
21

An Improved Real-Time Particle
Filter for Robot Localization

Dario Lodi Rizzini and Stefano Caselli
Dipartimento di Ingegneria dell’Informazione,

Università degli Studi di Parma, Parma,
 Italy

1. Introduction

Robot localization is the problem of estimating robot coordinates with respect to an external
reference frame. In the common formulation of the localization problem, the robot is given a
map of its environment, and to localize itself relative to this map it needs to consult its
sensor data. The effectiveness of a solution to the localization problem in an unstructured
environment strongly depends on how it copes with the uncertainty affecting robot
perception.
The probabilistic robotics paradigm provides statistical techniques for representing
information and making decision, along with a unifying mathematical framework for
probabilistic algorithms based on Bayes rule (Thrun et al., 2005). For this reason, bayesian
filtering has become the prevailing approach in recent works on localization (Elinas & Little,
2005; Sridharan et al., 2005; Hester & Stone, 2008).
Bayesian filtering is a general probabilistic paradigm to arrange motion and sensor data in
order to achieve a solution in the form of distribution of state random variables. Bayesian
filters differ in the representation of the probability density function (PDF) of state. For
example, the resulting estimation of Gaussian filters (Kalman Filter, Extended Kalman
Filter) (Leonard & Durrant-Whyte, 1991; Arras et al., 2002) is expressed in the form of a
continuous parametric function, while the state posterior is decomposed in discrete
elements for nonparametric filters.
The main nonparametric algorithm is called Particle Filter (PF) (Fox et al., 1999) and relies on
importance sampling (Doucet et al., 2001). With importance sampling, the probability
density of the robot pose is approximated by a set of samples drawn from a proposal
distribution, and an importance weight measures the distance of each sample from the
correct estimation.
The nonparametric approach has the advantage of providing a better approximation of the
posterior when a parametric model does not exist or changes during iteration, e.g. in
initialization or when environment symmetries determine a multi-modal PDF. Even if
techniques like Multi-Hypothesis Tracking (Arras et al., 2002) attempt to manage multi-
modal distributions, particle filters are more efficient and can represent all kinds of PDFs,
including uniform distributions. Moreover, particle filters limit errors due to the
linearization of model equations that can lead to poor performance and divergence of the O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Robotics, Automation and Control, Book edited by: Pavla Pecherková, Miroslav Flídr and Jindřich Duník,
ISBN 978-953-7619-18-3, pp. 494, October 2008, I-Tech, Vienna, Austria

www.intechopen.com

 Robotics, Automation and Control

418

filter for highly nonlinear problems. Unfortunately, particle filters suffer from
computational complexity due to the large number of discrete samples of the posterior: for
each sample a pose update, a correction and a resample step are performed. Since
localization can be performed slowly with respect to the usual movement and tasks of the
robot, it would be conceivable to perform localization over a large time interval. Therefore,
there have been attempts to adapt the number of samples (Fox, 2003). However, during an
excessive time interval uncertainty increases and many useful observations are dropped; a
proper interval to complete a particle filter iteration should be approximately equal to the
rate of incoming data. A trade-off must therefore be reached between time constraints
imposed by the need of collecting sensor data incoming with a given rate and the number of
samples determining the accuracy of the representation of localization hypotheses.
Performance depends both on the number of integrated observations and on the number of
samples.
The Real-Time Particle Filter (RTPF) (Kwok et al., 2004) is a variant of a standard particle
filter addressing this problem. Samples are partitioned into subsets among observations
over an estimation window. The size of each partitioned subset is chosen so that a particle
filter iteration can be performed before a new observation is acquired. The difference with
standard PF with smaller sample set lies in the representation of the posterior as a mixture
of samples: at the end of an estimation window the distribution consists of the samples from
each subset of the window. Mixture weights determine how each partition set contributes to
the posterior and are computed in order to minimize the approximation error of the mixture
distribution.
While RTPF represents a remarkable step toward a viable particle filter-based localizer,
there are a few issues to be addressed in developing an effective implementation. RTPF
convergence is prone to bias problem and to some numerical instability in the computation
of the mixture weights arising from the need to perform a numerical gradient descent.
Furthermore, even adopting RTPF as the basic architecture, the design of a flexible and
customizable particle filter remains a challenging task. For example, life cycle of samples
extends beyond a single iteration and covers an estimation window in which mixture
posterior computation is completed. This extended life cycle of samples impacts over
software design. Moreover, RTPF addresses observations management and derived
constraints. A good implementation should be adaptable to a variety of sensors.
In this chapter, we describe the application of RTPF to robot localization and provide three
additional contributions: a formal analysis for the evolution of mixture of posterior in RTPF,
a novel solution for the computation of mixture weights yielding improved stability and
convergence, and a discussion of the design issues arising in developing a RTPF-based robot
localization system.
The algorithm described in (Kwok et al., 2004) computes mixture weights by minimizing the
Kullback-Leibler (KL) distance between the mixture distribution and the theoretically-
correct one. Unfortunately, this criterion tends to promote partition sets of the estimation
window that provide a poor representation of the distribution of robot state. In particular,
we show that KL criterion favours sets with low effective sample size (Liu, 1996) and leads to a
bias in the estimation. As an alternative way to compute mixture weights, we define a
weights matrix, whose elements are related to the effective sample size. The mixture weight
vector is then computed as an eigenvector of this matrix. This solution is more robust and
less prone to numerical instability. Finally, we propose the design of a library that takes care

www.intechopen.com

An Improved Real-Time Particle Filter for Robot Localization

419

of efficient life cycle of samples and control data, which is different between RTPF and
standard particle filter, and supports multiple motion and sensor models. This flexibility is
achieved by applying generic programming techniques and a policy pattern. Moreover,
differing from other particle filter implementations (e.g., CARMEN (Montemerlo et al.,
2003)), the library is independent from specific control frameworks and toolkits.
The remaining of the chapter is organized as follows. Section 2 contains an overview of
RTPF with the original algorithm to compute mixture weights. Section 3 provides a formal
description of the bias problem and a novel approach in the computation of mixture weights
based on the effective number of samples. This approach simplifies RTPF and tries to avoid
spurious numeric convergence of gradient descent methods. Section 4 illustrates design
issues connected to RTPF and describes a localization library implementing a highly
configurable particle filter localizer. Section 5 presents simulation and experimental results
which are reported and compared with the original RTPF performance. Finally, section 6
gives conclusion remarks.

2. Real-time particle filters

In particle filters, updating the particles used to represent the probability density function
(potentially a large number) usually requires a time which is a multiple of the cycle of sensor
information arrival. Naive approaches, yet often adopted, include discarding observations
arriving during the update of the sample set, aggregating multiple observations into a single
one, and halting the generation of new samples upon a new observation arrival (Kwok et al.,
2004). These approaches can affect filter convergence, as either they loose valuable sensor
information, or they result in inefficient choices in algorithm parameters.

Fig. 1 RTPF operation: samples are distributed in sets, associated with the observations. The

distribution is a mixture of the sample sets based on weights iα (shown as ai in figure).

An advanced approach dealing with such situations is the Real-Time Particle Filters (RTPF)
(Kwok et al., 2003; Kwok et al., 2004) which is briefly described in the following. Consider k
observations. The key idea of the Real-Time Particle Filter is to distribute the samples in sets,
each one associated with one of the k observations. The distribution representing the system
state within an estimation window will be defined as a mixture of the k sample sets as
shown in Fig. 1. At the end of each estimation window, the weights of the mixture belief are
determined by RTPF based on the associated observations in order to minimize the
approximation error relative to the optimal filter process. The optimal belief could be
obtained with enough computational resources by computing the whole set of samples for
each observation. Formally:

www.intechopen.com

 Robotics, Automation and Control

420

0 1011

() (|) (| ,) ()
k ki i i i i

k

opt t t tt t t t t ti
Bel x p z x p x x u Bel x dx dx −−=∏∫∝ … (1)

where)(0txBel is the belief generated in the previous estimation window, and tiz , tiu , tix

are, respectively, the observation, the control information, and the state for the thi −

interval.

Within the RTPF framework, the belief for the i th− set can be expressed, similarly, as:

0 1011

() (|) (| ,) ()
k kj j j

k

i t t tti ti t t t tj
Bel x p z x p x x u Bel x dx dx −−=∏∫∝ … (2)

containing only observation-free trajectories, since the only feedback is based on the

observation tiz , sensor data available at time it . The weighted sum of the k believes

belonging to an estimation window results in an approximation of the optimal belief:

k

i 1

(|) ()
k kmix t i i t

Bel x Bel xα α
=

∝ ∑ (3)

An open problem is how to define the optimal mixture weights minimizing the difference

between the)(
ktopt xBel and)|(α

ktmix xBel . In (Kwok et al., 2004), the authors propose to

minimize their Kullback-Leibler distance (KLD). This measure of the difference between

probability distributions is largely used in information theory (Cover & Thomas, 1991) and

can be expressed as:

1

(|)
() (|) log

()

k

k
k

k

mix t

mix t

opt t

Bel x
J Bel x dx

tBel x

αα α
−

∝ ∫ (4)

To optimize the weights of mixture approximation, a gradient descent method is proposed

in (Kwok et al., 2004). Since gradient computation is not possible without knowing the

optimal belief, which requires the integration of all observations, the gradient is obtained by

Monte Carlo approximation: believes iBel share the same trajectories over the estimation

windows, so we can use the weights to evaluate both iBel (each weight corresponds to an

observation) and optBel (the weight of a trajectory is the product of the weights associated

to this trajectory in each partition). Hence, the gradient is given by the following formula:

j j

i i

j j

(s)

t t
Np

1(s)
t t

(s)s 1
t t

1

w (x)

1 w (x)
w (x)

k

j

j

k

i
j

J
α

α =
=

=
∑ ∏

∂ ≅ +∂
∑

 (5)

where iBel is substituted by the sum of the weights of partition set thi − and optBel by the

sum of the weights of each trajectory. Unfortunately, (5) suffers from a bias problem, which

(Kwok et al., 2004) solve by clustering samples and computing separately the contribution of

each cluster to the gradient (5). In the next section, an alternative solution is proposed.

www.intechopen.com

An Improved Real-Time Particle Filter for Robot Localization

421

3. An enhanced RTPF

In this section we provide a formal investigation on the motivation of bias in RTPF
estimation in (Kwok et al., 2004) and we propose a new solution for mixture weights
computation.

3.1 A bias in RTPF
In RTPF, samples belonging to different partition sets are drawn from the same proposal,
but their importance weights depend on different observation likelihood functions

)|(
ii tt xzp , which are computed in different time instants it . Hence, the first source of

disparity among partition sets is the degree of proposal dispersion during the correction

step. A suitable measure of proposal dispersion at iteration it is provided by the radius of

the ball set d
x rB
it

ℜ∈),(η , which is centered on expected value tix and includes a

consistent portion of the distribution of tix . The probability that a sample falls in),(rB
itx

η

can be bound by r and the trace of the covariance matrix
tix

Σ , since the following

Chebychev-like inequality holds:

()

2

tr
1)),((

r
rBxP ti

iti

x

xt

Σ−>∈ η (6)

In the following, the probability of event given by),(rB
itx

η will refer to a proposal density

function arrested in ti:

1 0 1

1

() (| ,)
d ii

i

t tj tj tj t tk
j

x p x x u dx dxπ × − −ℜ =
= ∏∫ … (7)

Then, given 10 << ε , a sample falls in a ball with at least probability ε when its radius is
larger than the dispersion radius:

,

tr()

1

ti

i

x

t
r ε ε

Σ= − (8)

Parameter ε,itr provides a rough estimation for dispersion because only for unimodal PDF

the ball),(,εη
iit tx rB (briefly B hereafter) limits a region around a local maximum.

Furthermore, it is often the case that tix is a vector of heterogeneous random variables (e.g.

cartesian coordinates and angular values), whose variances are mixed in the trace, with the
result that bound (8) largely overestimates the region. However, the dispersion radius is a
synthetic value and can be adapted to multimodal distributions after decomposition into a
sum of unimodal hypotheses. Empirically, this decomposition is achieved by clustering on
samples. By applying command control and updating robot position, the dispersion radius
increases together with the trace of the covariance matrix. If Gti is the Jacobian of motion

model computed in),(
iti tx uη , with IGG T

t tii
≥ (hypotheses verified by a standard model

like (Thrun et al., 2005)), and
tiwΣ is the covariance matrix of additive noise, then

www.intechopen.com

 Robotics, Automation and Control

422

 () () ()
1

tr tr tr
t t ti i i t ii

T

x t x w
G G+Σ ≈ Σ + Σ (9)

Thus, we conclude that)tr()tr(
1+Σ≤Σ

itit xx and that the dispersion radius increases over the

estimation window. A more accurate estimation of how it increases could be obtained with
further hypotheses on the motion model, e.g. Lipschitz continuity.
Since the proposal is more and more spread in the estimation window and correction is
performed at different times for each partition, we want to investigate how the dispersion

affects importance weights. Observation likelihood)|()(xzpxw
ii tt = is usually more

concentrated than the proposal, sometimes peaked as shown in (Grisetti et al., 2007). We

assume that, given a proper 0>δ , region

 { }| ()
it

L x B w x δ= ∈ > (10)

covers a consistent portion of)(xw
it . Thus, observation likelihood is bound in L by

∞<= ∈)(sup xwM
itLx (envelope condition) and in LB \ by δ . Hence,)()(xxw

it λ<

()
 else

M x B
xλ δ

∈⎧= ⎨⎩ (11)

The bounding function)(xλ and set L are defined on ball B , and in the following we will

restrict the sampling domain to B using)|(Bxx titi ∈π as proposal. This assumption

allows us to consider the dispersion radius in the following discussion. Moreover, this

approximation is not so rough when ε is close to 1. The effective sample size (Liu, 1996) is

a measure of the efficiency of a set of samples in the representation of a target posterior:

tj1 j

2 (s)

t

1

w (x)
N

ti

s

eff

n

=

= ∑ # (12)

()j

1 j

j j
1

2

(s)

t
t

2

t t

w (x)

(s)
w (x)

N

s

N

s

=

=

∑=
∑

 (13)

The above expression is achieved by substituting normalized weights)(~ xw
it with their

expression. Maximizing the effective sample size is equivalent to minimizing the variance of

the weights: it is easy to show with Jensen inequality that effn is bounded by the number of

samples N , which is obtained when each weight is equal to 1 and the variance is small.

Bounds on observation likelihood allow an approximation of expected values of weight and

square weight:

 [] \
() |
i it t L B L

E w x x B M H Hπ δ∈ ≤ ⋅ + ⋅ (14)

www.intechopen.com

An Improved Real-Time Particle Filter for Robot Localization

423

 2 2 2

\
() |

i it t L B L
E w x x B M H Hπ δ∈ ≤ ⋅ + ⋅⎡ ⎤⎣ ⎦ (15)

where)]([xIEH LL π= and)]([\\ xIEH LBLB π= are the visit histograms of bins L and

LB \ respectively; in our notation)(xID is the indicator variable with value 1 when x

falls in D , zero otherwise. Equations (14) and (15) can be used to approximate numerator
and denominator of (13):

2 2 2

\

\2 2 2

\ \

()
 N 2

ti

L B L L

B L L
eff

L B L B L

M H H M HM
n N H H

M H H H

δ
δ δ δ

⎛ ⎞⋅ + ⋅≅ ≅ + +⎜ ⎟⋅ + ⋅ ⎝ ⎠ (16)

The approximation given by (16) follows from the assumption that
2

\)/(/ MHH LBL δ<< .

When dispersion is large, the proposal can be considered almost constant on region L and

its visit histogram LH decreases proportionally with the ratio of hypervolumes of L and

LB \ : d
tL i
rH ε,/1∝ in d -dimensional space. Thus, the last partition sets in the estimation

window, i.e. those approximating better the distribution at the end of the estimation
window, have a spread proposal and are represented by few effective samples, as shown by
the trend of (16). From difference between effective sample size and KLD reduction, the bias
in estimation follows.
The solution proposed in (Kwok et al., 2004) mitigates the effects of bias by considering the
multimodal structure of samples distribution in KL-distance gradient estimation. The
estimation of gradient given by (5) ignores samples dispersion in different bins. Formally,

gradient (5) is the result of underestimation of KL-divergence: call)(jmix CBel and

)(jopt CBel the mixture and optimal histograms for cluster jC respectively; from the

convexity of KLD (Cover & Thomas, 1991), Jensen inequality holds

1 1 1

((), ()) ((), ())
M M M

mix j opt j mix j opt j
j j j

KL Bel C Bel C KL Bel C Bel C
= = =

≤∑ ∑ ∑ (17)

Gradient estimation based on the second term of inequality (17) is better than the previous
one based on the first term which underestimates the distance, but no optimality can be
claimed since bin subdivision is empirical and gradient descent approaches easily incur in
local minima problems. Furthermore, even if cluster detection is usually performed in PF to
group localization hypotheses and no additional computational load is required, sample
management is not at all straightforward.

3.2 Alternative computation of mixture weights

This section proposes an alternative criterion to compute the values of the weights for the
mixture belief. Instead of trying to reduce the Kullback-Leibler divergence, our approach
considers mixture weights as the assigned measure of relative importance of partitions that
is transformed by processing at the end of estimation window. RTPF prior distribution is the
result of two main steps: resampling of samples and propagation of trajectories along the
previous estimation window. The effect of resampling is the concentration of previous
estimation window samples in a unique distribution carrying information from each

www.intechopen.com

 Robotics, Automation and Control

424

observation. Conversely, the trajectories update given by odometry and observation spreads
the particles on partition sets.
Our attempt is to build a linear map modeling the change of relative importance, i.e.
mixture weights , due to resampling and propagation of samples. This map should depend

on sample weights. Let jwi be the weight of the thi − sample (or trajectory) of the thj −

partition set. Then, the weight partition matrix is given by

11 1

1p p

k

N N k

w w

W

w w

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

A
B B

A
 (18)

The weights on a row of this matrix trace the history of a trajectory on the estimation
window; a group of values along a column depicts a partition handling sensor data in a

given time. Resampling and trajectory propagation steps can be shaped using matrix W

and mixture weights.

• Resampling. The effect of resampling is the concentration of each trajectory in a unique
sample whose weight is the weighted mean of the weights of the trajectory. In formula,

the vector of trajectory weights is given by αWt = .

• Propagation. Projecting a sample along a trajectory is equivalent to the computation of
the weight of the sample (i.e., the posterior) for each set, given the proper sensor

information. Again, matrix W gives an estimation of the weight. Trajectories projection

can thus be done with a simple matrix product

 ˆ T TW t W Wα α= = (19)

Vector α̂ is a measure of the relative amount of importance of each partition set after

resampling and propagation depending on the choice of coefficient α . Hence, α̂ is the

new coefficient vector for the new mixture of believes. Some remarks can be made about the

matrix WWV T= in (19). First, since we assume 0>ijw , V is a symmetric and positive

semi-definite (SPSD) matrix. Moreover, each element j on the main diagonal is the inverse

of the effective sample size of set j . The effective sample size is a measure of the efficiency

of importance sampling on each of the partition sets. Therefore, the off-diagonal elements of

V correspond to a sort of importance covariances among two partition sets. Thus we will

refer to this matrix as weights matrix.
Hence, a criterion to compute the mixture weights consists of choosing the vector that is left
unchanged by map (19) except for scale. Since (19) depends on square of sample weights,
the resulting mixture weights reflects the importance of each partition set according to the
effective sample size. The vector is thus obtained by searching for an eigenvector of matrix
V. To achieve better stability we choose the eigenvector corresponding to the largest
eigenvalue. The eigenvector can be computed using the power method or the inverse power
method. This criterion can be interpreted as an effort to balance the effective number of
samples keeping the proportion among different partition sets.
Fig. 2 illustrates the differences in mixture weights computed according to the original
algorithm (RTPF-Grad) and the proposed variant (RTPF-Eig) with an example. When RTPT-

www.intechopen.com

An Improved Real-Time Particle Filter for Robot Localization

425

Eig is used to compute mixture weights, the weights of the last partition sets in the
estimation window decrease with the effective sample size of the sets, while they increase
with RTPF-Grad. Thus, the proposed criterion takes into account the effectiveness of
representation provided by partition sets.

0 5 10 15
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

partition set index

re
la

tiv
e
 e

ff
e
c
tiv

e
 s

a
m

p
le

 s
iz

e

0 5 10 15
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

partition set index

m
ix

tu
re

 w
e
ig

h
ts

RTPF-Grad
RTPF-Eig

Fig. 2 Effective sample size (top) and mixture weights computed according to the original
algorithm and to the proposed variant (bottom) in an estimation window of 15 partitions.

4. Complexity of RTPF implementation

As pointed out in the previous section, updating the whole set of samples can be quite

demanding from a computational perspective. Together with advanced algorithms, able to

www.intechopen.com

 Robotics, Automation and Control

426

maximize the use of sensor data, the developer should pay great attention to the

implementation issues. Inefficiencies due to poor analysis in object creation/destruction

cycles and abstraction levels supporting the polymorphic behaviour can introduce drain of

computing time preventing the successful application of the conceived algorithm.

This section describes a library designed to efficiently support the implementation of

particle filter localization algorithms. The library aims at providing an efficient yet open

infrastructure allowing the users to exploit the provided genericity to integrate their own

algorithms. The library has been studied to be easily included in the majority of control

systems for autonomous mobile robots. In a functional layer, or controller, with the basic

computational threads for robot action and perception, the localization task can be simply

configured as a computationally demanding, low priority thread.

4.1 Design of the library

Based on the functional analysis of the localization problem, four main components have

been identified: the localizer, the dynamic model of the system, the sensor data model, and

the maps. The interaction among these components enables the implementation of the

prediction, matching, and resampling phases of particle filter algorithms. Three classes

storing basic data information are required: system state, control command, and sensor data.

The main component is the localizer implemented by the Localizer class, managing the
localization cycle through the coordination of the classes composing the library. Listing 1
shows a simplified interface of the Localizer class, including just two update() methods.
In the prediction phase, update() uses the control command executed by the robot (Control

class) to perform the computation on the SystemModel class, representing the dynamic

model of the system. In the correction phase, the second update() method uses the

perception of the environment (SensorData class) to update the density function through the

evaluation of the weight. In the following, we describe only implementation strategies to

face the main sources of computational overhead arising in the implementation of

abstraction layers and object creation/destruction cycles.

The main goal of the library is to provide an open infrastructure aimed at integrating

developer choices without their hard-wiring inside the code. Often this goal is achieved

with the strategy pattern (Gamma et al., 1996). With this pattern the algorithms are

implemented separately as subclasses of an abstract strategy class. While this

implementation avoids the hard-wiring of user choices inside the library code, it causes

inefficiency due to the abstraction levels introduced to support the polymorphic behaviour.

This remark, together with the observation that the choices are immutable at runtime,

suggested the use of static polymorphism in the implementation of the current version of

the library. Static polymorphism is a more effective flavor of polymorphism based on the

use of templates. Templates were originally conceived to support generic programming, as

they are functions or classes that are written for one or more types not yet specified. Each

template parameter models one degree of variability of the problem domain. This parameter

must be fixed at compile time allowing the compiler to generate the proper code. This static

polymorphism guarantees type checking and improves code optimization. Exploitation of

templates to perform code generation is also known as generic programming

(Alexandrescu, 2001).

www.intechopen.com

An Improved Real-Time Particle Filter for Robot Localization

427

 template< State,

 SensorData,

 Control,

 SampleCounter,

 SampleManager,

 Fusion >

 class Localizer : public SampleManager<State>

 {

 Fusion<SensorData> fusion_;

 public:

 template< ... > // StateConverter

 Localizer(Pdf &pdf, StateConverter<...> &converter, tods::TimeInterval &period);

 ~Localizer();

 template< ... > // SystemModel Parameters

 void update(Control &u, SystemModel<...> &sys);

 template< ... > // SensorModel Parameters

 void update(SensorData &z, SensorModel<...> &sen);

 };

Listing 1 The Localizer class.

To reduce the second source of computational overhead, we focused our attention on the
creation/destruction of the objects within the localization cycle to reduce their dynamic
allocation. Fig. 3 presents the life cycle of the objects created and destroyed during a single
localization cycle of the RTPF algorithm. During each step, new samples and new objects for
representation of odometric and sensor data are created to be immediately destroyed. Note
that the samples and controls are created in different iterations of the localizer in the same
estimation window and survive after the end of this window: that is a rather different way
of handling objects from a standard particle filter implementation. Thus a management

www.intechopen.com

 Robotics, Automation and Control

428

policy and proper data structures for storage are required in a flexible implementation.
Therefore observations, even if they are created and used in an iteration and their handling
is quite straightforward, exhibit a variety of sensor models given by the range of sensors. To
support such a variety, the library provides generic sensor data.

Fig. 3 Life cycle for particle, measurement, and control objects within a single step in a real-
time particle filter.

5. Results

In this section performance of RTPF is evaluated both in simulated environment and using
experimental data collected by robot sensor. An important purpose of this section is the
comparison of the two RTPF versions differing in the method for computing mixture
weights.

5.1 Simulation

Several tests were performed in the environments shown in Fig. 4 and Fig. 5. They
correspond to the main ground floor hallway in the Computer Engineering Department of
the University of Parma (Fig. 4) and to the hallway of the Department of Computer Science
and Engineering of the University of Washington (Fig. 5, map adapted from (Kwok et al.,
2004)). These environments allow verification of RTPF correctness while coping with several
symmetric features, which may cause ambiguities in the choice of correct localization
hypotheses. The environment of Fig. 5 had been exploited in (Kwok et al., 2004) to verify
RTPF correctness and has therefore been considered as a reference.
In simulation, the map is stored as a grid with a given resolution (0.20 m) and is used both
to create simulated observations and to compute importance weights in correction steps.
Data provided to the localizer consist of a sequence of laser scans and measurements:

www.intechopen.com

An Improved Real-Time Particle Filter for Robot Localization

429

scanned ranges are obtained by ray tracing a beam on the discretized map. The
measurement model is also based on ray tracing according to standard beam models for
laser scanner (Thrun et al., 2005). In our tests we have used only three laser beams
measuring distances to left, right and frontal obstacles; such poor sensor data stress the role
of algorithm instead of sensor data quality. A gaussian additive noise was added to both
range beams and robot movements representing environment inputs and robot state in
simulation. Thus simulation tests are performed in an environment known in detail and are
best suited for comparing performance between algorithms. The task of the robot is to
achieve localization while moving in the environments of Fig. 4 and Fig. 5 along assigned
trajectories. Simulated trajectories, labeled as Path 1 and Path 2 in Fig. 4 and Fig. 5,
correspond to lengths of approximately 5 to 8 m.

Fig. 4 Map 1 – Hallway and simulated paths in the Computer Engineering Department,
University of Parma.

Fig. 5 Map 2 – Hallway and simulated paths in the Department of Computer Science and
Engineering, University of Washington.

Localization algorithms investigated are RTPFs in the two versions: the original steepest
descent-based one (RTPF-Grad) and the proposed one based on the effective number of
samples (RTPF-Eig). During these tests the partition set size was 1000 samples.
A summary of simulation results is reported in Fig. 6 and Fig. 7, where curves show the
localization error for the two algorithms at each iteration by considering convergence to the
maximal hypothesis. For both curves, each value is obtained by averaging the distances of
the estimated pose from the real pose over 10 trials where localization eventually converged
to the correct hypothesis within the maximum number of iterations (set to 40). For both

www.intechopen.com

 Robotics, Automation and Control

430

algorithms there were also a few instances where localization did not converge to the correct
hypothesis within the length of the path, although the correct hypothesis was the second
best. These unsuccessful experiments were approximately 10% of all simulated localization
trials. We did not verify whether the robot would eventually recover its correct pose in the
environment with further navigation.
On the average, the two versions of the RTPF-based localizer converge to some few
hypotheses after three iterations, and the common samples distribution is multi-modal.
Hence, cluster search leads to few hypotheses with different weight. In our tests a
hypothesis close to the correct robot pose always exists, and when this hypothesis prevails
there is a sudden change in localization error, as shown in Fig. 6 and Fig. 7.
Convergence is helped by recognizable features, e.g. the shape of scans, but when the
environment is symmetric it can be difficult to reach, especially with limited or noisy
sensoriality. Of course, the mean error trend in Fig. 6 and Fig. 7 does not correspond to any
of the simulated trials; rather, it is the result of averaging trials with quick convergence and
trials where the correct hypothesis could only be recovered after several more iterations.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

Num. Iteration

E
rr
o
r
[m

]

RTPF-Grad

RTPF-Eig

Fig. 6 Performance of the two RTPF versions in the simulated environment of Map 1. The x-
axis represents the iterations of the algorithm. The y-axis shows the average error distance
of the estimated pose from the actual robot pose.

Fig. 8 provides an alternative view of the same data, as curves show the percentage of
simulation trials converging to the correct hypothesis (i.e. with localization error less than
1.5 m) at each iteration. For both environments, convergence is reached with only few

www.intechopen.com

An Improved Real-Time Particle Filter for Robot Localization

431

iterations in some simulation runs. In other simulations, the correct robot pose is recovered
only after about 20 or 30 iterations, i.e. after sensing map features that increase the weight of
the correct samples.
Empirically, for the examined environments RTPF-Eig seems to exhibit a slightly faster
convergence, on the average, to the correct localization hypothesis, even though its average
error at the last recorded iteration appears somewhat larger.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

Num. Iteration

E
rr
o
r
[m

]

RTPF-Grad

RTPF-Eig

Fig. 7 Performance of the two RTPF versions in the simulated environmentof Map 2. The x-
axis represents the iterations of the algorithm. The y-axis shows the average error distance
of the estimated pose from the actual robot pose.

5.2 Experiments

Real experiments took place in the environment of Fig. 4 collecting data with a Nomad 200
mobile robot equipped with a Sick LMS 200 laser scanner. The robot moved along Path 1 for
about 5 m, from the left end of the hallway in steps of about 15−20 cm and reading three
laser beams from each scan in the same way of the simulation tests. In the real environment
localization was always successful, i.e. it always converged to the hypothesis closer to the
actual pose in less than 10 iterations (remarkably faster than in simulation). Localization
error after convergence was measured below 50 cm, comparable or better than in
simulation.
To assess the consistency of the localizer’s output on a larger set of experiments, we
compared the robot pose computed by the localizer (using the RTPF-Eig algorithm) with the
one provided by an independent localization methodology. To this purpose, some visual

www.intechopen.com

 Robotics, Automation and Control

432

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

(A) Convergence in Map 1

Num. Iteration

%
 T

e
s
t
w

it
h
 e

rr
o
r
le

s
s
 t
h
a
n
 1

.5
 m RTPF-Grad

RTPF-Eig

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

(B) Convergence in Map 2

Num. Iteration

%
 T

e
s
t
w

it
h
 e

rr
o
r
le

s
s
 t
h
a
n
 1

.5
 m RTPF-Grad

RTPF-Eig

Fig. 8 Percentage of simulation trials converged to the correct hypothesis, i.e. with
localization error less than 1.5 m, during iterations for Map 1 (a) and Map 2 (b).

landmarks were placed in the environment and on the mobile robot, and a vision system
exploiting the ARToolKit framework (Kato & Billinghurst, 1999) was exploited to triangualate
the robot position based on these landmarks. The vision system provided an independent,
coarse estimate of the robot pose at any step, and hence allowed to establish convergence of
the RTPF-based localizer. The two localization estimates were computed concurrently at each
location and stored by the robot.
Fig. 9 shows the results of 10 tests of RTPF-Eig over about 20 iterations. These results
confirm that RTPF-Eig achieves localization to the correct hypothesis very fast in most
experiments. After convergence, the maximum distance between RTPF-based and vision
based estimates is about 70 cm due to the compound error of the two systems.

6. Conclusion

In this chapter, we have described an enhanced Real-Time Particle Filter for mobile robot
localization incorporating several formal and practical improvements. We have presented a
formal discussion of computation of mixture weights in RTPFs, along with a new approach
overcoming potential problems associated with the existing technique. The method
proposed in this chapter computes mixture weights as the eigenvector of a matrix and thus
avoids gradient descent, possibly prone to numerical instability. The method provides a
balance of the effective sample size of partition sets on an estimation window. We have also

www.intechopen.com

An Improved Real-Time Particle Filter for Robot Localization

433

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

Num. Iteration

D
is

c
re

p
a
n
c
y
 L

o
c
a
liz

e
r-
A

R
T
o
o
lK

it
 [
m

]

Fig. 9 Performance of RTPF-Eig using real data collected in the hallway of Map 1.

described a library efficiently supporting implementation of particle filter algorithms and
independent from any specific robot control architecture. The library takes advantage from
generic programming and from a carefully designed object lifecycle model to minimize
overhead while providing flexibility.
The proposed approach has been implemented in a RTPF for localization with a Nomad 200
mobile robot equipped with a laser range scanner, and evaluated in both simulation tests
and real experiments. In two simulation environments, the new approach has achieved a
localization performance similar to the original KLD-based algorithm, while avoiding the
potential problems associated with gradient search methods. In real experiments with the
mobile robot, the modified RTPF-based localization system has proven very effective,
yielding correct localization within a small number of filter iterations.
Of course, further experimental work is required to assess the relative merit of the improved
RTPF over the original approach. Nonetheless, the research described in this paper shows
how a through theoretical understanding of the problem and of the algorithmic solution
should be combined with a careful software implementation to attain the potential of
probabilistic localization methods.

7. Acknowledgement

This research has been partially supported by Laboratory LARER of Regione Emilia-
Romagna, Italy.

www.intechopen.com

 Robotics, Automation and Control

434

8. References

Alexandrescu, A. (2001). Modern C++ Design: Generic Programming and Design Pattern
Applied. Addison-Wesley.

Arras, K. O., Castellanos, H. F., and Siegwart, R.(2002). Feature-based multi-hypothesis
localization and tracking for mobile robots using geometric constraints. IEEE Int.
Conf. on Robotics and Automation, 2:1371–1377.

Cover, T. M. & Thomas, J. A. (1991). Elements of Information Theory. Wiley.
Doucet, A., de Freitas, J., & Gordon, N. (2001). Sequential Monte Carlo Methods in Practice.

Springer.
Elinas, P. and Little, J. (2005). sMCL: Monte-carlo localization for mobile robots with stereo

vision. Proc. of Robotics: Science and Systems.
Fox, D. (2003). Adapting the sample size in particle filters through KLD-sampling. Int. J. of

Robotics Research, 22(12):985–1003.
Fox, D., Burgard, W., & Thrun, S. (1999). Monte Carlo Localization: Efficient position

estimation for mobile robots. Proc. of the National Conference on Artificial Intelligence.
Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: elements of

reusable object-oriented software. Addison-Wesley.
Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved techniques for grid mapping with

Rao-Blackwellized particle filters. IEEE Trans. on Robotics, 23(1):34–46, February
2007.

Hester, T., & Stone, P. (2008). Negative Information and Line Observations for Monte Carlo
Localization. IEEE Int. Conf. on Robotics and Automation, pages 2764–2769.

Kato, H. and Billinghurst, M. (1999). Marker tracking and HMD calibration for a video-
based augmented reality conferencing system. Proc. of the Int. Workshop on
Augmented Reality.

Kwok, C., Fox, D., & Meilǎ, M. (2003). Adaptive real-time particle filters for robot
localization. IEEE Int. Conf. on Robotics and Automation, 2:2836–2841, 2003.

Kwok, C., Fox, D., & Meilǎ, M. (2004). Real-time particle filters. Proc. of the IEEE, 92(3):469–
484.

Leonard, J. J. & Durrant-Whyte, H. F. (1991). Mobile Robot Localization by Traking
Geometric Beacons. IEEE Int. Conf. on Robotics and Automation.

Liu, J. (1996). Metropolized independent sampling with comparisons to rejection sampling
and importance sampling. Statistics and Computing, 6(2):113–119.

Montemerlo, M., Roy, N., & Thrun, S. (2003). Perspectives on standardization in mobile
robot programming: The Carnegie Mellon navigation (CARMEN) toolkit. IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems.

Se, S., Lowe, D., & Little, J. (2002). Mobile robot localization and mapping with uncertainty
using scale invariant visual landmark. Int. J. of Robotics Research, 21(8):735–758.

Sridharan, M., Kuhlmann, G., & Stone, P. (2005). Practical vision-based Monte Carlo
localization on a legged robot. IEEE Int. Conf. on Robotics and Automation, pages
3366–3371.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabibilistic Robotics. MIT Press, Cambridge,
MA.

www.intechopen.com

Robotics Automation and Control
Edited by Pavla Pecherkova, Miroslav Flidr and Jindrich Dunik

ISBN 978-953-7619-18-3
Hard cover, 494 pages
Publisher InTech
Published online 01, October, 2008
Published in print edition October, 2008

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

This book was conceived as a gathering place of new ideas from academia, industry, research and practice in
the fields of robotics, automation and control. The aim of the book was to point out interactions among various
fields of interests in spite of diversity and narrow specializations which prevail in the current research. The
common denominator of all included chapters appears to be a synergy of various specializations. This synergy
yields deeper understanding of the treated problems. Each new approach applied to a particular problem can
enrich and inspire improvements of already established approaches to the problem.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Dario Lodi Rizzini and Stefano Caselli (2008). An Improved Real-Time Particle Filter for Robot Localization,
Robotics Automation and Control, Pavla Pecherkova, Miroslav Flidr and Jindrich Dunik (Ed.), ISBN: 978-953-
7619-18-3, InTech, Available from:
http://www.intechopen.com/books/robotics_automation_and_control/an_improved_real-
time_particle_filter_for_robot_localization

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and
derivative works building on this content are distributed under the same
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

