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1. Introduction  

One of the most important problems in robotics is motion planning problem, which its basic 
controversy is to plan a collision-free path between initial and target configurations for a 
robot. In the framework of motion planning for nonholonomic systems, the wheeled robots 
have attracted a significant amount of interest. The path planner of a wheeled autonomous 
robot has to meet nonholonomic constraints and then the movement direction must always 
be tangent to its trajectory (Paromtichk et. al., 1998; Latombe, 1991, Murray & Sastry, 1993; 
Lamiraux & Laumond, 2001; Scheuer & Fraichard, 1996). If no obstacles exist on path of the 
robot, then the robot task is finding the shortest path connecting two given initial and final 
configurations. The shortest paths for a car like vehicle consist of a finite sequence of two 
elementary components: arcs of circle (with minimum turning radii) and straight line 
segments. In any case, the problem is that the curvature is discontinuous between two 
elementary components, so that these shortest paths cannot be followed precisely without 
stopping at each discontinuity point to reorient the front wheels. To avoid these stops, 
several authors have proposed continuous-curvature path planners using differential 
geometric methods. These planners generate clothoids, cubic spirals, ǃ-splines, quintic 
polynomials, etc., which are then followed by using a path-tracking technique based on, for 
example, pure-pursuit or predictive control methods (Lamiraux & Laumond, 2001; Scheuer 
& Fraichard, 1996). Stabilization issues of path-tracking methods for car-like vehicles using 
the Lyapunov method have been reported in (Walsh et. al., 1994; Tayebi & Rachid, 1996). 
One of the key technologies of future automobiles is the parking assist or automatic parking 
control. Control problems of a car-like vehicle are not easy because of the nonholonomic 
velocity constraints. The truck backer-upper control is a typical nonlinear control problem 
that cannot be solved by the conventional control techniques. 
The goal of controller is to back up a truck to a loading dock from any initial position as 
quickly and precisely as possible. Backing a truck to the loading dock or parking spot is a 
difficult task even for a skilled truck driver. The research in parking problem is derived 
from the study of general motion planning for autonomous robots. In the past few decades, 
many algorithms have been developed for robot parking planning (Jiang & Seneviratne, 
1999; Gomez-Bravo et. al., 2001; Cuesta et. al., 2004; Reeds & Shepp, 1990). The attempts to 
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solve the truck backer-upper problem, rooted in computational intelligence, can be divided 
into two groups. The first group of methods seeks the solution through self tuning using 
neural networks, genetic algorithms or a combination of both. The second group of 
solutions, based on fuzzy logic, regards the controller as an emulator of human operator. 
The problem has become an acknowledged benchmark in non-linear control and as an 
example of a self-learning system in neural networks was proposed by Nguyen and Widrow 
in 1990 (Nguyen & Widrow, 1989). Careful experiments of their approach showed that the 
computational effort is very high (Kong & Kosko, 1990). Thousands (about 20000) of back-
up cycles are needed before the network learns. Moreover the backpropagation algorithm 
does not converge for some sets of training samples. Numerous other techniques have been 
used, including genetic programming (Koza, 1992) Neuro-genetic controller (Schoenauer, & 
Ronald, 1994) and simplified neural network solution through problem decomposition 
(Jenkins & Yuhas, 1993). Very interesting contribution is (Tanaka et. al, 1998), where up to 
ten trailers can be controlled representing those as Takagi-Sugeno models and applying 
linear matrix inequalities method. A simplified version of the control problem has been 
extensively investigated in the field of fuzzy control (Ramamoorthy & Huang, 1991; Wang & 
Mendel, 1992; Ismail & Abu-Khousa, 1996; Kim, 1998; Dumitrache & Buiu, 1999). Also 
parking problem has been investigated by many researchers in the field of computational 
intelligence (for example; chang in (Chang et. al, 1995), Schoenauer in (Schoenauer & 
Ronald, 1994), Wang in (Wang & Mendel, 1992) and Li in (Li & Li, 2007)). 
Fuzzy controllers, formulated on the basis of human understanding of the process or 
identified from measured control actions, can be regarded as emulators of human operators. 
Fuzzy logic control has more advantages because it can compensate the bad influence by 
nonlinearity and uncertainties based on advanced human expertise experience, also because 
it has strong robustness independent of a mathematical model. The other advantages of 
Fuzzy controllers are that their design is simple, fast, inexpensive, and easily maintained 
because the rules can be linguistically interpreted by the human experts. Riid & Rustern 
(Riid & Rustern, 2001) presented a fuzzy supervisory control system over the PID controller 
to reduce the complexity of the control problem and enhance the control performance. Riid 
& Rustern in (Riid & Rustern, 2002) demonstrate that problem decomposition leads to more 
effective knowledge acquisition and improved control performance in fuzzy control. The 
methodology allows solving complex control problems (truck backer-upper) without loss of 
functionality that is very difficult with all-in-one approaches and saves design expenses. Li 
& Chang in (Li & Chang, 2003) addressed the parking problem of a mobile robot by tracking 
feasible reference trajectories via a fuzzy sliding-mode control. Chen and Zhang in (Chen & 
Zhang, 1997) have reported a fuzzy controller to park a truck with suboptimal distance 
trajectories. They chose arcs of circle of minimum turning radii connected with parabolic 
curves as the optimal trajectories, but the desired parabolic curve to follow has to be given 
to the controller. More recently Li & Li in (Li & Li, 2007) have presented the fuzzy control 
system based on a hybrid clustering method and neural network. Sugeno & Murakami 
(Sugeno & Murakami, 1985) propose an experimental study on parking problem using 
model car, which is equipped with on-board microprocessor and two supersonic sensors for 
the measurements of the relative distance and direction. They derive fuzzy control rules by 
utilizing Sugeno-type fuzzy implications to model the parking experience of a skilled driver. 
Sugeno et al. (Sugeno et al, 1989) adopt the similar hardware arrangement as that in (Sugeno 
& Murakami, 1985) to execute the garage parking by employing fourteen fuzzy oral 
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instructions such as “go straight”, “slow down”, “enter garage” and “speed up”. Yasunobu 
& Murai (Yasunobu & Murai, 1994) exploit the state evaluation fuzzy control and the 
predictive fuzzy control to achieve the drive knowledge. Only the computer simulations are 
given to show the effectiveness of the proposed parking control. A skilled-based visual 
parking control using neural networks and fuzzy is discussed in (Daxwanger & Schmidt, 
1995), where two control architectures, the direct neural control and the fuzzy hybrid 
control, are used to generate the automatic parking commands. The environment 
information is measured by a video sensor. The control architectures are validated by 
experiments with an autonomous mobile robot. Tayebi & Rachid (Tayebi & Rachid, 1996) 
deal with the parking problem of wheeled robot by using time-varying state feedback 
control law via the Lyapunov direct method. The control law is robust to ensure a global 
boundedness of the system states under measurement perturbations. The development of a 
near-optimal fuzzy controller for manoeuvring a car in a parking lot is described in (Leu & 
Kim, 1998). A cell mapping based method is proposed to systematically group near-optimal 
trajectories for all possible initial states in the parking lot. 
The rules and membership functions of the fuzzy controller are generated using the 
statistical properties of the individual trajectory groups. An et al. (An et al., 1999) develop an 
online path-planning algorithm that guides an autonomous mobile robot to a goal with 
avoiding obstacles in an uncertain world. The established autonomous mobile robot cannot 
move omni-direction and run on two wheels equipped with a CCD camera. The path-
planning algorithm is constructed by three modes: straight mode, spin mode, and avoidance 
mode. The simulation program and experimental results are developed to check this 
algorithm by using the garage parking motion. Shirazi & Yih (Shirazi & Yih, 1989) propose 
an expert’s knowledge including symbolic form and nonsymbolic form, where the former 
can be obtained from expert directly and the latter can be obtained only through an 
evolutionary process. The evolutionary process consists of three stages: novice, competency, 
and expert. The developed intelligent control system performs parallel parking to show 
validity and ability. The fuzzy traveling control of an autonomous mobile robot with six 
supersonic sensors has been provided in (Ohkita et al, 1993), where the flush problem is 
considered. The well-known fuzzy theory (Laumond et al, 1994) is now in widespread use 
such as system identification, function approximation, image compression, prediction, 
classification, and control. The general characteristic of the fuzzy control is that the IF-THEN 
fuzzy rules are on the basis of the conventional control strategy and the expert knowledge. It 
is shown in (Shahmaleki & Mahzoon, 2008; Shahmaleki et al, 2008) that hierarchical control 
system significantly improves control performance and reduces the design load compared 
to all-in-one approaches investigated by other researchers. Here, we recommend three 
approaches to solve parking problem. Finally we select and extend the hierarchical fuzzy 
control approach to the full truck backer-upper problem. 
The path planners described in this research combine two fuzzy modules that provide 

desired angle value for front wheel so as to generate short paths with continuous 

curvatures. Approximated trajectories are composed of circular arcs of minimum turning 

radii and straight line segments. This chapter is structured as follows. Section 2 illustrates 

the parking problem addressed and its geometric and kinematical constraints. In Sections 3, 

Fuzzy control is described. In section 4 three control approaches described to solve parking 

problem. This section shows comparison between recommended approaches and the 

hierarchical structure of the fuzzy system is selected. Computer simulation results are given 
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to show the validity of the proposed fuzzy logic control algorithms. We have proposed a 

vision based approach in section 5 for estimating the robot position and direction. Some 

measures of the car-like robot is extracted from images that are captured using a ceiling 

mounted camera. These measurements together with the kinematic equations of the robot 

are used for estimating its position and direction using an extended Kalman filter. The 

control system has been made and tested on a mobile robot containing kinematics 

constraints. In Section 6, several experimental results of diagonal parking maneuvers are 

included to illustrate the efficiency and robustness of the designed controller. Finally, 

conclusions are given in Section 7. 

2. The truck backing up problem 

The problem addressed in this research is the diagonal parking of a truck in a constrained 
domain. The initial state of the truck position is represented by three state variables x, y and φ in 
Fig. 1. The truck kinematics model is based on the following system of equations (Li & Li, 2007): 

 

(1) 

where (x,y) are the coordinates of the vehicle rear axle midpoint, φ is the truck orientation 
with respect to the horizontal line, b is the length of the truck and the control variable is the 
steering angle θ, that is the angle of the front wheel with respect to the truck. The truck only 
moves backward with fixed speed. 
 

 

Fig. 1. Diagram of truck and loading dock 

3. Fuzzy logic 

A typical fuzzy control system consists of four components and the descriptions are stated 
as follows:  
1. Fuzzification Interface: The fuzzification interface performs a conversion from a crisp 

point into a fuzzy set. The shapes of the membership functions of the linguistic sets are 
determined according to the expert experience.  

2. Knowledge Base: The knowledge base commonly consists two sections: a database and 
a rule-base. The database contains the membership functions of the fuzzy sets used in 
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the fuzzy rules and the rule-base contains a number of fuzzy IF-THEN rules. The 
typical form of fuzzy rules can be expressed as IF precondition, THEN consequence. 
The canonical fuzzy IF-THEN rules are usually made from the following conditions:  
(a) Obtaining by the expert knowledge and/or operators experiences. (b) According to 
the control behavior of the users. (c) According to the characteristic of the plant. (d) 
Obtaining by self-learning.  

3. Inference Engine: The inference engine that performs the fuzzy reasoning upon the 
fuzzy control rules is the main component of the fuzzy controller. There are varieties of 
compositional methods in fuzzy inference, such as max-min compositional operation 
and max-product compositional operation etc.  

4. Defuzzification Interface: The defuzzification interface converts the fuzzy output of the 
rule-base into a non-fuzzy value. The center of area (COA) is the often used method in 

defuzzification. Suppose  is a discrete set as  then COA method can 

be described as:  

 

(2) 

where y* is the crisp value defuzzified from COA.  
In this section we illustrate a brief comparison between Classic control and Fuzzy control. 

Classic control is based on a detailed I/O function OUTPUT= F (INPUT) which maps each 

high-resolution quantization interval of the input domain into a high-resolution 

quantization interval of the output domain. Finding a mathematical expression for this 

detailed mapping relationship F may be difficult, if not impossible, in many applications 

(Fig 2(a)). But, Fuzzy control is based on an I/O function that maps each very low-resolution 

quantization interval of the input domain into a very low-low resolution quantization 

interval of the output domain. As there are only 7 or 9 fuzzy quantization intervals covering 

the input and output domains the mapping relationship can be very easily expressed using 

the “if-then” formalism. (In many applications, this leads to a simpler solution in less design 

time.) The overlapping of these fuzzy domains and their linear membership functions will 

eventually allow achieving a rather high-resolution I/O function between crisp input and 

output variables (Fig 2(b)).  
 

 
                                     (a)                                                                                  (b) 

Fig. 2. Comparison between Classic and Fuzzy controls 
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In Fig 3 structure of fuzzy control is shown. 
 

 

Fig. 3. Structure of Fuzzy control system 

4. Designing fuzzy control system 

The truck and the loading zone are shown in Fig. 4. The truck has two front steering wheels 
and two rear driven wheels that cannot move sideways. The coordinate pair (x,y) specifies 
the rear center position of the truck in the plane. The angle φ increases from -90 toward 270 
in a clockwise direction and the steering angle θ is taken as positive if the steering wheel is 
turned to the right and negative, otherwise. The loading zone is the plane x:[-25,25], y:[0,25]. 
The goal of this research is to design a Fuzzy Logic Controller (FLC) able to back up the 
truck into a docking situation from any initial position that has enough clearance from the 
docking station. The controller should produce the appropriate steering angle θ = [-40°, 40°] 
at every stage to make the truck back up to a configuration with x=0, y=0, φ=90 (that is the 
desired parking space) from any initial position (x, y and φ) and to stop there. Thus 
controller is a function of state variables: 

θ = f(x,y,φ), (3) 

The y coordinate is not used because the straight segments of approximated trajectories are 
always horizontal. Also typically it is assumed that enough clearance between the truck and 
the loading dock exists so that the truck y-position coordinate can be ignored, simplifying 
the controller function to: 

θ = f(x,φ), (4) 

Hence only x-position and truck orientation angle φ are inputs of the fuzzy controller and 
the steering angle θ is the output. 
As shown in Fig. 4, the suboptimal goal is that the backward driving involves short 
trajectories made up of arcs of circle of minimum turning radii and straight line segments, 
which meet the kinematic constraints in (1). 
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Fig. 4. Ideal trajectories 

Analyzing the shortest paths geometrically, a mathematical expression for the steering angle 
θ which produces curvature of these short paths can be found: 

 

(5) 

where the angle ǂ (depends on x)associated with the switching in the steering angle(θ) sign 
can be calculated as follows: 

 

(6) 

R being the minimum turning radius corresponding to the maximum curvature (Ǆ) which 

has a constant value (Ǆ =1/R). 

4.1 Integrated approach 
Structure of this approach consists of a single module with two inputs (x and φ) and one 

output (θ) (Fig. 5). It contains five linguistic labels to cover the input variable x and seven 

labels for the vehicle angle φ (Fig. 6). 

 

 
 

Fig. 5. Structure of fuzzy controller 

One triangular and four trapezoidal membership functions (LE, LC, CE, RC, RI) are selected 

to cover the x variable. Also five triangular and two trapezoidal membership functions (LB, 

LU, LV, VE, RB, RU, RV) are selected to cover the φ variable. 
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Fig. 6. Mebership functions for x and φ variables (Integrated approach) 

The rules are shown in Table 1. Also the “center of gravity” method is used as defuzzification 
method. The rule base implements a zero-order Takagi–Sugeno inference method. 
 

 

Table 1. The learned rules for the x and φ variables 

The consequents of the rules are the following: ZE=0°, NL=-40°, NM=-30°, NS=-20°, PL=40°, 
PM=30°, PS=20°. 

4.2 Combined approach 
As shown in Fig. 7, structure of the controller consists of a fuzzy module and three blocks 
(Dis, Controller1 and Controller2). 
 

 

Fig. 7. Structure of the control system 

In fact, if we try to find a mathematical expression for the steering angle θ which produces 
curvature of these short paths, we can recommend equations (7),(8). The angle of wheels (θ1, 
θ2) is computed in Controller1 and Controller2 based on the equation (7), (8). 

 

(7) 

www.intechopen.com



Vision-Based Hierarchical Fuzzy Controller and Real Time Results  
for a Wheeled Autonomous Robot  

 

59 

 

 

(8) 

 

where a, b, c, m, n and p are constant values.  
The distance between the vehicle rear axle midpoint and constrained domain is computed 
by: 

 
(9) 

Two S-shaped and Z-shaped membership functions (far, near) are selected to cover the 
distance universe of discourse (Fig. 8). The consequent of the rules (out1, out2) are 
singletons. The rules are the following: 
1. If   distance  =  near → θ = out1 
2. If   distance  =  far    → θ = out2 
 

 

Fig. 8. Membership functions for distance variables 

Fig. 9 shows three examples of the generated paths by combined approach. 

4.3 Integrated approach  
In this section the hierarchical structure is introduced .The scheme is basically made up of 
two rule bases (Fig. 10). 
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(a)                                                                                 (b) 

Fig. 9. Simulated results of the parking maneuvers corresponding to the initial 
configurations (a) x=-15, y=18, φ =180. (b) x=20, y=9, φ =228 

 
 

 
 

Fig. 10. Structure of hierarchical approach 

The first one (“estimating”) provides approximately the value of the angle ǂ depending on 

the input variables x. The second one (“smoothing”) provides the desired value for steering 

angle (θ) depending on the value of difference φ-ǂ. Two triangular and two trapezoidal 

membership functions (LB, LS, RS and RB) are selected to cover the x universe of discourse 

and four rules are included in the rule base “estimating”. The consequents of the rules (mf1, 

mf2, mf3, and mf4) are singletons. Also the “center of gravity” method is used for 

defuzzification. 

The rule bases (estimating and smoothing) implements a zero-order Takagi–Sugeno 
inference method.  
The rules are: 
1.     if ( x = LB )   → ǂ= mf1  
2.     if ( x = LS )   → ǂ= mf2  
3.     if ( x = RS )   → ǂ= mf3  
4.     if ( x = RB )   → ǂ= mf4,  
The rule base “smoothing” also contains two triangular and two trapezoidal membership 

functions and four rules. The rules are: 

1.     if ( diff = MZ ) → θ= nf1  
2.     if ( diff = NZ ) → θ= nf2  
3.     if ( diff = PZ )  → θ= nf3  
4.     if ( diff = RZ )  → θ= nf4, 
where MZ, NZ, PZ and RZ are fuzzy sets represented by triangular and trapezoidal 

membership functions (they cause the smooth switching in the steering angle θ when φ is 
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around ǂ). nf1, nf2, nf3, nf4 are singleton values associated with the angle front wheels. The 

membership functions for the variables x and diff are shown in Fig. 11. 

 
 

 
                             x (meter)                                                                      diff (radian) 
 

Fig. 11. Membership functions for x and diff variables 

The “estimating” module for the hierarchical approach provides a fuzzy approximation for 

the angle ǂ. The advantage of using this module instead of giving ǂ analytically is that the 

required computational cost is reduced. Using normalized triangular and trapezoidal 

membership functions for the antecedents of the rules and a zero-order Takagi–Sugeno 

inference engine makes this approximation piecewise linear, which means that only several 

additions and products need to be implemented. The computational cost of additions and 

products is less than that of a nonlinear function such as Arcos (.) in (6). 

Fig. 12 shows the variations of θ versus x and φ corresponding to (5) and (6). These 
equations are associated with an on–off control because the θ value presents abrupt changes, 
and would require stopping the robot to perform this switching. 
 
 

 
 

Fig. 12. Steering angle θ versus x and φ for short paths. The dark color presents the θ=-
40°and the light one presents θ=40° 

Three fuzzy modules (integrated, combined and hierarchical) described previously are zero-

order Takagi–Sugeno systems whose input membership functions always overlap each 

other. Hence, the subgoal of providing continuous-curvature and short paths is achieved. 

Comparing the three approaches for designing the controller the hierarchical one is more 

efficient since it generates paths but with small number of rules. Besides it provides the 

higher smoothness near the target configuration (x=0). As a result, the hierarchical module 

was selected as the control system. 
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Simulated results using the present hierarchical scheme for the different initial positions are 
shown in Fig. 13. In this figure, t indicates the parking duration. It can be seen how the 
generated paths (Fig. 13) are very close to the ideal paths (Fig. 4) made up of circular arcs 
and straight lines. 
 

 
                                      (a)                                                                                 (b) 
 

Fig. 13. Results of the parking maneuver corresponding to the initial configurations (a) x=-
20, y=18.4, φ=120°, t=78 steps, (b) x=17.5, y=8, φ=252°, t=72 steps 

Further, according to the robot kinematics equations, the work of Li and Li (Li & Li, 2007) 
has been used for comparison. Fig.14 shows simulated results of Li and Li (Li & Li, 2007) for 
the same initial conditions of Fig.13. 
 
 

 
                                       (a)                                                                                 (b) 
 

Fig. 14. Results of the parking maneuver corresponding to the initial configurations  
(a) x=-20, y=18.4, φ=120°, t=93 steps, (b) x=17.5, y=8, φ=252°, t=86 steps, (Li & Li, 2007) 

An advantage of this approach is that the rules are linguistically interpretable and the 

controller generates paths with 8 rules compared with 35 used by (Riid & Rustern, 2002). 

Besides it provides the higher smoothness near the target configuration (x=0). Also, parking 

durations are shorter than those obtained by (Li & Li, 2007) under the same initial 

conditions. In this work, trajectories are composed of circular arcs and straight segments but 

in other methods, trajectories are composed of circular arcs. 

5. Real time experimental studies 

As shown in Fig. 15(a), the designed mobile robot has a 30cm×20cm×10cm, aluminium body 

with four 7cm diameter tires. It contains an AVR-ATMGEA64 micro controller, running at 

16 MHz clock. The robot is equipped with three 0.9 degree stepper motors, two for the back 

wheels and one guides the steering through a gear box. The control of the mobile robot 
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motion is performed on two levels, as demonstrated in Fig. 15(b). This two-layer 

architecture is very common in practice because most mobile robots and manipulators 

usually do not allow the user to impose accelerations or torques at the inputs. It can also be 

viewed as a simplification to the problem as well as a more modular design approach. The 

high level control (Hierarchical Fuzzy Controller) determines the steering angle θ of the 

robot considering the position (x,y) and angle (φ) of the robot which is received from the 

vision system. While the low level controller receives the output of high level control and 

determines steering angle of the front wheel and the speed of two rear wheels differentially. 

 

 
                               (a)                                                                                        (b) 

Fig. 15. (a) Designed mobile robot. (b) The control architecture of the mobile robot 

The structure of real control system is shown in Fig. 16. 
 

 

Fig. 16. The structure of real control system 
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5.1 Vision subsystem 
For the backer-upper system to work in a real environment it is necessary to obtain the car 

position and orientation parameters. For this task different sensing and measuring 

instruments have been used in the literature. Some authors (Demilri & Turksen, 2000) have 

used sonar to identify the location of the mobile robots in a global map. This is achieved by 

using fuzzy sets to model the sonar data and by using the fuzzy triangulation to identify the 

robots position and orientation. Other authors have used analogue features of RFID tags 

system (Miah & Gueaieb, 2007) to locate the car-like mobile robot. Vision based position 

estimation has been also used for this task. In (Chen & Feng, 2009) a hardware implemented 

vision based method is used to estimate the robot position and direction. They use a camera 

mounted on the mobile robot and estimate the car-like robot position and direction using 

profiles of wavelet coefficients of the captured images and using of a self organizing map 

neural network. Each neuron categorizes measurements of a location and direction bin. This 

method is limited in that it works based on recognizing the part of parking that is in the 

view field of robot’s camera. This parking view classification based approach, requires new 

training if the parking space is changed. Also it has not the potential for localizing free 

parking lots and other robots or obstacles which may be required in real applications. 

A ceiling mounted camera can provide a holistic view to the location. Using a CCD camera 
as measuring device to capture images from parking area, and using image processing and 
tracking algorithms, we can estimate position and direction of the object of interest. This 
approach can be used in multi-agent environments to localize other objects and obstacles 
and even free parking lot positions. Here we assume just one robot and no obstacles. Also, 
we assume that the camera has been installed on the ceiling in the center of parking zone 
and at a proper height such that we can ignore perspective effects at corners of the captured 
images. Thus a linear calibration can be used for conversion between the (i, j) pixel indices in 
the image and the (x, y) coordinates of the parking zone. This assumption can introduce 
some approximation errors. As will be described here, using a prior knowledge of the car 
kinematic in an extended Kalman filtering framework can correct these measurement errors. 
With this configuration and assumptions a simple non realistic solution for position and 
direction estimation can be used as follows. Set two different color marks on top of the car in 
middle front and rear wheels position. Then from the captured image extract the two 
colored marks and find their center. Assume (xr, yr) and (xf, yf) be coordinates of middle rear 
and front points then (x, y) input variables of the fuzzy controller can be estimated from (xr, 
yr) after some calibration. The direction φ of the car-like robot relative to x-axis can also be 
determined using: 

 
(10)

Note that the tan-1(.) function used here should consider signs of yf-yr and xf-xr terms so that 
it can calculate the direction in the range [0,2π] or equivalently [-π, π]. Such a function in 
most programming environments is commonly named atan2(.,.) which perceives yf -yr and  
xf - xr separately and calculates the true direction accordingly. 
This is a simple solution for non-realistic experimental conditions. However it is necessary 
to consider more realistic applications of the backer-upper system. So we should eliminate 
strong non-realistic constraints like hand marking the car with two different color marks. 
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Here we propose a method based on Hough transform for extracting measurements to 
estimate car position and orientation parameters. Using Hough transform we can just 
extract the orientation from the border lines of the car, but the controller subsystem needs 
the direction φ in range [−π, π] to calculate correct steering angle. To find the true direction 
we use a simple pattern classification based method to discriminate between front and rear 
sides of the car-like robot from its pixel gray values. This classifier trains the robots image 
and is independent of the parking background. Also it can be trained to work for different 
moving objects. 
We can use extracted measurements of each frame to directly estimate (x, y, φ) state 
variables. But since extracted measurements are not accurate enough, we use these 
measurement parameters together with kinematic equations (1) of the plant as a state 
transition model in an extended Kalman filter to estimate the state variables (x, y, φ) of the 
robot more accurately. 

5.2 Car position extraction using Hough transform 
Hough transform (HT) first proposed by Hough (Hough, 1962) and improved by Duda & 

Hart (Duda & Hart, 1972) is a feature extraction method which is widely used in computer 

vision and image processing. It converts edge map of an image into a parametric space of a 

given geometric shape. Edge map can be extracted using edge extraction methods which 

filter the image to extract high frequency parts (edges) and then apply a threshold to get a 

binary matrix. HT tries to find noisy and imperfect examples for a given shape class within 

an image. There exists HTs for lines, circles and ellipses. 

For example classic Hough transform, finds lines in a given image. A line can be 
parameterized in the Cartesian coordinate by slope (m) and interception (b) parameters 
(Hough, 1962). Each point (x, y) of the line can be constrained by the equation y = mx + b. 
However this representation is not well-formed for computational reasons. The slope of 
near vertical lines, go to infinity hence it is not a good representation for all possible lines. 
The classic Hough transform proposed by Duda and Haart (Duda & Hart, 1972) uses a polar 
representation in which lines are shown by two parameters r and θ in the polar coordinate. 
Parameter r is length of the vector started from origin and perpendicularly connected to the 
line (distance of line to the origin) and θ is the angle between that vector and x axis. 
Classic Hough transform calculates a 2D parameter map matrix for quantized values of (r,θ) 
parameters. An algorithm determines lines with (r,θ) values that pass through each edge 

point of the image and increases votes of those (r,θ) bins in the matrix. For each edge point 

this accumulation is carried out. Finally the peaks in the parameter map show the most 

perfect lines that exist in the image. The following equation relates the (x,y) Cartesian 

coordinate of line points with the r,θ polar line parameters, as previously defined. 

 

(11)

For any edge point (xi,yi), equation (11) provides a sinusoidal curve in terms of r and θ 
parameters. Points on this curve determine all lines (rj,θj) that pass through the edge point 

(xi,yi). For each edge point votes of all cells of the parameter matrix that fall on the 

corresponding sinusoidal curve are increased. 
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The external boundary of the car-like robot is approximated by a rectangle. To extract four 
lines of this rectangle in each input image frame, first calculate the edge map of the image 
using an edge extraction algorithm. Then apply Hough transform and extract dominant 
peaks of the parameter map. Then among these peaks we search to select four lines that 
satisfy the constraints of being edges of a rectangle corresponding to car-like robot size. Four 

selected lines should approximately form a a×b rectangle where a and b are width and 
length of the car-like robot. 
Let the four selected lines have parameters (ri,θi), i = 1,2,3,4. In order to extract the rectangle 
formed by these four lines, four intersection points (xj,yj), j = 1,2,3,4 of perpendicular pairs 
should be calculated. Solving for the linear system in equation (12), intersection point (x0,y0) 
of two sample lines (r1,θ1) and (r2,θ2) can be determined. 

 

(12)

If the lines are not parallel, the unique solution is given by equation (13). 

 

(13)

A problem with HT is that it is computationally expensive. However its complexity can be 
reduced since position and orientation of the robot is approximately known in the tracking 
procedure. Thus HT just should be calculated for a part of the image and a range of (r,θ) 
around current point. Also the level of quantization of (r,θ) can be set as large as possible to 
reduce the time complexity. Relative coarse bin sizes for (r,θ) also help to cope with little 
curvatures in the border lines of the car-like robot. This is at the expense of reducing the 
estimated position and direction resolution. The relative degraded resolution of (r,θ) due to 
coarse bin sizes can be restored by the correction and denoising property of Kalman filter. 
Note that the computation complexity of Kalman filter is very low relative to HT, since the 
former manipulates very low dimensional extracted measurements while the latter 
manipulates high dimensional image data. 

5.3 Determining car direction using classification 
Using equation (13), four corners of the approximately rectangular car border can be 

estimated. Now it is necessary to specify which pair of these four points belongs to the rear 

and which pair belongs to the front side of the car. We can not extract any information from 

Hough transform about the rear-front points assignment. But this assignment is required to 

determine middle rear wheels points (xr,yr) and also the signed direction φ of the car. 

To solve this problem we adopt a classification-based approach. For each frame, using the 

four estimated corner points of the car, a rectangular area of na × nb pixels of the car-like 

object is extracted. Then extracted pixels are stacked in a predefined order to get a na × nb 

feature vector. A classifier that is trained using training data, is used to determine the 
direction using these feature vectors. However, due to large number of features, it is 
necessary to apply a feature reduction transformation like principle component analysis 
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(PCA) or linear discriminant analysis (LDA) before the classification (Duda et al, 2000). 
These linear feature transforms reduce the size of feature vectors by selecting most 
informative or discriminative linear combinations of all features. Feature reduction, reduces 
the classifier complexity hence the amount of labeled data that is required for training the 
classifier. Different feature reduction and classifier structures can be adopted for this binary 
classification task. Here we apply PCA for feature reduction and a linear support vector 
machine for classification task. Supprot Vector Machine (SVM) proposed by Vapnik 
(Vapnik, 1995) is a large margin classifier based on the concept of structural risk 
minimization. SVM provides good generalization capability. Its training, using large 
number of data, is time consuming to some extent, but for classification it is as fast as a 
simple linear transform. Here we use SVM because we want to create a classifier with good 
generalization and accuracy, using small number of training data. 
LDA is a supervised feature transform and provides more discriminative features relative to 

PCA hence it is commonly preferred to PCA. But the simple LDA reduces the number of 

features to at most C −1 features where C is number of classes. Since our task is a binary 

classification, hence using LDA we just would get one feature that is not enough for 

accurate direction classification. Thus we use PCA to have enough features after feature 

reduction. To create our binary direction sign classifier, first we train the PCA transform. To 

calculate principle components, mean and covariance of feature vectors are estimated then 

eigen value decomposition is applied on the covariance matrix. Finally N eigen vectors with 

greater corresponding eigen values, are selected to form the transformation matrix W. This 

linear transformation reduces dimension of feature vectors from na × nb to N elements. Here 

in experiments N = 10 eigen values provides good results. 

To train a binary SVM, reduced feature vectors with their corresponding labels are first 

normalized along each feature by subtracting the mean and dividing by the standard 

deviation of that feature. About 100 training images are sufficient. These examples should 

be captured in different points and directions in the view field of the camera. The car pixels 

extracted from each training image, can be resorted in two feature vectors one from front to 

rear which takes the label -1 and one from rear to front which takes the label +1. In the 

training examples position of the car and its pixel values are extracted automatically using 

Hough transform method described in previous section. But the rear-front labeling should 

be assigned by a human operator. This binary classification approach provides accuracy 

higher than 97% which is completely reliable. Because the car motion is continuous, we can 

correct possible wrong classified frames using previous frames history. 

Using this classification method the front-rear assignment of the four corner points of the car 

is determined. Now Corner points are sorted in the following defined order to form an 8 

dimensional measurement vector . The r1,r2,f1,f2 subscripts 

denote in order, the rear-left, rear-right, front-left and the front-right corners of the car. 

From the four ordered corner points in the measurement vector YI, we can also directly 

calculate an estimate of the car position state vector to form another measurement vector YD 

= [xr, yr, φrf]T where (xr, yr) is the middle rear point coordinate and φrf  is the signed direction 

of rear to front vector of the car-like robot relative to the x-axis. The superscripts D and I in 

these two measurement vectors show that they are directly or indirectly related to the state 

variables of the car-like robot that is required in the fuzzy controller. The measurement 

vector YD can be determined from measurement vector YI using equation (14). 
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(14)

In the next section we will illustrate a method for more accurate estimation of state 
parameters by filtering these inaccurate measurements in an extended Kalman filtering 
framework. 

5.4 Tracking the car state parameters with extended Kalman filter 
Here we illustrate the simple and extended Kalman filters and their terminology and then 
describe our problem formulation in terms of an extended Kalman filtering framework. 

5.4.1 Kalman filter 
The Kalman filter (Kalman, 1960) is an efficient Bayesian optimal recursive linear filter that 

estimates the state of a time discrete linear dynamic system from a sequence of 

measurements which are perturbed by Gaussian noise. It is mostly used for tracking objects 

in computer vision and for identification and regulation of linear dynamic systems in 

control theory. Kalman filter considers a linear relation between measurements Y and state 

variables X of the system that is commonly named as the observation model of the system. 

Another linear relation is considered for state transition, between state variables in time step 

t, Xt and in time step t-1, Xt −1 and the control inputs ut of the system. These linear models are 

formulated as follows: 

 

(15)

In equation (15), Ft  is the dynamic model, Bt  is the control model, wt  is the stochastic process 

noise model, Ht  is the observation model, νt  is the stochastic observation noise model and ut 

is the control input of the system. Kalman filter considers the estimated state  as a random 

vector with Gaussian distribution and a covariance matrix P. In following equations the 

notation  is used for the estimated state vector in time step i by using measurement 

vectors up to time step j. 

The prediction estimates of state are given in equation (16), where  is the predicted 

state and  is the predicted state covariance matrix. Note that in the prediction step just 

the dynamic model of the system is used to predict what would be the next state of the 
system. The prediction result is a random vector so it has its covariance matrix with itself. 

 

(16)

In each time step before the current measurement is prepared we can estimate the predicted 
state then we use the acquired measurements from the sensors to update our predicted 
belief according to the error. The updated estimates using the measurements are given in 
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equation (17). In this equation, Zt  is the innovation or prediction error, St  is the innovation 

covariance, Kt  is the optimal Kalman gain,  is the updated estimate of system state and 

 is the updated or posterior covariance of the state estimation in time step t. The Kalman 

gain balances the amount of contribution of dynamic model and the measurement to the 
state estimation, according to their accuracy and confidence. 

 

(17)

In order to use Kalman filter in a recursive estimation task we should specify dynamic and 
observation models Ft, Ht  and some times the control model Bt. Also we should set initial 
state  and its covariance  and prior process noise and measurement noise covariance 

matrices Q0, R0. 

5.4.2 Extended Kalman filter 
Kalman filter proposed in (Kalman, 1960) has been derived for linear state transition and 
observation models. These linear functions can be time variant that result in different Ft and 
Ht matrices in different time steps t. In extended Kalman filter (Bar-Shalom & Fortmann, 
1988), the dynamic and observation models are not required to be linear necessarily. The 
models just should be differentiable functions. 

 

(18)

Again wt  and νt  are process and measurement noises which are Gaussian distributions with 
zero mean and Q, R covariance matrices. 
In extended Kalman filter functions f (.) and h (.) can be used to perform prediction step for 

state vector  but for prediction of covariance matrix and also in the update step 

for updating state and covariance matrix we can not use this non-linear functions. However, 
we can use a linear approximation of these non linear functions using the first partial 

derivatives around the predicted point . So for each time step t, Jacobian matrices of 

functions f (.) and h (.), should be calculated and used as linear approximations for dynamic 
and observation models in that time step. 

5.5 Applying extended Kalman filter for car position estimation 
Now we illustrate the dynamic and observation models to be used in the extended Kalman 
filtering framework. The dynamic model should predict the state vector Xt = [xt, yt, φt]T from 
existing state vector Xt−1 = [xt−1, yt−1,φt−1]T  and the control input to the car-like robot which is 
the steering angle θt−1. This is just the kinematic equations of the car-like robot that is given 
in equation (1). This equation considers unit transition velocity between time steps. This 
should be replaced with a translation velocity parameter V that is unknown. It can be 

embedded as an extra state variable to X to form the new state vector Xν =[X;V] or may be 

www.intechopen.com



 Motion Control 

 

70 

left as a constant. The state transition function for the new state vector used here is given in 
equation (19). 

 

(19)

The observation model should calculate measurements from current state vector. As we 
have considered two measurements  and YD= [xr, yr, φ]T, 

we would have two observation models correspondingly. First observation model is a 
nonlinear function  since its calculation of it requires some cos(φ) and sin(φ) 

terms. The second observation model is an identity function  that is Ht= 

I3×4. To prevent complexity we used the direct measurement vector hence identity 
observation model. Now the extended Kalman filter can be set up. Initial state vector can be 
determined from  that is extracted from first frame the velocity can be set to 1 for initial 
step. Update steps of the filtering will correct the speed. The Initial state covariance matrix 
and process and measurement noise covariance matrices are initialized with diagonal 
matrices that contain estimations of variance of corresponding variables. 
For each input frame first the predicted state is calculated using prediction equations and 
state transition function (19), then HT is computed around current position and direction 
and best border rectangle is determined from extracted lines, then signed direction is 
determined using the classification. Then measurement  is calculated. Finally we use this 

measurement vector to update the state according to extended Kalman filter update 
equations. Then xt, yt, φt values of the updated state parameters are passed to the high level 
fuzzy control to calculate the steering angle θ which is passed to the robot and also is used 
in the state transition equation (19) in the next step. 

6. Results 

In order to test the designed controller, the truck is backed to the loading dock from two 
different initial positions (Fig. 17). Hierarchical control system is very suitable for the 
implementation of the multi-level control principle and bringing it back together into one 
functional block. Experimental and simulation results using the present hierarchical scheme 
for different initial positions are shown in Fig. 17. In this figures, t indicates the parking  
 

 
                                      (a)                                                                                (b) 

Fig. 17. Experimental and simulation results of the parking maneuver corresponding to the 
initial configurations (a) x=-20, y=18.4, φ =60, t=78 steps, (b) X=17.5, y=4, φ =162, t=69 steps 
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duration. It can be seen how the generated paths (Fig. 17) are very close to the ideal paths 

(Fig. 4) made up of circular arcs and straight lines. 

Fig.18 illustrates how the steering angle “given by the hierarchical fuzzy controller” in short 

paths of Fig.17 is continuous, so the robot can move continuously without stopping. 

The difference between generated paths (Fig. 17) is attributed to error of the vision 

subsystem, in estimating x,y,φ position variables. This error is propagated to the output of 

the controller and finally to the position of robot in the real environment. 
 

 

                                        (a)                                                                                (b) 

Fig. 18. (a) Experimental and simulation steering angle transitions for the paths in Fig. 17(a), 
(b) Experimental and simulation steering angle transitions for the paths in Fig. 17(b) 

7. Conclusion 

A fuzzy control system has been described to solve the truck backer-upper problem which is 
a typical problem in motion planning of nonholonomic systems. As hierarchy is an 
indispensable part of human reasoning, its reflection in the control structure can be expected 
to improve the performance of the overall control system. The main benefit from problem 
decomposition is that it allows dealing with problems serially rather than in parallel. This is 
especially important in fuzzy logic where large number of system variables leads to 
exponential explosion of rules (curse of dimensionality) that makes controller design 
extremely difficult or even impossible. The “divide and rule” principle implemented 
through hierarchical control system makes it possible to deal with complex problems 
without loss of functionality. It has also been shown that problem decomposition is vital for 
successful implementation of linguistic analysis and synthesis techniques in fuzzy 
modelling and controlling because a hierarchy of fuzzy logic controllers simulates an 
existing hierarchy in the human decision process and keeps the linguistic analysis less 
complicated so that it is manageable. In this work the proposed controller has a hierarchical 
structure composed of two modules which adjust the proper steering angle of front wheels 
similar to what a professional driver does. The computational cost is also less because we 
don’t have to work with nonlinear function such as “Arccos (.)”. Compared with traditional 
controller, this fuzzy controller demonstrates advantages on the control performance, 
robustness, smoothness, rapid design, convenience and feasibility. Trajectories are 
composed of circular arcs and straight segments and as a result the hierarchical approach 
produces shorter trajectories in comparison with other methods. The control system has 
been simulated with a model of a mobile robot containing kinematics constraints. The 
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experimental results obtained confirm that the designed control system meets its 
specifications: the robot is stopped at the parking target with the adequate orientation and 
short paths with continuous-curvature are generated during backward maneuver. The 
vision system utilizes measurements extracted from a ceiling mounted camera and estimates 
the mobile robot position using an extended Kalman filtering scheme. This results in 
correction and denoising of the measured position by exploiting the kinematic equations of 
the robot’s motion.  
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