accelerations is not normally available. Thus, they are obtained by taking the time derivative 
of the measured positions. These derivatives could be obtained numerically using central 
difference algorithms (Khalil & Dombre, 2002). For the velocity, 

 ( ) ( ) ( )( )i i
i

q t 1 q t 1
q t

2 t
+ − −= Δ$   (31) 

Other approaches (Swevers et al., 1996) suggest, using the exciting trajectory found by the 
optimization process. In this manner the new trajectory coefficients are found by refitting 
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the measured positions to the Fourier series. Therefore, the first and second time derivatives 
could be obtained analytically. Other authors (Gautier et al., 1995) propose filtering the 
measured positions by a low pass filter before taking the derivative numerically.  
The authors of this chapter made a comparison between three different method for finding 
the time derivatives (Diaz-Rodriguez et al., 2007).  The comparison was carried out over a 3-
RPS parallel manipulators which was equipped with accelerometers located at the 
generalized independent coordinated. The following methods were used,  

1. Filtering the measured positions by a low pass filter before taking the derivative 
numerically (Gautier et al., 1995) 

2. Refitting the measured positions to the Fourier series used in the trajectory 
optimization process (Swevers et al., 1996) 

3. Approach based on local fitting (Page et al., 2006). A local regression of the 
measured trajectory was executed using a third order polynomial. When 
performing the local regression the whole set of samples were considered, but with 
different statistical weights. After applying the local regression, the velocities and 
accelerations were derived from each polynomial. 

The main conclusions of the work indicated that the three methods give quite similar results 
for the analyzed robot. Therefore, provided that well excited trajectories are used in the 
identification, any of these methods can be used in a deterministic framework. 

5.2 Dynamic model reduction 

If the geometry of robot parts is taken into account, some rigid body base parameters have 
zero values or values close to it. Consider for instance the 3-RPS robot (Fig. (1)) where the 
links connected to the base have a cylindrical geometry. It can be supposed – with a degree 
of certainty that the gravity center of these links lies on an axis parallel to the actuator 
movement. In this case, the corresponding axes of the local reference system attached to the 
body is in (y) direction, so the parameter related to the (x) position of the gravity center can 
be expected to have values close to zero. The same assumption is applied to links connected 
to the moving platform. Therefore, parameters 1, 4, 14, 18, 20, 24 from Table (1) can be 
removed. Moreover, it is possible to consider as well the form of the platform which is 
circular and flat, and by doing so parameters 7, 8, 10, 13 can also be removed. This reduced 
model is highlighted by (*) in Table (1). Another simplification can be applied if the parallel 
manipulators symmetry is considered. In Table (1) the rigid body base parameters of this 
case is highlighted by (**). It is important to mention that the columns of the observation 
matrix, associated with base parameters that consider the symmetry, have to be added in 
order to develop a model which properly describes the dynamic behavior of the robot. Table 
(2) summarizes the different models that have been proposed here.  

5.3 Identifiability of the base parameters 

When a direct parameter identification process is experimentally performed, two sources of 
error become apparent. On the one hand, not all the aspects of the robot can be modeled in 
detail (modeling discrepancies). On the other hand, noise in measurements is present. These 
errors lead to the fact that not all the base parameters can be properly identified. This 
apparently occurs when the independent contribution of some parameters to the 
generalized forces is smaller than the measurement noise or the modeling discrepancies.  
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The study of which parameters can be properly identified can be established on analyzing 
the relative standard deviation ( piσ ) of each parameter (Khalil & Dombre, 2002b) along with 

considering the physical feasibility (Yoshida & Khalil, 2000). Physical feasible base 
parameters with piσ  < 15% are considered properly identified. 
 

Model Nº of Rigid 
Body Parameters Parameter removed from Table (1) 

1 25 - 
2 15 1, 4, 7, 8, 10, 13, 14, 18, 20 and 24 
3 9 1, 4, 7, 8, 10, 13, 14, 15, 16, 19, 18, 20, 21, 22, 24 and 25 

Table 2. Different rigid body models for the dynamic parameter identification process of the 
3-DOF RPS parallel manipulator. 

6. Application to a 3-RPS robot  

In this section, the results of the identification process, implemented by the authors over a 3-
RPS parallel manipulator, are presented. In the first part, the approach based on considering 
the physical feasibility in the identification process is presented. In the second part of the 
section, the identifiability of the dynamic parameter for the 3-RPS robot is evaluated. In both 
sections, the identification process is validated using a simulated manipulator built by 
making use of the ADAMS dynamic simulation program. After that, it is applied over a real 
one constructed at the Polytechnic University of Valencia, see Fig. (1).  

6.1 Identification considering the physical feasibility 

Because of the noise in the input data and/or the discrepancies between the actual parallel 
robot and the dynamic model used in the identification process, some of the inertial 
parameters obtained using LSM methods result physically unfeasible. Thus, the necessity 
for a constrained optimization process to ensure physical feasibility appears clearly. In this 
subsection, the results are shown as a comparison between the original actuator forces and 
those calculated using the identified dynamic parameters in the case of; a) linear friction 
models and. b) nonlinear friction models. 
The dynamic model of this manipulator, trajectory optimization and identification process 
were built in FORTRAN programming language with the aid of the NAG library and the 
NLPQL Sequential Quadratic Programming subroutine (Schittkowski, 2000).  
Simulated Robot 

In the simulated robot, nonlinear friction model is considered at all the joints of the robot. It 
can be represented by the following relation,  

 
S

Sv v
C S C vF(v) F (F F )e F v

δ= + − +   (32) 

Where  FC, FS and Fv are the Coulomb, static, and viscous friction coefficients, respectively, 
vS is the Stribeck velocity and ├s is the stiction transition velocity. This model consists of five 
parameters and captures the Coulomb, static, viscous and Stribeck friction forces (Olsson et 
al., 1998). After calculating the external original forces, errors are introduced assuming a 
normal distribution producing the perturbed forces. Now, based on these perturbed forces, 
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identification is carried out considering asymmetric linear friction models for all joints, 
using LSM and optimization, and symmetric nonlinear friction models using optimization. 
The corresponding identification errors are shown in Table (3). where RAε  is the Relative 
Absolute Error and is defined as, 

 
i

*
idnt i

i
RA

* *
i

i

τ − τ
ε = τ − τ

∑
∑   (33) 

where, *τ  and idntτ  are the actual applied force and those calculated using the dynamic 

model applying identified dynamic parameters, and *τ  is the average of *τ . 
 

RAε (%) Perturbed Original 
Linear (LSM) 11.96 8.26 
Linear (Opt.) 12.44 8.85 

Nonlinear (Opt.) 11.02 7.28 

Table 3.  Identification errors based on simulated manipulator. 

As can be seen in Table (3), considering the case where linear friction models were used in 
the identification process, when the physical feasibility had been ensured, i.e. identification 
by optimization, the error increased. On the contrary, when this was accompanied by the 
nonlinear friction models, the results were improved considering both the perturbed and the 
original forces. Note that in this step, identification was carried out simulating both types of 
the mentioned identification process error sources.  
Actual robot 

Now, after verifying the identification process over the simulated manipulator, the results 
are shown in detail considering the identification of the dynamic parameters of the actual 
manipulator. Starting with the optimization process for the exciting trajectory and changing 
the initial estimations, different optimized trajectories were obtained. An example of such an 
optimized trajectory is that one presented previously in Fig. (2). Hereafter, the identified 
dynamic parameters were obtained basing on anther optimized trajectory with a 
corresponding condition number of 638.  
A PID controller is used in order to determine the control actions. The control actions were 
applied with a frequency of 100Hz, at which measurement were also taken. The total 
duration of the optimized trajectory is 7.5s. Trajectories were repeated several times, the 
applied control actions were averaged and then a second order lowpass digital Butterworth 
filter was applied. For the identification process, 75 configuration points are extracted every 
0.1s.  
When the LSM was used in the identification process, a non physically feasible base 
parameters were found. Hence, the identification process was held using the nonlinear 
constrained optimization process where the physical feasibility of the obtained inertial 
parameters was ensured. Fig. (3) shows a graphical comparison between the actual forces 
and those calculated using the dynamic parameters identified by LSM and optimization 
considering asymmetric linear friction models at the prismatic joints.  
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In order to justify the use of nonlinear friction models in the identification process rather 
than those which are linear, as the friction phenomenon in the considered joints has this 
tendency, a thorough error comparison was made. This is established considering three 
different sets of dynamic parameters identified by: LSM, optimization in the linear case if 
linear friction models are considered and optimization in the nonlinear case. In order to 
make an overall judgment, error comparison takes place over the same trajectory used in the 
identification process (that one of a condition number of 638) and others which are excited, 
including the low velocity one. The resulted calculated error in each case is shown in Table 
(4).   
As can be observed from Table (4), considering identification by the optimization case and 
excluding the trajectory used in the identification process, the errors in the predicted applied 
forces considering the identified nonlinear friction models are lower than those 
corresponding to the linear friction ones for all trajectories. This shows that the dynamic 
model that includes nonlinear friction models has a better overall response. On the other 
hand, the dynamic parameters obtained by the LSM give the lowest error for all of the test 
trajectories. However, the calculated errors using the identified parameters found by means 
of the test trajectories became bigger, and almost doubled, contrary to those calculated by 
optimization, which kept the same order. Furthermore, the identified dynamic parameters 
using the optimization process are physically feasible.  

6.2 Identifiability of the base parameters 
The identification process, as has been pointed out in the previous section, has the ability to 
obtain a physical feasibility solution; however, the constrained optimization problem is 
cumbersome. This occurs because constraint equations are functions of the terms of the 
inertia tensor calculated with respect to the center of gravity of the corresponding body, and 
the linear relation between the base parameter vector and the physical parameters is not just 
one.  
In addition, the solution of the nonlinear problem does not guarantee that the set of physical 
parameters found has been identified accurately.  Another approach that can be used for 
parameter identification is to evaluate the physical feasibility after the identification process 
has been carried out (Yoshida et al., 1996) along with the statistical analysis of variances in 
the resulting parameters.  Hence, two aspects are verified:  Base Parameters with piσ  < 15% 
and physical feasibility. If the parameter accomplishes these criteria, the parameter is 
considered properly identified. 
For example, here, the identifiably of the dynamic parameters of a 3-RPS parallel robot is 
addressed considering a simulated manipulator whose inertial parameters have been 
obtained from the CAD models and the friction parameters has been obtained from an 
indirect parameter identification process performed by the authors (Farhat et al., 2006). 
Noise was added to the generalized forces as well as the independent generalized 
coordinates and their time derivates.  
The three models previously introduced in Table (2) were used in the identification process. 
Friction was identified using symmetrical linear models that include Coulomb and viscous 
frictions. When the parameters identified by using Model 1 were analyzed, only 4 of the 34 
parameters, including friction and rotor and screw inertias, had piσ  lower than 15%, and 
some of the identified parameters were physically unfeasible. This can be demonstrated in 
Table (5) (marked by *), where it can be seen the values of parameters of the simulated and 
the identified models, respectively. 
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Fig. 3. Results from the LSM (τLSM) and the optimization process (τopt). 
 

RAε  (%) Trajectory condition number 
Friction model 563 638 718 601 492 LowVel

LSM 12.8 9.48 14.6 17.9 17.9 15.5 
Linear 

Opt 26.1 20.5 24.4 23.9 23.9 19.2 
Nonlin Op 24.7 21.2 23.5 23.4 23.4 18.0 

Table 4. Error comparison considering linear and nonlinear friction models. 

Results of the number of parameters properly identified, when model 1-3 was used in the 
identification process, are listed in Table (6). The table includes also the average relative 
error of the identified parameter relative to the exact parameter ( AVε ), 
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 i i
AV

p i

1
n

Φ −Φε = Φ∑ &
  (34) 

where iΦ   the exact values of the parameters and iΦ&  is  the vector containing the identified 
parameters. An interesting fact is that despite that Model 1 achieving the lowest RA┝ , the 
corresponding AVε  value was the highest. In addition, only 4 parameters were properly 

identified. The difference between models 2 and 3 in RAε was about 1.5%. As 12 parameters 
are identifiable, identification was performed using only these parameters (Model 4). This 
model includes 3 inertial parameters of the links related to the platform and marked by (†) 
in Table (1). 

Parameter Exact Values Identified 
Values piσ  % 

Izz(4)+Iyy(5) 0.1555 -86.2016* 80.1596 
Izz(6)+Iyy(7) 0.1555 -66.6355* 62.0087 

Fv(1) 3272.0 3296.73 2.5677 
Fc+(1) 227.96 1659.0181 53.3048 
Fc-(1) 228.04 -1210.55* 73.1859 

Jr(1)+JS(1) 483.10 505.03 13.8778 

Table 5. Some of the base parameters identified using Model 1 

Model RAε  %
AVε % Number of Parameters

1 4.57 5.37 37/4 
2 4.58 2.94 24/12 
3 4.63 3.06 18/12 
4 4.73 3.17 12/12 

Table 6. Results of RAε and AVε  from different models.  

This result could indicate that, because of the topology of the parallel manipulator and in 
the presence of measurement noise, 12 parameters from which 3 are of the links inertial 
parameters can be used for modeling and simulating the 3-RPS parallel manipulator 
behavior. 
Following the same procedure, a dynamic parameters identification process was applied 
over an actual parallel 3-RPS manipulator. The resulted RAε  values and the number of 
parameters properly identified are shown in Table (7). Comparing Table (6) and Table (7), 
the level of RAε in the actual manipulator was doubled, but the numbers of parameter 
properly identified was found similar (12 for Model 4). The identified links base parameters 
of Model 1 and 4 are presented in Table (8) along with those of the simulated manipulator. 
As can be observed, the identified parameters of the actual manipulator using model 4 and 
the original CAD values of the simulated manipulator are comparable. Contrary to those 
identified using Model 1 where a significant difference appears. 
The fact that 12 parameters can be properly identified is reasonable. On the one hand the 
topology itself of the parallel manipulator, does not allow finding well-excited trajectories. 
Additionally, some base parameters have a little contribution to the dynamic behavior of the 
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model; for example, during the movement the accelerations of the limbs are smaller than the 
platform. On the other hand, the friction of the linear actuator of the real manipulator was 
found to be high, this difficult even more the identifiability of the base parameters of the 
links.  
Finally, Model 4 was validated. Parameters obtained from one trajectory were used to 
compute the forces for another one that had not been used for identification. Fig. (4) depicts 
this comparison. As can be seen, the estimated and measurements forces are very close. 
 

Model RAε  % Number of Parameter

1 8.40 37/2 
2 8.43 24/9 
3 8.53 18/12 
4 8.62 12/12 

Table 7. RAε  from actual 3-RPS Manipulator. 

Base Parameter CAD 
Real 

Manipulator 
Model 4 

Real 
Manipulator 

Model 1 

mx(3)+0.5774my(3) -
0.4563(m(3)+m(2)) -2.47 -2.59 1.16 

m(5)-
2.531my(3)+m(3)+m(2) 

10.83 13.72 -3.29 

m(7)+2.531my(3) 5.42 6.95 -0.557 

Table 8. Rigid Body Base Parameters Model 1 vs Model 4. 

7. Conclusions and further research   

In this chapter, the problem of the identification of inertia and friction parameters for 
parallel manipulators was addressed. In the first part of the chapter an overview of the 
identification process applied to parallel manipulators was presented. First, the dynamic 
model was obtained in a systematic way starting from the Gibbs-Appell equations of 
motion. This dynamic model was reduced to a subset of parameters called base parameters 
by means of SVD. After that and to ensure the minimal input/output error transmissibility, 
approaches to obtaining optimized trajectories that have to be used in the identification 
process were presented. In the second part of the chapter, a direct identification approach 
was implemented on a 3-DOF RPS parallel manipulator considering the physical feasibility 
of the identified inertial parameters. To this end, a procedure based on a nonlinear 
constrained optimization problem has been reviewed. In addition, nonlinear friction models 
were included in the dynamic formulation subjacent to the identification process. In the last 
part of the chapter, a study of the identifiability of the base parameters was presented. It 
based on both analyzing the relative standard deviation of each parameter and considering 
its physical feasibility. For this approach a simulated manipulator was necessary for 
studying and evaluating models used in the identification process. For future research, a 
systematical approach is expected to be found, based on statistical frameworks and physical 
feasibility, for studying the identifiability of the dynamic parameter without the necessity of 
a simulated manipulator. Concepts presented here for parameter identification of parallel 
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manipulators can be extended to other areas. For instance, vehicle components (Butz et al., 
2000; Serban & Freeman, 2001; Chen & Beale, 2003; Sujan & Dubowsky, 2003) and ultimately 
the novel humanoid systems (Gordon & Hopkins, 1997; Silva et al., 1997; Kraus et al., 2005). 
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