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1. Introduction     

Viscosity is a property of fluids which can have a great importance in many fields of science 
and industry. It can be measured by conventional viscometers or by ultrasonic methods 
(Hertz & Al, 1991). Ultrasonic methods are based either on the determination of the 
characteristics of propagation (velocity or attenuation) or by the measurement of reflection 
coefficient (Hertz & Al, 1991) (Malcom J.W Povey, 1997). In the ultrasound based 
experimental devices, the measurements of the propagation velocity and the attenuation 
during the propagation allow to determine the physical properties of the medium (He & 
Zheng, 2001). 
When an ultrasonic pulse is propagating into a viscous fluid, the pulse waveforms change 
because of the attenuation and the dispersion of the propagation medium. After its 
travelling through a medium, the transmitted is not a simply delayed and attenuated 
waveform copy of the pulse injected at the input. A modelling of the phenomenon of 
propagation is necessary for an adequate interpretation of the pulse waveforms. 
During the 20 to 30 last years, a special attention has been devoted to the modelling of the 
ultrasonic wave propagation in viscous media. In almost these models, the phenomenon of 
propagation is represented by a slightly dispersive linear system for which the phase is a 
linear function of frequency (Hertz & Al, 1991). Unfortunately the response of such systems 
is not causal (D.T, 1995). Hilbert transform or Fractional Calculus are some of the main 
mathematical tools which have been used to develop theoretical models respecting causality 
(Hertz & Al, 1991) (D.T, 1969) (He, 1999). In the case of viscous media for which the 
attenuation of the waves is proportional to the frequency squared, the methods based on 
Laplace transform allow the derivation of impulse responses respecting the causality 
(Thomas.L, 1995) (D.T, 1969) (Norton & Purrington, 2009). 

2. Theory  

When an ultrasonic wave travels through a fluid, the phenomenon of attenuation results 
from several mechanisms of absorption. At the beginning of the propagation, the absorption 
is mainly due to the viscosity since the thermal agitation did not have enough time to exert 
its influence. Each layer of the fluid tends to slow down the displacement of the adjacent 
layers causing thus the damping of the wave as it penetrates into the fluid. Besides viscosity, 
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there is appearance of the conduction thermal phenomenon which results from the heat 
transfer between the regions of dilatation and compression. The wave propagation causes a 
thermal agitation within the fluid characterized by the collisions of the atoms: it is the 
Brownian motion which causes the coupling or energy exchange between the wave motion 
and the internal motion (translation, vibration, rotation). 
The Brownian motion is a random motion of microscopic particles with different velocities 

resulting from the increase in temperature and caused by the molecular shocks. The local 

periodic variation of the pressure due to the wave propagation involves a molecular 

displacement (rotation + translation). This displacement is caused by the increase in the 

internal energy of the fluid. The change of the potential energy causes a change of the 

structure of the fluid because of the modifications of the distances between the different 

atoms. To pass from one energy level to another, each atom acquires a certain energy, 

leaving a disorder explained by the presence of holes in the energy levels. These 

displacements are the same as those which leads to the relaxation mechanism, i.e. the return 

to equilibrium after the modification of the positions and the structure of the fluid 

molecules. The return to the equilibrium is achieved after a certain time named relaxation 

time. The entropy of the fluid increased and any increases in entropy means the 

establishment of an irreversible equilibrium state accompanied by energy dissipation and 

dispersion in the frequency domain. 

3. Problem formulation 

3.1 Theoretical model  

The propagation of a plane wave in a viscous fluid can be interpreted by considering that 

the fluid can be regarded as a set of particles which undergo during the wave propagation a 

succession of dilatations and compressions. Each particle transmits the vibration which it 

receives from its neighbors and behaves as a secondary source. The model is represented by 

a shematic system made up of masses m, separated by a distance a at the equilibrium, and 

assembled in series with a spring and a piston coupled in parallel model of Voigt-Kelvin. 

Under the action of the wave, the system oscillates from its equilibrium position  (Thomas.L, 

2004).  
 

 
 

Fig. 1. Representation of the linear model of the discrete chain 

3.2 Equation of propagation 

The wave propagation equation of the acoustic pressure in a viscous medium is given by 
(Ludwig & Levin, 1995): 
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where p(x, t) , and [ ] 2τ = ǈ + 4ǈ / 3 /ǒvv s 0
 are respectively the acoustic pressure and the 

relaxation time. ǈs  and ǈv  are the shear and bulk viscosity and
0

v is the propagation 

velocity.   
Equation (1) can be solved by using Laplace transform. By taking account of the 
homogeneous initial conditions, the application of the transform of Laplace to the equation 
of propagation (1) gives: 

 
22P (x,s) s

- P(x,s) = 0
2 2x v (1 + τs)0

∂
∂

 (2) 

P(x,s)  represents Laplace transform of p(x,t) . The solution that satisfies the boundary 

condition lim P(x,s) = 0x→∞  is: 

 

-sx
v 1+sτ

0P(x,s) = A exp  (3) 

A is a constant determined from the boundary conditions at x = 0 . If the pressure at x = 0   

is given by p(0,t) , equation (3) can be written as:  

 P(x,s) = P(0,s) H(x,s)  (4) 

In this latter expression, P(0, s) is the Laplace transform of p(0, t) and H(s) is a complex 

valued function defined by:  

 

-xs

v 1+sτ0H(x, s) = e  (5) 

The inverse transform allows writing the pressure p(x,t)  as a convolution product: 

 ( ⊗p x, t) = p (0, t) h (x, t)  (6) 

where h (x, t) is the inverse Laplace transform of H(x, s) , symbol ⊗ denotes the convolution 

in time. The impulse response h (x, t)  is defined by: 

 
∞

∫∞
c+j1 sth (x, t) = H(x, s)   dse

j 2Ǒ c- j
 (7) 

Integral (7) is evaluated in the complex plane along the Bromwich contour. This integral has 

to be carried out in the complex plan, along the straight line Re (s) = c , with s = c + jy where 

y varies from -∞ à +∞. The real number c is selected in such a way that c is on the right of all 
the singularities (poles, points of connections, or essential singularities). 
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The research of singularities shows that equation 7 presents a pole at: s = -1/τ .  To carry 

out the calculation of this integral, the following change for variable is made: 
1

p = + s
τ

, 

x
=

1
  vτ 2 0 

ς  and 
k

m =
3

 vτ 2 0 

.   

Thus equation 7 becomes: 

 { }- t
-1τ (p) Hh (x, t) = e TL (p) H1 2  (8) 

Where (p)H1 and (p)H2 are defined by:  

 

m
-k Ǔ Ǔ

H (p) = e   et  H (p) = e1 2  (9) 

Accounting of the convolution theorem, one obtains: 

 ⊗
- t
τh (x, t) = e  h (x, t) h (x, t)1 2  (10) 

1
h (x,t)  and 2h (x,t)  being respectively the Laplace inverse transforms of H (p)1 and 2H (p) . 

The inverse transform h (x, t)
1

 of H (p)1 is: 

 

2-Ǔ
Ǔ 4 th (x, t) = e1 3

2 Ǒ t

 (11) 

The inverse Laplace transform of the second term is defined by:  

 
∞

∫ ∞
m tǄ+i e d1

h (x, t) = e2
j2Ǒ Ǆ-i

ς ς
ς  (12) 

This integral has a pole located at Ǔ = 0 ; Ǆ must thus be a positive real number. The 

evaluation of this integral is made by considering the Bromwich contour. 

The figure (2-a), represents this closed contour C of Bromwitch made up of the segments at 

the right-hand side Γ and of the half rings C1 of center (Ǆ, 0) and of radius R .This contour 

does not contain any pole, the integral on C is null according to Cauchy theorem: 

 ∫ ∫= -
Γ C1

 (13) 

According to the Jordan Lemma, the integral on the half-circle C1 cancels when the radius 

R  tends towards the infinite. Then: 

 ≤∫→∞h (x, t) = lim =0  pour t 02 R Γ
 (14) 
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                                   (a)                                                                                   (b) 

Fig. 2. (a) Contour of Bromwich for t ≤ 0 (b) Contour of Bromwich for t ≥ 0 

Figure (2-b), represents a closed contour C made up of the segments on the right-hand side 
of  Γ,  C

1
 and C

7
 , arcs of a circle C

2
and C

6
 of radius R centered at  the origin, of an arc 

of a circle C4 of radius unit and segments on the right-hand side C3 and C5 . The half-line 

defined by Im(p)=0 and Re(p)≤0 constitutes a cut of this contour and does not contain any 
pole, so the integral on C is null according to Cauchy theorem , so : 

 ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫= - - - - - - -
Γ C C C C C C C1 2 3 4 5 6 7

 (15) 

Integrals on the segments C1 and C7 cancel when R tends towards the infinite. And 

according to Jordan Lemma, integrals along circle arcs C2
and C6

 cancel when the radius 

R  tends towards the infinite, so ones obtain: 

 

∫→∞
⎡ ⎤⎢ ⎥∫ ∫ ∫⎢ ⎥→∞ ⎢ ⎥⎣ ⎦

h (x, t) = lim  2 R Γ

h (x, t) = - lim + +2 R C C C3 4 5

 (16) 

On the segment and contour C3 , the integral I3  is written under the form : 

 
∫∞

m
-1 ǓtǓI (x, t) = e e dǓ3
-

jǑ
Ǔ = re = r (cosǑ + jsinǑ) = -r

 (17) 

r being a positive real number. So  I3  is now given by:  
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∞∫

i m
+ -

-rtrI (x, t) = e e dr3
+1

 (18) 

On the segment and C5 contour, the integral I5 and ς can be written as: 

 
∞∫

m
- ǓtǓI (x, t) = e e dǓ5
-1

     
-jǑ

= re = r (cosǑ + j sinǑ) = -rς  (19) 

where r is a positive real number. Then, one obtains the expression of I5 : 

 
∞∫

i m
+ -rtrI (x, t) = - e e dr5
+1

 (20) 

The sum of the integrals on the segments C3 and C5 gives: 

 
∞ ⎛ ⎞∫ ⎜ ⎟⎝ ⎠

+ m -rt
I + I = -2i sin e dr3 5 r+1

 (21) 

On C4 contour -iǉ= eς , so the expression of I4 is written under the following form : 

 ∫
ǉ ǉ- Ǒ [m cos( )+ t cos(ǉ)] i [t sin(ǉ) - m sin( )+ ǉ]

I (x, t) = -i e ×e dǉ2 24
+ Ǒ

 (22) 

The integrand is an odd function of ǉ  

 ∫
ǉǑ [m cos ( )+ t cos(ǉ)] ǉ

I (x, t) = -2i e ×  cos(tsin(ǉ)-m sin( )+ǉ)dǉ24 20
 (23) 

h (x, t)
2

 can be written under the form:  

 
1

+∞ ×∫ ∫+
Ǒ ǉ ǉ1 m 1-rt mcos ( )+t cosǉ cos (t sinǉ-m sin +ǉ)dǉh (x, t) = sin( )e dr + e2 2 2Ǒ Ǒr 0

(24) 

To carry out the numerical calculation of the impulse response, one makes the following 

variable change for the integral going from 1 to ∞+ : 

 
ϕ ϕϕ ϕ

1 -cos
r =  ,    dr = d

2sin sin
 (25) 

 sin( ) sin( )
ϕ ϕϕ ϕϕ

∞∫ ∫ sin

t 2-Ǒ/2+ m cos-rt
e dr = m sin × e d

sinr+1 0
 (26) 
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h (x, t)
2

becomes then: 

 

ϕϕϕ ϕϕ∫

∫

tǑ/2 2- cossinh (x, t) = sin(m sin )× e d +2 sin0

ǉǑ1 [mcos ( ) + tcos (ǉ)] ǉ
e × cos(tsin(ǉ)-msin( )+ǉ)dǉ2

2Ǒ 0

 (27) 

The integrals of the equation (27) are evaluated numerically by a Gauss quadrature method. 
The impulse response h(x,t) can then be calculated using the equation (12) and, knowing the 
pressure at the output of the source p(0,t), one can deduce the pressure at any point in the 
propagation medium by using equation (6).   

4. Numerical simulation of the propagation 

To represent the pressure injected at the input of the system, we use a damped sinusoid of 
the form: 

 
-ǅt

p(0.t) = f(t) = e sin(2Ǒft)  (28) 

This function represents with a quite good precision the waveform of the pulses delivered 
by the ultrasonic generators. The damping ratio ǅ  controls the frequency bandwidth of the 
input pulse around the nominal frequency f which is about several megahertz for current 
applications. 
The output pressure at a given position is obtained by calculating the convolution of p(0,t) 
with the impulse response of filter propagation defined by equation 7. 
The various functions used for the modeling of the propagation process (input pulse, 
impulse response and output pulse) are given on figure 3. By analyzing figure 3, we quote 
that the amplitude of the output signal is attenuated but one also notices a spreading in the 
time of the output pressure which arrives with a delay corresponding to the travel time. The 
comparison of the spectrum of the output pressure with that of the pressure at the input, 
shows a shift to lower frequencies. This results from the fact that the attenuation increases 
with frequency. One also notes the presence of a precursor such as it has been mentioned by 
other authors (Thomas.L, 1995) (He, 1999) (Ludwig & Levin, 1995). The presence of this 
precursor appears in the form of the spreading at the beginning of the waveform pulses 
which, in the absence of viscosity, would arrive at the point of x coordinate x at the moment 
T = x/cL. 

5. Variation of the output pressure due to the propagation phenomena    

5.1 Influence of the penetration distance  

One notes the progressive reduction in the amplitude and a time-scale of the output signal 
as the distance from the beginning of the propagation increases figure 4. The pressure 
decrease of the output is due to the absorption caused by the viscous effects which attenuate 
the amplitude and cause a progressive filtering depending on the distance travelled by the 
wave. The frequency components are the beginning attenuated because of the dispersive 
nature of the medium. 
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Fig. 3. Graphical representation of the input pulse, the impulse response of the output pulse 
at x = 6mm and the respective spectra for τ = 0.005s. The nominal frequency is f = 2.25 MHz 

 

www.intechopen.com



Propagation of Ultrasonic Waves in Viscous Fluids  

 

301 

 
 
 
 
 
 
 
 

 

 
 
 
 
 

Fig. 4. Graphical representation of the output pulse for different distances for a wave having 
a center frequency f = 2.25MHz and for τ = 0.005s.  
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5.2 Influence of frequency variation  

Figure 5 represents the variation of the pressure output versus frequency at a given position 

and for a fixed relaxation time. The increase in the frequency causes a more important 

reduction in the amplitude at the output. Besides this considerable reduction, we notice a 

contraction in time and a change of the waveform of the pulses.  

 

 

Fig. 5. Graphical representation of the output pulse at x = 6mm for different frequencies of 
the input pulse with τ = 0.005s 

5.3 Influence of relaxation time 

The effect of the relaxation time is represented on figure 6, we notice a rapid decrease of 

amplitude and distortion of the output pulses when the relaxation time increases and a 

spread in time of the output pressure. 

www.intechopen.com



Propagation of Ultrasonic Waves in Viscous Fluids  

 

303 

 
 

 
 
 
 
 
 

 
 
 
 
 
 

Fig. 6. Graphical representation of the output pulse at x = 6mm for different frequencies of 
the input pulse with  τ = 0.005s 
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6. Validation of the theoretical model  

The influence of the various mechanisms of absorption which contribute to the reduction in 

the amplitude during the wave propagation, have been checked in experiments by studying  

the variation of the propagation velocity ultrasonic and the parameter of attenuation versus 

the temperature in glycerine (Oudina & Djelouah, 2008). The variation of the propagation 

velocity versus the temperature is represented on figure 8 which shows that the propagation 

velocity decreases when the temperature increases; this decreasing result from the thermal 

agitation within the fluid because of the wave motion, and characterized by the collisions of 

the atoms. In the case of glycerol, the predominant molecular bindings are the OH bindings 

which are particularly sensitive to the temperature. In fact, a sudden change of temperature 

induced by the successive collision of atoms causes a break of the chemical bonds of OH 

type whose energy cohesion is the lowest, leading thus to a decreasing velocity when 

temperature increases. So it can be said that an increase in the entropy means the 

establishment of an irreversible steady state.  

 

 

 

   
 

 
   

Fig. 8. Variation of the propagation velocity versus the temperature. 

The study of the attenuation versus the temperature is represented on figure 9. It is noted 

that the attenuation decreases with increasing temperature, knowing that the attenuation 

parameter is closely related to the viscosity and the viscosity of a fluid strongly depends on 

the temperature; in particular it decreases when the temperature increases. 
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Fig. 9. Variation of the parameter of attenuation versus temperature.  

7. Conclusion 

The modeling of the equation of propagation in a viscous fluid by the transform of Laplace 
made it possible to highlight the phenomena of absorption by developing a theoretical 
model which allows to study the influence of these various parameters on the propagation 
in the viscous fluids. 
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