n Access Database www.intehweb.com

Impact of Hybrid Business Models in the Supply Chain Performance

C. Martínez-Olvera Industrial Engineering Department, Tecnológico de Monterrey – Campus Sonora Norte, Hermosillo, Sonora Mexico

1. Introduction

Today's manufacturing competition goes beyond single companies and becomes a battle fought between supply chains (Min, 2002), (Nyoman, 2004), meaning the focus has changed from the local manufacturing company to the international supply chain (Olhager, 2003), (Ismail, 2006). In this scenario, competitiveness becomes something holistic about the total supply chain system rather than just what the company entity at the end of the supply chain can offer (Duclos, 2003). Moreover, the service provided to the end customer is determined by the effectiveness and efficiency of the cooperation of all the companies in the supply chain (Terzi, 2004). This trend demands organizations to improve and optimize their supply chain strategies, in order to respond and satisfy customers' demands (Sen, 2004), i.e. to provide end users with the right product at the right place, time, and price (Griffiths, 2000). As the degree of interaction between the members of the supply chain depends on the type of business models used by them (Browne, 1999), the fulfillment of the customer's demands can be achieved through the use of different business models (Sen, 2004). A business model answers who the customer is and what the customer wants, so value can be delivered at an appropriate cost (Chung, 2004). Ngai (2005) offers a value chain-based classification of the different business models used in a supply chain environment: engineer-to-order (ETO), make-to-order (MTO), assembly-to-order (ATO), make-to-stock (MTS), and ship-to-stock (STS). Each typical business model has its advantages and limitations, and only fits for some certain supply chain scenarios (Wadhwa, 2002).

1.1 Hybrid business models

According to Li (2001), a poor supply chain performance can be attributed to a mismatch between the intended market and the business model used to address it. From here the premise that nature of business models must be dynamic: as the current level of competition puts pressure to shift from sales market to customer market (Vonderembse, 2006), a response to a changing market environment (i.e. the market changes in terms of how products win orders in the market place), requires shifting between business models (Olhager, 2003). As this last is not a trivial task, in practice organizations have opted to use hybrid business models. Sen (2004) recognizes the fact that business models cannot be crisply classified as A or B, and that most of the time the complexity of real-life business

Source: Supply Chain, Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-22-6, pp. 558, February 2008, I-Tech Education and Publishing, Vienna, Austria

environments force supply chains to use hybrid business models. These hybrid business models are the result of serial/horizontal integration or parallel/vertical integration. In the first case, companies within the supply chain adopt either business model A or business model B, in series. In the second case, companies within the supply chain adopt business model A and business model B, in parallel and in some proportion.

Next section reviews the literature in the area of hybrid business models, while in section three, a quantitative model is offered. In section four, the quantitative model is used to evaluate the influence of these hybrid business models on the performance of the supply chain. Finally, section five presents conclusions and future research.

2. Literature review

Several authors have worked in the past, in the area of business models: Fogarty (1991) called them production positioning strategies, Oden (1993) considered them as methods of response to customer demand, and Hendry (1999) proposed a classification of them. Regarding the use of business models, Hax (1984) proposed customer service and total cost as the criteria to decide between MTS and MTO business models. Hendry (1989) compared MTO and MTS environments with regard to production planning techniques. Guerrero (1991) focused on ATO environments on which component parts are produced according to the forecast demand and assembled into final products based on actual demand. Fumero (1994) proposed a hierarchical planning approach for companies using the ATO business model. Handfield (1995) developed a framework for analyzing time-based strategies in MTO environments. Bilas (1996) discussed the production scheduling in MTO and ATO environments. Caputo (1996) outlined various types of buffers for MTO environments with various types of demand. Dellaert (1996) focused on the lot-sizing problem in a MTO environment. Bridleman (1997) discussed supply chain management and scheduling in MTO environments. Federgruen (1999) dealt with the problem of stochastic economic lot scheduling in mixed MTO and MTS environments. Rajagopalan (2002) provides a heuristic procedure to solve the problem of batch sizes for MTO-MTS environments. Tsubone (2002) states that even though changes in market demand requires organizations to operate under both MTO and MTS environments, there are few studies on the systematic combination of both: authors like Samadhi (1995), Sipper (1997), and Vollman (1997) discuss the differences between them, authors like Williams (1984), Kogan (1998), Nguyen (1998), and New (1995) focus on the issues of combining them, and Soman (2004) presents an elaborate literature review of combined MTO-MTS situations. In general, the main limitation of the past research is that it has focused on improving one business model, or comparing business models to see which performs better under certain circumstances, but have not paid much attention on the integration of business models. Two authors that have addressed this last issue are Li (1999, 2001) and Sen (2004). Next section reviews their work and relates it to our research proposal.

3. Model proposal

In order to evaluate the influence of hybrid business models on the performance of the supply chain, a simulation model was derived (and tested under different operational conditions). We limited our model building effort to the parallel/vertical integration of the MTO and MTS business models.

When market uncertainty is high (in terms of quantity and timing), a MTO business model (where production planning is made on actual orders rather than on forecast) is recommended (Safizadeh, 1997). An MTO business model allows to eliminate finished goods inventories and reduces the firm's exposure to financial risk - as production is initiated until a customer order is received - but usually spells long customer lead times and large order backlogs (Gupta, 2004). As the risk of stockpiling based on un-accurate sales forecasting is avoided by completely precluding building up anticipation stocks, a chase strategy can be used, where the expected demand is tracked and the corresponding capacity is computed, raising it or lowering it accordingly (Buxey, 2003). Safizadeh (1997) suggested that when following a chase strategy, a job shop should be used. A job shop uses general-purpose equipment and a multi-skilled work force (grouped around the process), which provides a high degree of flexibility and capability that allows the profitable manufacturing of low-volumes of customized products. Because of this last is that Li (2001) refers to this business model as a market responsive strategy.

When market uncertainty is low (in terms of quantity and timing), a MTS business model (where production planning is made on forecast rather than on actual orders) is recommended (Safizadeh, 1997). An MTS business model allows to compete in response time - as production of a low variety of stable products is made ahead of demand, kept in stock, and shipped upon receipt of orders (meaning little or no order backlog) - but becomes a) costly, when the number of products is large; and b) risky, when demand is highly variable and/or products have short life cycles (Gupta, 2004). As the reliability of the sales forecasts (and the low variety of stable product produced) reduces the chance of creating obsolete products, a level strategy can be used, where a steady production is maintained and finished goods (smoothing/anticipation) stocks are used to absorb ongoing differences between output and sales (Buxey, 2003). Safizadeh (1997) suggested that when following a level strategy, a continuous production line should be used. A continuous production line uses automated, special-purpose equipment (grouped around the product), which provides a high degree of efficiency and consistent quality that allows the profitable manufacturing of high-volumes of standardized products. Because of this last is that Li (2001) refers to this business model as a physically efficient strategy.

Note: in agreement with Sen (2004), we consider the ATO business model to be essentially the combination of the MTS and MTO environments; i.e. a limited and known variety of products are stocked in a ready-to-assemble condition and assembled to meet the orders. For this reason, the ATO business model is not considered for the hybrid business model analysis.

3.1 Integration ratio X

In order to represent the degree of parallel/vertical integration of these two models, in this paper we introduce the concept of the integration ratio *X*. Li (1999, 2001) considers the expected lead time (ELT) and stock level carrying cost (ESC) of a company, to be dependent on the materials procurement, production, and distribution lead times (SL and PL) and the type of business model used (denoted by the values taken by the variables qsl and qpl shown in Table 1). In order for Table 1 to make sense, the ELT must be understood as an equivalent to the response time, as proposed by Yucesan (2000), the time between the reception of a customer order and the time of delivery:

- In MTO environments, response time is virtually equal to the lead time (assuming that the time between the order receipt and production authorization is negligible).
- In MTS environments, response time is no longer the same as the lead time. Response time can be improved (over lead time), by holding inventory.

ELT =	qsl*SL + qpl*PL
qsl, qpl =>	Type of business model: MTO or MTS
SL =>	lead time from supplier
PL =>	lead time from production
for MTO, ELT =	SL + PL
and,	qsl = 1, qpl = 1
for MTS, ELT =	0 + 0
and,	qsl = 0, qpl = 0

Table 1. Expected lead time of a company using MTO and MTS business models, adapted from Li (2001).

On the other hand, Sen (2004) considers the expected inventory cost (TEI) of an N-partners supply chain, to be dependent on the type of business model used by each partner (denoted by the yn% proportion of MTS and 1- yn% proportion of MTO in Table 2).

	n = N
TEI =	Σ yn% * MEIn * bn * T
	n = 1
yn% =>	proportion of MTS business model
MEIn =>	mean expected inventory at nth partner
Bn =>	inventory cost per unit at nth partner
T =>	time period of planning
for MTS, yn% =	1
for MTO, yn% =	0

Table 2. Expected inventory cost of a supply chain using hybrid business models, adapted from Sen (2004).

When qsl, qpl, and yn% are compared, we notice that they play a similar role in the description of the hybrid business model. In this paper we retake this idea, and propose to represent the business model proportionality through the use of an integration ratio X. It must be noted that neither Li or Sen offers an explanation of the meaning of the business model proportionality. In our case, the integration ratio X can be understood as an indicator of the level of customer feedback and therefore, of the uncertainty of what to do next, when to do it, and for how long, as shown in Table 3: when the integration ratio X = 1, then the hybrid business model is a pure MTO and all the activities are driven by customer's information (the uncertainty of what, when, and for how long is at its maximum, so a waiting time for instruction is required and no planning ahead of time – like building inventory - can take place); when the integration ratio X = 0, then the hybrid business model is a pure MTS and all the activities are driven by forecast information (the uncertainty of

what, when, and for how long is at its minimum, so a waiting time for instruction is not required and planning ahead of time – like building inventory - can take place). This reasoning is consistent with the formulas in Tables 1 and 2.

SUBCYCLES	ACTIVITIES	S1 = info from customer; forecast	S2 = info from
		MTO	MTS
	Make versus buy decisions	S1	S2
	Identify, evaluate, and develop suppliers	S1	S2
Cumpler	Negotiate terms for quantity, quality, delivery, and price	S1	S2
Supply	Release orders for materials, and components	S1	S2
	Release orders for tooling	S1	S2
	Monitor suppliers to ensure compliance with terms	S1	S2
	Production planning and control	S1	S2
	Materials management	S1	S2
Production	Fabricate parts	S1	S2
Troduction	Assemble products	S1	S2
	Inspection, testing, rework	S1	S2
	Inventory finished products	N/A	S2
	Ship products to distribution center	N/A	S2
Distribution	Pick products for customer orders	S1	S2
	Ship products and invoice customers	S1	S1

Table 3. Source of customer feedback for MTO and MTS business models, adapted from Miltenburg (1996).

3.2 Simulation model structure

The analyzed supply chain is linear, with four partners serially connected, and with partner i using and hybrid business model that is X_i percentage of MTO (Figure 1). Two are the supply chain performance criteria: total response time (given by the sum of the response times of partner i during period j of the planning period T), and total backlog (given by the accumulated backlog of partner 1, at the end of planning period T).

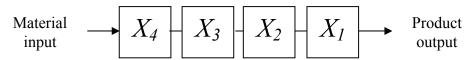


Figure 1. The serial supply chain with hybrid business models

The main differences between our proposal and Li's and Sen's work are the following:

- Li's work mainly focus on analyzing the cost/time impact of MTO, ATO, and MTS as standalone business models and not part of a supply chain (as we propose).
- Sen's work mainly focus on the cost impact of hybrid business model within a supply chain, but not the time and inventory impact (as we propose).

For the purpose of quantitatively analyzing the impact of various degrees of business model integration ratios on the supply chain performance (i.e. total response time, total backlog), a systems dynamics (SD) simulation model was built - using the simulation software iThink (1996) - and used to test a series of different scenarios. SD is a system thinking approach that a) is not data driven, b) targets the top management levels, and c) focuses on how the structure of a system and the taken policies affect its behavior (Eskandari, 2007). For this reason, the SD model presented in this paper can be considered a second order model - in contrast to first order models that are used for theory testing (Larsen, 2002) - a research instrument for theory development rather than a tool for assisting decision-making (Adamides, 2006). The simulation model was verified and validated following a similar approach to the one in Hwarng (2005): the model was presented to experienced professionals in the area of simulation model building, the simulation model output was examined for reasonableness under a variety of settings of input parameters, i.e. the lead times of each supply chain partner were set to some known deterministic value, and later the simulation model output was compared with manual calculations (finding no discrepancies between the simulation and manual calculations). Figure 2 shows the SD simulation model. The most important assumptions made in the simulation model are the following:

- Backlog P_i is the difference between demand P_i and supply P_i , during period j of the planning period T.
- Demand P_i varies according to a normal distribution, with a mean of 100 units and a standard deviation of *uncertainty* i. The normal distribution is used to represent a symmetrically variation above and below a mean value (Banks, 2000).
- *Uncertainty* i ranges from 0 (low) to 20 (high).
- *Demand* P_i is transmitted without distortion to supply chain partner P_{i+i} . This means that *demand* $P_1 = P_2 = P_3 = P_4$.
- Supply P_i is equal to supply P_i OUT.
- Supply P_i OUT is equal to Supply P_i IN after a delay of lead time P_i.
- *Lead time P_i* varies according to a normal distribution (see Table 4). Lead time is given in weeks.
- Supply P_i IN is the sum of the contribution made by inventory P_i and capacity P_i . This is done with the intention to reflect the different demand fulfillment strategies, i.e. level strategy (inventory-oriented) for MTS environments and chase strategy (capacity-oriented) for MTO environments.
- Business model P_i ranges from 0 (MTS environment) to 1 (MTO environment).
- *Inventory* P_i is equal to:

```
supply P_{i+1} * (1 - business model P_i) * (1 - (uncertainty i / 20))
```

In this way, when *uncertainty* $_i$ is low (0) and *business model* P_i is 0 (MTS environment), all the contribution to *supply* P_i IN comes from *inventory* P_i (as established by a level strategy), and is equal to the input from *supply* P_{i+1} .

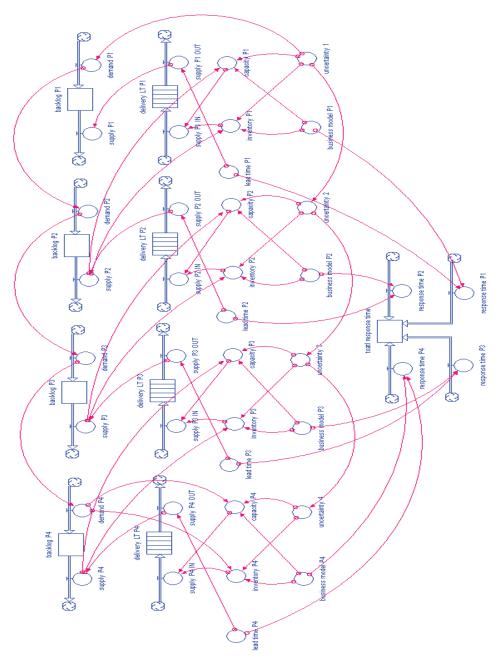


Figure 2. SD simulation model of the serial supply chain with hybrid business models

• Capacity Pi is equal to:

supply
$$P_{i+1}$$
 * (business model P_i) * (uncertainty $i / 20$)

In this way, when *uncertainty* $_i$ is high (1) and *business model* P_i is 1 (MTO environment), all the contribution to *supply* P_i IN comes from *capacity* P_i (as established by a chase strategy), and is equal to the input from *supply* P_{i+1} .

• Response time P_i is equal to:

In this way, when *business model* P_i is 1 (MTO environment), the response time is equal to the lead time (as established in section 3.1).

4. Sensitivity analysis

Experiments consisted of testing several scenarios to collect statistical data on the supply chain TT. Initially, 414 different scenarios were tested (with planning period T = 30) and 30 replications per scenario were used to build confidence intervals of 95% level. The rest of this section analyzes the results presented on Tables 6 through 13. The scenarios tested were:

- The effect of varying the level of demand uncertainty and lead time variation (Table 4).
- The effect of varying *X* and the number of partners using the *X* conditions (Table 5).

Demand variation	P1	P2	Р3	P4					
Scenario 1: high variation	100 + Normal (0, 20)								
Scenario 2: medium variation		100 + Nor	mal (0, 10)						
Scenario 3: low variation	100 + Normal (0, 0)								
Lead time variation	P1	P2	Р3	P4					
Scenario 1: low variation	Normal (2, 0)	Normal (1, 0)	Normal (5, 0)	Normal (3, 0)					
Scenario 2: medium variation	Normal (2, 0.25)	Normal (1, 0.25)	Normal (5, 0.25)	Normal (3,0.25)					
Scenario 3: high variation	Normal (2, 0.5)	Normal (1, 0.5)	Normal (5, 0.5)	Normal (3, 0)					

Table 4. Mean values of the supply chain operational conditions

Combinations		Compo	ssitions	
Combinations	X = 1	X = 0.6	X = 0.3	X = 0.0
1	P1P2P3P4	N/A	N/A	N/A
2	P1P2P3	P4	P4	P4
3	P1P2P4	Р3	Р3	Р3
4	P1P3P4	P2	P2	P2
5	P2P3P4	P1	P1	P1
6	P1P2	P3P4	P3P4	P3P4
7	P1P3	P2P4	P2P4	P2P4
8	P1P4	P2P3	P2P3	P2P3
9	P2P3	P1P4	P1P4	P1P4
10	P2P4	P1P3	P1P3	P1P3
11	P3P4	P1P2	P1P2	P1P2
12	P1	P2P3P4	P2P3P4	P2P3P4
13	P2	P1P3P4	P1P3P4	P1P3P4
14	P3	P1P2P4	P1P2P4	P1P2P4
15	P4	P1P2P3	P1P2P3	P1P2P3
16	N/A	P1P2P3P4	P1P2P3P4	P1P2P3P4

Table 5. Supply chain combinations and compositions

4.1 Simulation results: lead time variation analysis

For scenarios 1-3 and combinations 1-16, as *X* decreases (left to right), the total response time values decrease (see Table 6). This is because each partner's hybrid business model tends to be a pure MTS, where all the activities are driven by forecast information. For scenarios 1-3, highest total response time values are found:

- For combinations 2-5, when P2 decreases its *X* (combination 4).
- For combinations 6-11, when P1 and P2 decrease their *X* (combination 11).
- For combinations 12-15, when P1, P2, and P4 decrease their *X* (combination 14).

This can be explained as follows: P2 and P1 have the first and second shortest lead time values (Table 5), so reducing them have a low impact on the total response time value.

- For scenarios 1-3, lowest total response time values are found: For combinations 2-5, when P3 decreases its *X* (combination 3).
- For combinations 6-11, when P3 and P4 decrease their *X* (combination 6).
- For combinations 12-15, when P1, P3, and P4 decrease their *X* (combination 13).

This can be explained as follows: P3 and P4 have the first and second largest lead time values (Table 5), so reducing them have a big impact on the total response time value.

Scenar		low lo		me	Scena:	rio 2: ime v			ad	Scenar		nigh l iation		ime
Combi	Χ =	Χ =	Χ =	Χ =	Combi	Χ =	Χ =	Χ =	Χ =	Combi	Χ =	Χ =	Χ =	Χ =
nation	1	0.6	0.3	0.0	nation	1	0.6	0.3	0.0	nation	1	0.6	0.3	0.0
1	11	N/ A	N/ A	N/ A	1	11.0 5	N/ A	N/ A	N/ A	1	11.0 9	N/ A	N/ A	N/ A
4	P1P 3P4	10.6	10.3	10	4	P1P 3P4	10.7	10.3	10.1	4	P1P 3P4	10.6 8	10.1 4	9.97
5	P2P 3P4	10.2	9.6	9	5	P2P 3P4	10.2 7	9.68	8.89	5	P2P 3P4	10.3 4	9.77	9.06
2	P1P 2P3	9.8	8.9	8	2	P1P 2P3	9.72	8.79	7.97	2	P1P 2P3	9.68	8.90	7.91
3	P1P 2P4	9	7.5	6	3	P1P 2P4	8.22	7.36	5.94	3	P1P 2P4	8.91	7.44	5.58
11	P3P 4	9.8	8.9	8	11	P3P 4	9.76	9.06	7.94	11	P3P 4	9.71	8.93	7.78
7	P1P 3	9.4	8.2	7	7	P1P 3	9.42	8.36	6.99	7	P1P 3	9.33	8.41	6.83
9	P2P 3	9	7.5	6	9	P2P 3	8.85	7.52	5.99	9	P2P 3	9.01	7.54	5.92
8	P1P 4	8.6	6.8	5	8	P1P 4	8.50	6.81	5.05	8	P1P 4	8.21	6.82	5.00
10	P2P 4	8.2	6.1	4	10	P2P 4	8.19	6.16	3.98	10	P2P 4	8.10	6.25	3.96
6	P1P 2	7.8	5.4	3	6	P1P 2	7.76	5.31	3.06	6	P1P 2	7.78	5.44	2.88
14	Р3	8.6	6.8	5	14	P3	8.49	6.78	5.17	14	P3	8.76	6.76	4.90
15	P4	7.8	5.4	3	15	P4	7.86	5.39	2.98	15	P4	7.74	5.47	2.86
12	P1	7.4	4.7	2	12	P1	7.33	4.96	1.96	12	P1	7.26	4.73	1.95
13	P2	7	4	1	13	P2	7.03	4.04	1.05	13	P2	7.17	3.96	1.14
16	N/ A	6.6	3.3	0	16	N/ A	6.75	3.39	0	16	N/ A	6.51	3.35	0

Table 6. Total response time

When compared the total response time values of scenarios 1, 2, and 3, we found that (see Table 7):

As uncertainty increases (scenarios 1 vs. scenario 2 vs. scenario 3) more MTO-oriented
hybrid business models should be preferred by the supply chain partners, as they allow
the market responsive strategy required by the unpredictability of the firms'
environment. We can see how as the uncertainty increases and the number of partners
using a pure MTO business model decreases, the % of time shorter response time values
are found also decreases.

	Lead time variation variation								
Combination	Medium (Scenario 2)	High (Scenario 3)							
1	0	0							
2-5	58.33	66.66							
6-11	55.55	61.11							
12-15	50	58.33							
16	0	50							

Table 7. Percentage of time lower total response time values are found, when compared to scenario 1 (low lead time variation)

				FREQUENCY OF:											
			(COME	BINAT	TIONS	5	SCI	NAR	IOS		X			
Respon se time value	Frecuen cy	%	1	2-5	6-11	12- 15	16	\mathbf{L}_{LT}	M_{LT}	\mathbf{H}_{LT}	1	0.6	0.3	0.0	
11+	3	2.15	1					1	1	1	3				
10-11	11	7.91		2				4	4	3		6	3	2	
9-10	20	14.38		4	3			6	5	6		13	4	3	
8-9	23	16.54		3	5	1		5	8	7		10	9	4	
7-8	22	15.82		2	4	3		3	6	8		12	6	4	
6-7	17	12.23		1	4	1	1	6	5	5		3	9	4	
5-6	15	10.79		1	3	2		4	6	5			6	9	
4-5	7	5.03			1	3		3	2	2			5	2	
3-4	9	6.47			2	2	1	3	3	3			4	5	
2-3	4	2.87			1	3		1	1	2				4	
1-2	5	3.59				2		1	2	2				5	
0-1	3	2.15					1	1	1	3				3	
Fre	Frecuency %			22.80	40.35	29.82	5.26	29.45	34.10	36.43	2.17	31.88	33.33	32.60	

Table 8. Total response time, ordered from higher to lower values

When ordered the total response time values, from higher to lower values (Table 8), we notice that:

• The response time values in the brackets of 8-9 weeks and 7-8 weeks are the first and second place in frequency (16.54% and 15.82%).

- Combinations 6-11 are the most frequent (40.35%) and heavily influence the response time values in the 8-9 and 7-8 brackets.
- Scenario 3 (high lead time variation) is the most frequent (36.43%), and heavily influences the response time values in the 8-9 and 7-8 brackets.
- Integration ratio X = 0.3 is the most frequent (33.33%) and heavily influences the response time values in the 8-9 and 7-8 brackets.

From these results, it can be concluded that the same results (in terms of total response time values) can be achieved by allowing the supply chain partners to manage their operations on their own way without imposing a specific business model. For example, by having at most two supply chain partners using a pure MTO business model (i.e. combinations 6-11) and allowing the rest of the partners to operate under certain conditions (i.e. composition X = 0.3), the uncertainty present in the system (high lead time variation, scenario 3) can be handled in a way that the total response time value can be reduced up to 36.36% (from 11+ weeks to 7 weeks).

4.2 Simulation results: demand variation analysis

For scenarios 1-2, combinations 1-16, and low to high lead time variation, as *X* decreases (left to right), the total backlog values increase (Tables 9, 10, and 11). This is because each partner's hybrid business model tends to be a pure MTS, where a level strategy (inventory-oriented) is followed (not the most appropriate when demand uncertainty is present).

In the case of scenario 3, combinations 1-15, and low to high lead time variation, as X decreases (left to right), the total backlog value remains the same (3000). This is because as long as there is one supply chain partner (using a pure MTO business model) in a low demand uncertainty environment, its contribution to the backlog downstream the supply chain will be zero (see the expression for *Capacity P_i*, in section 3.2). The value of 3000 is then the result of 100 units per period j during a planning period T = 30.

In the case of scenario 3, combination 16, and low to high lead time variation, as *X* decreases (left to right), the total backlog value decrease. This is because in a low demand uncertainty environment, a level strategy (inventory-oriented) performs better than a chase strategy (capacity-oriented). For scenarios 1-2, and low to high lead time variation, highest total backlog values are found:

- For combinations 2-5, when P3 decreases its X (combination 3).
- For combinations 6-11, when P3 and P4 decrease their *X* (combination 6).
- For combinations 12-15, when P1, P3, and P4 decrease their *X* (combination 13).

This can be explained as follows: as stated before, in environments where demand uncertainty is present, as each partner's hybrid business model tends to be a pure MTS (X decreasing), the total backlog value increases because the level strategy (inventory-oriented) followed is not the most appropriate. If we take into account that P3 and P4 have the first and second largest lead time values (Table 5), this increasing effect (on the total backlog value) lasts longer. The opposite is observed for scenarios 1-2, and low to high lead time variation, where the lowest total backlog values are found:

- For combinations 2-5, when P2 decreases its *X* (combination 4).
- For combinations 6-11, when P1 and P2 decrease their *X* (combination 11).
- For combinations 12-15, when P1, P2, and P4 decrease their X (combination 14).

Scena		high iatior		nd	Scenari		nediu riatior		nand	Scena		low o		nd
Combi	X =	X =	X =	X =	Combi	Χ=	X =	X =	X =	Combin	X =	X =	X =	X =
nation	1 108	0.6	0.3	0.0	nation	1 292	0.6	0.3	0.0	ation	1	0.6	0.3	0.0
1	0.8	N/A	N/A	N/A	1	5.8	N/A	N/A	N/A	1	300	N/ A	N/ A	N/ A
3	P1P 2P4	1841 .23	2561 .95	3052 .77	3	P1P 2P4	2940 .74	2974	2979 .82	3	P1P 2P4	3000	3000	3000
2	P1P 2P3	1782 .13	2440 .25	3031 .86	2	P1P 2P3	2930 .15	2963 .02	2965 .43	2	P1P 2P3	3000	3000	3000
5	P2P 3P4	1779 .91	2374 .54	3022	5	P2P 3P4	2864	2877 .72	2948 .52	5	P2P 3P4	3000	3000	3000
4	P1P 3P4	1752 .52	2348 .79	2907 .12	4	P1P 3P4	2822 .42	2851 .88	2879 .43	4	P1P 3P4	3000	3000	3000
6	P1P 2	2390 .14	2973 .91	3124 .48	6	P1P 2	2934 .41	2992	3129 .19	6	P1P 2	3000	3000	3000
10	P2P 4	2367 .28	2927 .9	3074 .45	10	P2P 4	2901 .65	2949 .65	3093	10	P2P 4	3000	3000	3000
8	P1P 4	2361 .47	2885 .11	3008 .49	8	P1P 4	2865 .19	2923 .08	2993 .01	8	P1P 4	3000	3000	3000
9	P2P 3	2358 .58	2875 .96	2997 .03	9	P2P 3	2861 .16	2880 .68	2960 .43	9	P2P 3	3000	3000	3000
7	P1P 3	2325 .07	2858 .14	2949 .11	7	P1P 3	2765 .64	2851 .98	2900 .25	7	P1P 3	3000	3000	3000
11	P3P 4	2205 .9	2838 .58	2928 .76	11	P3P 4	2690 .14	2773 .79	2888 .25	11	P3P 4	3000	3000	3000
13	P2	2724 .79	2970 .61	3170 .36	13	P2	2899 .68	3015 .26	3036 .74	13	P2	3000	3000	3000
12	P1	2696 .9	2913 .99	3097 .95	12	P1	2872 .73	2881 .96	2898 .16	12	P1	3000	3000	3000
15	P4	2635 .31	2905 .54	3066 .75	15	P4	2867 .91	2874 .32	2887 .1	15	P4	3000	3000	3000
14	Р3	2576 .37	2873 .72	3030	14	Р3	2847 .76	2866	2882 .96	14	Р3	3000	3000	3000
16	N/ A	2737 .35	2989 .16	3151 .41	16	N/ A	2838 .06	2866 .27	2870 .32	16	N/ A	2951 .4	2543 .8	1100

Higher values Lower values

Table 9. Total backlog, low lead time variation

Scena	Scenario 1: high demand variation								nand	Scena				nd
							iatior					iation		
Combi	X =	X =	X =	X =	Combi	X =	X =	X =	X =	Combi	X =	X =	X =	X =
nation	1	0.6	0.3	0.0	nation	1	0.6	0.3	0.0	nation	1	0.6	0.3	0.0
1	100	N/	N/	N/A	1	294	N/	N/	N/A	1	300	N/	N/	N/
	6.5	Α	Α	-7		8.5	A	A	'/		0	A	Α	Α
2	P1P	1918	2368	3066	3	P1P	2956	2986	3120	3	P1P	2000	2000	2000
3	2P4	.53	.22	.3	3	2P4	.49	.23	.53	3	2P4	3000	3000	3000
	P1P	1908	2366	3005		P1P	2917	2977	2993	•	P1P	2000	2000	2000
2	2P3	.07	.52	.25	2	2P3	.79	.29	.22	2	2P3	3000	3000	3000
_	P2P	1766	2335	2998	_	P2P	2889	2904	2970	_	P2P			
5	3P4	.97	.81	.61	5	3P4	.98	.11	.48	5	3P4	3000	3000	3000
	P1P	1752	2292	2745		P1P	2779	2893	2937		P1P			
4	3P4	.37	.75	.44	4	3P4	.37	.02	.61	4	3P4	3000	3000	3000
			., 0	,,,,		01 1	.0.		.01		01 1			
	D1 D	2422	2000	2074		D4 D	2002	2071	2002		D4 D			
6	P1P	2432	2933	3064	6	P1P	2883	2961	3082	6	P1P	3000	3000	3000
-	2	.95	.35	.35		2	.91	.17	.81		2			
10	P2P	2356	2894	3028	10	P2P	2844	2901	3039	10	P2P	3000	3000	3000
_	4	.86	.33	.69		4	.13	.58	.58		4			
8	P1P	2274	2875	2947	8	P1P	2814	2898	2924	8	P1P	3000	3000	3000
	4	.22	.29	.94		4	.26	.11	.77	Ü	4	3000	0000	0000
9	P2P	2212	2850	2930	9	P2P	2814	2893	2921	9	P2P	3000	3000	3000
	3	.64	.64	.69	,	3	.01	.23	.52		3	3000	3000	3000
7	P1P	2202	2812	2911	7	P1P	2803	2805	2900	7	P1P	3000	3000	3000
/	3	.15	.8	.94	/	3	.85	.04	.05	/	3	3000	3000	3000
11	P3P	2097	2778	2906	11	P3P	2752	2768	2863	11	P3P	2000	3000	2000
11	4	.17	.84	.48	11	4	.19	.07	.77	11	4	3000	3000	3000
		2696	2932	3223			2899	2982	3028					
13	P2	.47	.79	.23	13	P2	.88	.19	.82	13	P2	3000	3000	3000
		2635	2917	3203			2859	2926	2942					
12	P1	.7	.14	.85	12	P1	.02	.09	.66	12	P1	3000	3000	3000
-				3064										
15	P4	2621	2891		15	P4	2850	2883	2893	15	P4	3000	3000	3000
		.63	.91	.13			.35	.97	.97					
14	Р3	2579	2879	2982	14	Р3	2844	2871	2888	14	Р3	3000	3000	3000
		.89	.55	.3			.3	.43	.72					
16	N/	2728	3092	3121	16	N/	2873	2910	2959	16	N/	2951	2543	1100
10	À	.46	.83	.16	10	A	.69	.99	.37	10	A	.4	.8	1100

Higher values Lower values

Table 10. Total backlog, medium lead time variation

Scena		high iation		nd	Scenario		ediur iation		nand	Scena		low o		nd
Combi	X =	χ =	X =	X =	Combi	Va1.	X =	X =	Χ =	Combi	X =	X =	X =	Χ =
nation	1	0.6	0.3	0.0	nation	1	0.6	0.3	0.0	nation	1	0.6	0.3	0.0
Hation	1170	N/	N/	N/		2918	N/	N/	N/	Hation		N/	N/	N/
1	.3	A	A	A	1	.4	A	A	A	1	3000	A	A	A
	.5	11	71	11		.1	11	11	11			71	11	11
	P1P	1986	2540	3082		P1P	2927	2947	3101		P1P			
3	2P4	.17	.96	.34	3	2P4	.17	.6	.93	3	2P4	3000	3000	3000
_	P1P	1828	2457	2957	2	P1P	2841	2932	3018	2	P1P	2000	2000	2000
2	2P3	.18	.84	.05	2	2P3	.95	.1	.21	2	2P3	3000	3000	3000
5	P2P	1798	2453	2943	5	P2P	2840	2 919	2932	5	P2P	3000	3000	3000
	3P4	.92	.21	.69	3	3P4	.24	.5	.2	3	3P4	3000	3000	3000
4	P1P	1791	2387	2909	4	P1P	2819	2835	2861	4	P1P	3000	3000	3000
_	3P4	.96	.85	.54		3P4	.95	.5	.37		3P4	0000	0000	0000
6	P1P	2418		3085	6	P1P	2921	3089		6	P1P	3000	3000	3000
	2	.87	.09	.43		2	.01	.2	.44		2		0000	0000
10	P2P	2380	2897	3064	10	P2P	2887	2954	2984	10	P2P	3000	3000	3000
	4	.29	.14	.43		4	.96	.2	.96		4			
8	P1P	2371 .82	2885 .71	3036	8	P1P	2868 .81	2937 .3	2980 .81	8	P1P 4	3000	3000	3000
	4 P2P	2333		2986		4 P2P	2830	.s 2905	2942		P2P			
9	3	.06	.06	.75	9	3	.17	.9	.19	9	3	3000	3000	3000
	P1P	2303	2842	2962	_	P1P	2763		2906	_	P1P			
7	3	.92	.92	.46	7	3	.5	2875	.44	7	3	3000	3000	3000
11	P3P	2265	2799	2891	11	P3P	2749	2794	2874	11	P3P	2000	2000	2000
11	4	.1	.69	.18	11	4	.52	.9	.44	11	4	3000	3000	3000
13	P2	2693		3131	13	P2		3027	3209	13	P2	3000	3000	3000
13	12	.96	.65	.87	13	12	.11	.4	.06	13	12	3000	3000	3000
12	P1	2657	2919	3073	12	P1	2870	2970	2927	12	P1	3000	3000	3000
	<u> </u>	.68	.53	.6			.83	.9	.15					
15	P4	2544		2979	15	P4		2888	2922	15	P4	3000	3000	3000
		.8 2415	.29 2871	.34 2946			.02	.5 2871	.7 2875					
14	Р3	.43	.72	.77	14	Р3	.29	.4	.52	14	Р3	3000	3000	3000
		.±.	.1 ∠	.//			7	.1	.52					
	NT /	2651	2041	2000		NT /	2900	2945	2946		NT /	2951	2543	
16	N/ A	2651 .8	2961 .52	3088 .74	16	N/ A	.06	2945 .7	.74	16	N/ A	.4	.8	1100
L	Λ	.0	.52	./4		Λ	.00	.7	./4		Λ	.4	.0	

Higher values Lower values

Table 11. Total backlog, high lead time variation

In this case, P2 and P1 have the first and second shortest lead time values (Table 5), so their increasing effect (on the total backlog value) don't last much. When compared the total backlog values of scenarios 1, 2, and 3, and low lead time variation, we found two things (see Table 12):

- Regarding demand variation; as uncertainty decreases (scenarios 1 vs. scenario 2 vs. scenario 3) more MTS-oriented hybrid business models should be preferred by the supply chain partners, as they allow the physically efficient strategy fitted for a forecast-driven environment. We can see how as the uncertainty decreases, and the number of partners using a pure MTS business model increases, the % of time lower total backlog values are found also increases.
- Regarding lead time variation; as uncertainty increases (Table 9 vs. Table 10 vs. Table 11) more MTO-oriented hybrid business models should be preferred by the supply chain partners, as they allow the market responsive strategy required by the unpredictability of the firms' environment. We can see how as the uncertainty increases and the number of partners using a pure MTO business decreases (i.e., combination 2-5 of Table 9 vs. combination 2-5 of Table 10 vs. combination 2-5 of Table 11), the % of time lower total backlog values found also decreases (or remain the same).

Lead time variation		Demand var	riation		
Leau time variation	Combination	Medium (Scenario 2)	Low (Scenario 3)		
	1	0	0		
	2-5	33.33	25		
Low (Table 9)	6-11	33.33	16.66		
	12-15	58.33	33.33		
	16	66.66	66.66		
	1	0	0		
	2-5	25	16.66		
Médium (Table 10)	6-11	33.33	16.66		
	12-15	50	25		
	16	66.66	66.66		
	1	0	0		
	2-5	16.66	8.33		
High (Table 11)	6-11	33.33	16.66		
	12-15	41.66	16.66		
	16	66.66	66.66		

Table 12. Percentage of time lower total backlog values are found, when compared to scenario 1 (high demand variation)

When ordered the total backlog values, from higher to lower values (Table 13), we notice that:

- The total backlog values in the brackets of 3000+ and 2800-3000 units are the first and second place in frequency (41.16% and 39.95%).
- Combinations 6-11 are the most frequent (37.28%) and heavily influence the total backlog values in the 3000+ and 2800-3000 brackets..

Backl og value	Frecue ncy	0/0	FREQUENCY OF:														
			COMBINATIONS					SCENARIOS						х			
			1	2-5	6-11	12- 15	16	L_D	M_D	H_D	L_{LT}	M _{LT}	\mathbf{H}_{LT}	1	0.6	0.3	0.0
3000+	170	41.1 6	3	47	60	58	2	129	14	27	1	1	1	3	43	45	79
2800- 3000	165	39.9 5	3	37	66	48	11	3	114	48	1	1	1	3	40	76	46
2600- 2800	23	5.56		2	11	8	2		9	14	1	1	1		17	5	1
2400- 2600	14	3.38		6	1	4	3	3		11	1	1	1		6	8	
2200- 2400	23	5.56		7	15					22	1	1	1		15	7	
2000- 2200	0	0													1		
1800- 2000	4	0.96		4						4	1	1	1		4		
1600- 1800	7	1.69		7						7	1	1	1		7		
1400- 1600	0	0															
1200- 1400	0	0															
1000- 1200	7	1.69	2	2			3	3		4	1	1	1	3	1		3
Frecuency %			1.9 3	27.1 1	37.2 8	28.5 7	5.0 8	33.7 4	33.4 9	32.7 6	33.3 3	33.3 3	33.3 3	2. 1 7	32. 44	34. 14	31. 23

Table 13. Total backlog, ordered from higher to lower values

- Scenarios 1, 2, and 3 (low, medium, and high demand variation) influence equally (33.74%, 33.49%, and 32.76%) the total backlog values in the 3000+ and 2800-3000 brackets.
- Scenarios 1, 2, and 3 (low, medium, and high demand variation) influence equally (33.33%, 33.33%, and 33.33%) the total backlog values in the 3000+ and 2800-3000 brackets..
- Integration ratio X = 0.3 is the most frequent (34.14%) and heavily influences the total backlog values in the 3000+ and 2800-3000 brackets

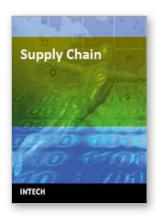
When these results are compared to those of Table 8, we notice that combinations 6-11 and integration ratio X=0.3 heavily influence both the most frequent response time values (the 8-9 and 7-8 brackets, Table 8) and the most frequent total backlog values (the 3000+ and 2800-3000 brackets, Table 13). This shows that there is a trade off between total response time and total backlog: the MTO-based portion of the supply chain allows the handling of the uncertainty present in such way that the total response time value can be reduced. However, the MTS-based portion of the supply chain causes the total backlog value increases because the level strategy (inventory-oriented) followed is not the most appropriate when uncertainty is present in the system.

5. Conclusions

The international supply chain (SC) is the way to compete in today's market. The business model used by the SC members must be dynamic in order to respond to changes in the customers' demands, at an appropriate cost. For this reason is that in practice, SC members have opted to use hybrid business models. The objective of this chapter was to quantitatively evaluate the influence these hybrid business models have on the performance of the supply chain. For this purpose, a systems dynamics (SD) simulation model was built and used to test a series of different scenarios (i.e. the effect of varying the level of demand uncertainty and lead time variation, and the effect of varying the business model integration ratio). Statistical data was collected regarding two performance criteria (i.e. total response time and total backlog). Some of the findings include:

- For high lead time uncertainty environments, MTO-oriented hybrid business models should be preferred by the supply chain partners (in order to obtain shorter response time values).
- For low demand uncertainty environments, MTS-oriented hybrid business models should be preferred by the supply chain partners (in order to obtain lower total backlog values).
- Allowing the supply chain partners to manage their operations on their own way
 without imposing a specific business model allows the achievement of the same total
 response time results.
- There is a trade off between total response time and total backlog. The MTO-based portion of the supply chain allows shorter response time values, while the MTS-based portion of the supply chain causes the total backlog values to increase.
- A proper combination of MTO-based and MTS-based SC partners allows the achievement of balanced results in both SC performance criteria.

As a conclusion we can say that the operation of the SC (as a whole) is greatly impacted by the individual configuration decisions (i.e. degree of hybrid business model used) of the SC partners, and that depending on the chosen SC performance criteria (i.e. total response time or total backlog), different arrangements should be preferred. This research effort acknowledges that several elements need to be incorporated into the SD simulation model in order to be considered a realistic one. For this reason, future research will address the balance between global (whole SC) and individual benefits (SC partners); the SC performance at the chain level and the operations level; the impact of varying the level of product standardization and process flexibility of each SC partner; the impact of demand distortion from SC partner to SC partner; and the impact of different lead time ratios among SC partners.


6. References

- Adamides, E.D., Voutsina, M., 2006. The double-helix model of manufacturing and marketing strategies, International Journal of Production Economics, 104, 3–18.
- Banks, J., 2000. Discrete-event system simulation, Upper Saddle River, NJ: Prentice Hall.
- Bilas, J. R., 1996. Scheduling in a 'To Order' manufacturing environment. APICS-TPA, September.
- Browne, J., Zhang, J., 1999. Extended and virtual enterprises similarities and differences, International Journal of Agile Management Systems, 1 (1).
- Bridleman, D., Herrmann, J., 1997. A scheduling case study, supply chain management in a Make-to-order world. APICS-TPA, March.
- Caputo, M., 1996. Uncertainty, flexibility and buffers in the management of the firm operating system, Production Planning and Control, 7, 518-528.
- Buxey, G., 2003. Strategy not tactics drives aggregate planning, International Journal of Production Economics, 85, 331–346.
- Chung, W.W.C., Yam, A.Y.K., Chan, M.F.S., 2004. Networked enterprise: A new business model for global sourcing, International Journal of Production Economics, 87, 267–280
- Dellaert, N. P., Melo, M. T., 1996. Production strategies for a stochastic lot-sizing problem with constant capacity, European Journal of Operational Research, 92, 281-301.
- Duclos, L., Vokurka, R., Lummus, R., 2000. A conceptual model of supply chain flexibility, Industrial Management & Data Systems, 103 (6), 446-456.
- Eskandari, H., Rabelo, L., Shaalan, T., Helal, M., 2007. Value chain analysis using hybrid simulation and AHP, International Journal of Production Economics, 105, 536–547.
- Federgruen, A., Katalan, Z., 1999. The impact of adding a make-to-order item to a make-to stock production system, Management Science, 45, 980-994.
- Fogarty, D. W., Blackstone, J. H., Hoffmann, T. R., 1991. Production and inventory management, South-western Publishing CO.
- Fumero, F., Vercellis, C., 1994. Capacity analysis in repetitive assemble-to-order manufacturing systems, European Journal of Operational Research, 78, 204–215.

- Griffiths, J., James, R., Kempson, J., 2000. Focusing customer demand through manufacturing supply chains by the use of customer focused cells: an appraisal, International Journal of Production Economics, 65(1), 111-120.
- Guerrero, H. H., 1991. Demand management strategies for assemble-to-order production environments, International Journal of Production Research, 29, 39-51.
- Gupta, D., Benjaafar, S., 2004. Make-to-order, make-to-stock, or delay product differentiation? A common framework for modeling and analysis, IIE Transactions, 36, 529–546.
- Handfield, R. B., Pannesi, R. T., 1995. Antecedents of leadtime competitiveness in Make-to-order manufacturing firms, International Journal of Production Research, 33(2), 511–537.
- Hax, A., Candea, D., 1984. Production and Inventory Management. Prentice Hall, Inc.
- Hendry, L. C., Kingsman, B. G., 1989. Production planning systems and their applicability to Make-to-order companies. European Journal of Operational Research, 40, 1–15.
- Hendry, L. C., Kingsman, B. G., 1999. Competitive advantage, customization and a new taxonomy for non make-to-stock companies, International Journal of Operations and Production Management, 19(4), 349–371.
- Hwarng, H. B., Chong, C. S. P., Xie, N., Burgess, T.F., 2005. Modeling a complex supply chain: understanding the effect of simplified assumptions, International Journal of Production Research, 43(13), 2829–2872.
- Ismail, H.S., Sharifi, H., 2006. A balanced approach to building agile supply chains, International Journal of Physical Distribution & Logistics Management, 36(6), 431-444.
- iThink, 1996. Analyst Technical Documentation, High Performance Systems, Inc.
- Kogan, K., Khmelnitsky, E., Maimon, O., 1998. Balancing facilities in aggregate production planning: Make-to-order and make-to-stock environments, International Journal of Production Research, 36, 2585–2596.
- Larsen, E., Lomi, A., 2002. Representing change: a system model of organizational inertia and capabilities as dynamic accumulation processes, Simulation Modeling: Practice and Theory, 10, 271–296.
- Li, D., O'Brien, C., 1999. Integrated decision modeling of supply chain efficiency, International Journal of Production Economics, 59, 147-157.
- Li, D., O'Brien, C., 2001. A quantitative analysis of relationships between product types and supply chain strategies, International Journal of Production Economics, 73, 29-39.
- Miltenburg, J., Saparling, D., 1996. Managing and reducing total cycle time: models and analysis, International Journal of Production Economics, 46/47.
- Min, H., Zhou, G., 2002. Supply chain modeling: past, present, and future, Computers and industrial engineering, 43, 231-249.
- New, C.C., Szwejczewski, M., 1995. Performance measurement and the focused factory: Empirical evidence, International Journal of Operations & Production Management, 15 (4), 63–79.

- Ngai, E.W.T., Gunasekaran, A., 2005. Build-to-order supply chain management: a literature review and framework for development, Journal of Operations Management, 23, 423–451.
- Nguyen, V., 1998. A multiclass hybrid production center in heavy traffic. Operations Research, 46(3), 13–25.
- Nyoman, I., 2004. Assessing supply chain flexibility: a conceptual framework and case study, International Journal of Integrated Supply Management, 1(1), 79–97.
- Oden, H. W., Langenwalter, G. A., Lucier, R. A., 1993. Handbook of material and capacity requirements planning, McGraw-Hill, Inc.
- Olhager, J., 2003. Strategic positioning of the order penetration point, International Journal of Production Economics, 85(3), 2335-2351.
- Rajagopalan, S., 2002. Make to order or make to stock: Model and application, Management Science, 48(2), 241–256.
- Safizadeh, M.H., Ritzman, L.P., 1997. Linking performance drivers in production planning and inventory control to process choice, Journal of Operations Management, 15, 389-403
- Samadhi, T.M.A., Hoang, K., 1995. Shared computer-integrated manufacturing for various types of production environment, International Journal of Operations & Production Management, 15(5), 95–108.
- Sen, W., Pokharel, S., Lei, W.Y., 2004. Supply chain positioning strategy integration, evaluation, simulation, and optimization, Computers & Industrial Engineering, 46, 781–792.
- Sipper, D., Bulfin, R.L., 1997. Production: Planning, Control, and Integration. McGraw-Hill, New York.
- Soman, C.A., Van Donk, D.P., Gaalman, G., 2004. Combined make-to-order and make-to-stock in a food production system, International Journal of Production Economics 90(2), 223–235.
- Terzi, S., Cavalieri, S., 2004. Simulation in the supply chain context: a survey, Computers in Industry, 53, 3–16.
- Tsubone, H., Ishikawa, Y., Yamamoto, H., 2002. Production planning system for a combination of make-to-stock and make-to-order products, International Journal of Production Research, 40 (18), 4835-4851.
- Vollman, T.E., Berry, W.L., Whybark, D.C., 1997. Manufacturing Planning and Control System. Irwin/McGraw-Hill, Homewood, IL/New York.
- Vonderembse, M.A., Uppal, M., Huang, S.H., Dismukes, J.P., 2006. Designing supply chains: Towards theory development, International Journal of Production Economics, 100, 223–238.
- Wadhwa, S., Rao, K., 2002. Towards a Proactive Flexibility Management View, Global Journal of Flexible Systems Management, 3(2/3), 1-10.
- Williams, T.M., 1984. Special products and uncertainty in production/inventory systems, European Journal of Operational Research, 15, 46–54.

Yucesan, E., de Groote, X., 2000. Lead times, order release mechanisms, and customer service, European Journal of Operational Research, 120, 118-130.

Supply Chain

Edited by Vedran Kordic

ISBN 978-3-902613-22-6
Hard cover, 568 pages
Publisher I-Tech Education and Publishing
Published online 01, February, 2008
Published in print edition February, 2008

Traditionally supply chain management has meant factories, assembly lines, warehouses, transportation vehicles, and time sheets. Modern supply chain management is a highly complex, multidimensional problem set with virtually endless number of variables for optimization. An Internet enabled supply chain may have just-in-time delivery, precise inventory visibility, and up-to-the-minute distribution-tracking capabilities. Technology advances have enabled supply chains to become strategic weapons that can help avoid disasters, lower costs, and make money. From internal enterprise processes to external business transactions with suppliers, transporters, channels and end-users marks the wide range of challenges researchers have to handle. The aim of this book is at revealing and illustrating this diversity in terms of scientific and theoretical fundamentals, prevailing concepts as well as current practical applications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

C. Martinez-Olvera (2008). Impact of Hybrid Business Models in the Supply Chain Performance, Supply Chain, Vedran Kordic (Ed.), ISBN: 978-3-902613-22-6, InTech, Available from:

http://www.intechopen.com/books/supply_chain/impact_of_hybrid_business_models_in_the_supply_chain_per formance

INTECH

open science | open minds

InTech Europe

University Campus STeP Ri Slavka Krautzeka 83/A 51000 Rijeka, Croatia Phone: +385 (51) 770 447

Fax: +385 (51) 686 166 www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai No.65, Yan An Road (West), Shanghai, 200040, China 中国上海市延安西路65号上海国际贵都大饭店办公楼405单元

Phone: +86-21-62489820 Fax: +86-21-62489821 © 2008 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the <u>Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License</u>, which permits use, distribution and reproduction for non-commercial purposes, provided the original is properly cited and derivative works building on this content are distributed under the same license.