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1. Introduction 

In the traditional control theory, an appropriate controller is designed based on a 
mathematical model of the plant under the assumption that the model provides a complete 
and accurate characterization of the plant. However, in some practical problems, the 
mathematical models of plants are difficult or time-consuming to be obtained because the 
plants are inherently nonlinear and/or exhibit uncertainty. Thus, new methods are 
proposed to process these caracteristics [1]. In recent years, increased efforts have been 
centered on developing intelligent control systems that can perform effectively in real-time.  
These include the development of non-analytical methods of Artificial Intelligence (AI) such 
as neural networks, fuzzy logic and genetic algorithms [1] but their combinations are also 
introduced such as Neuro-Fuzzy and Genetic-Fuzzy techniques [2], [3]. Fuzzy logic is a 
mathematical approach which has the ability to express the ambiguity of human thinking 
and translate expert knowledge into computable numerical data. It has been shown that 
fuzzy logic based modeling and control could serve as a powerful methodology for dealing 
with imprecision and non-linearity efficiently [4]. Also, for real-time applications, its 
relatively low computational complexity makes it a good candidate.Therefore, fuzzy logic 
control has emerged as one of the most successful nonlinear control techniques. Fuzzy Logic 
Controllers  (FLC) are based on if – then rules integrating the valuable experiences of human. 
These rules use linguistic terms to describe systems. The mechanism of a FLC is that the 
uncertainty is represented by fuzzy sets and an action is generated co-operatively by several 
rules that are triggered to some degree, and produce smooth and robust control outputs. 
Recently, many authors proved that it is possible to reproduce the operation of any standard 
continuous controller using fuzzy controller [5] - [8]. 
Fuzzy logic controllers has shown good performances on the controlling of the complex, ill-
defined and uncertain systems [9] and are being used siccessfully in many application areas 
such as mobile robots, subway system, nuclear reactor control and automobile transmission 
control, etc . 
During the building of the FLC, the important tasks are the structure identification and 
parameters tuning [10]. The structure identification of the FLC includes the input-output 
variables of a controller, the rule base, the determination of the number of rules, the O
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antecedent and consequent membership functions and their partition on their spaces 
respectively, the inference mechanism and the defuzzification method. The parameters 
tuning includes determing the optimal parameters of membership functions antecedent and 
consequent but also the scaling factors. [11]. 
The main problem arises from there not being a systematic approach to improve system 
performance. In conventional approach, the problem of generation of rules is solved by 
exploiting the knowledge of an expert or obtaining knowledge base (i.e, training data) by 
investigating relationship between an existing controller and the target system and forming 
the rule-base by a trial-and-error approach. An important number of choices is given a 
priori, these choices are carried with empirical methods, and then the design of the FLC can 
prove to be long and delicate towards the important number of parameters to determine, 
and can lead then to a solution with poor performance [12]. 
With this subjective approach, it is difficult for a designer to examine complex systems to 
find the necessary number of rules, and to determine appropriate parameters of the rules for 
implementing the fuzzy controller [13]. Also, it isn't easy to design an optimized fuzzy 
controller. Therefore, there has been a strong motivation to automate this process and 
consequently many researchers have been working to find learning algorithms for fuzzy 
system design.  
Several approaches have been presented to learn and tune the fuzzy rules to achieve the 
desired performance. These automatic methods may be divised into two categories of 
supervised and unsupervised learning by whether the teaching signal is needed or not.  
In the supervised learning approach, at each time step, if the input-output training data can 
be acquired, the FLC can be tuned based on the supervised learning methods. The artificial 
neural network (ANN)-based FLC can automatically determines or modifies the structure of 
the fuzzy rules and parameters of fuzzy membership functions with unsupervised or 
supervised learning by representing a FLC in a connectionist way such as ANFIS or other 
[14]- [17]. 
The other category contains genetic algorithm (GA) [18]-[23] and reinforcement learning 
(RL) systems [24]-[26] which are unsupervised leaming algorithms with the self-learning 
ability [9]. The GA-based and RL-based FLCs are two equivalent learning schemes which 
need a scalar response from the environment to provide the action performance [28], that 
value is easier to collect than the desired-output data pairs in the real application [11]. 
The difference between the GA-based and RL-based FLCs lies in the manner of state-action 
space searching. The GA-based FLC is a population based approach that encodes the 
structure and/or parameterof each FLC into chromosomes to form an individual, and 
evolves individuals across generations with genetic operators to find the best one. The RL-
based FLC uses statistical techniques and dynamic programming methods to evaluate the 
value of FLC actions in the states of the world. However, the pure GA-based FLC can not 
proceed to the next generation until the arrival of the external reinforcement signal and dit is 
not easy pratical in real time applications. In contrast, the RL-based FLC can be employed to 
deal with the delayed reinforcement signal that appeares in many situations [11]. Recently, 
some researches on combining the advantages of GAs and RL have been proposed [28]-[30].  
The basic idea of the reinforcement learning is to learn, through trial-and-error interaction 
with a dynamic environnement which returns a critic, called reinforcement, which can be 
thought of as a reward or a punishment, the control actions to determine desired changes in 
the control output that will increase the index of performance. Reinforcement learning 
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techniques assume that, during the learning process, no supervisor is present to directly 
judge the quality of the selected control actions, and therefore, the final evaluation of 
process is only known after a long sequence of action. Also, the problem involves 
optimizing not only the direct reinforcement, but also the total amount of reinforcements the 
agent can receive in the future.This leads to the temporal credit assignment problem, i.e., 
how to distribute reward or punishment to each individual state-action pair to adjust the 
chosen action and improve its performance [31].  
Supervised learning is more efficient than the reinforcement learning when the input-output 
training data are available [32], [33]  
However, in most real-world application, precise training data is usually difficult and 
expensive to obtain or may not be available at all [12].   
 For the above reasons, reinforcement learning can be used to tune the fuzzy rules of fuzzy 
systems. Kaelbling, littman and Moore [34], and more recently Sutton and Barto [35], 
characterize two classes of methods for reinforcement learning: methods that search the 
space of value functions and methods that search the space of policies. The former class is 
exemplified by the temporal difference (TD) method and the latter by the genetic algorithm 
(GA) approach [36]. To solve reinforcemnt learning problem, the most approach is TD 
method [37]-[39]. Two TD based reinforcement learning approaches have been proposed the 
Adaptive Heuristic Critic (AHC) [40], [41] and Q-learning [42], [43]. The AHC consists of 
two separate networks: an action network actor) and an evaluation network (critic). Based 
on the AHC, many learning approaches have been proposed [20], [26], [40], [44]. One 
drawback of these actor-critic architectures is that they usually suffer from the local 
minimum problem in network learning due to the use of gradient descent learning method. 
Besides the aforementioned AHC algorithm based learning architecture, more and more 
advances are being dedicated to learning schemes based on Q-learning [45]. Some Q-
learning based reinforcement learning structures have also been proposed [46] - [52]. Q-
Learning is also modified to Dyna [53], TPQ-Learning [54], CQ-Learning [55], Q(λ)-Learning 
[56], and  so on.  Glorennec and Jouffe [51],[52],[57] extented the original Q-Learning 
method into a fuzzy environnment and introduced two fuzzy reinforcement learning 
methods, i.e., Fuzzy Actor-Critic Learning (FACL) and Fuzzy Q-Learning (FQL), to select 
the optimal conclusion for each fuzzy from an associated discrete action set. In these 
methods, the antecedent parameters are set using the a priori task knowledge of the user.  
From the point of view of reinforcement learning, a fuzzy inference system (FIS) is a means 
to introduce generalization in the state space and generate continuous actions in the 
reinforcement-learning problem whereas from the point of view of FISs, reinforcement 
learning is a learning method used to tune a fuzzy controller in a flexible way [58]. Fuzzy Q-
learning collapses the two measures used by fuzzy actor/critic algorithms into one measure 
referred to as the Q-value []. It may be considered as a compact version of the FACL, also we 
adopt Fuzzy Q-learning in this work because it is conceptually simpler in implementation, 
and has been found empirically to converge faster in many cases [59], [60], for each fuzzy 
rule, a q value is defined for each fuzzy consequence, which is the estimated cumulative 
reward for the fuzzy antecedents and fuzzy consequence pair of the rule. Q-learning is used 
to update these q values. Optimal or sub-optimal FLC can be constructed by choosing the 
fuzzy consequence with the highest q value for each rule. However the predefined value set 
needs to be set up by human experts and it is kept unchanged during learning, also if an 
improper value set is assigned, then those algorithms may not succeed at all [48], [50]. 
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Horiuchi and al [49] consider a similar algorithm, termed fuzzy interpolation based Q-
learning and further propose an extended roulette selection method so that continuous-
valued actions can be selected stochastically based on the distribution of Q-values [61] 
proposes another version of Q-learning dealing with fuzzy constraints. In this case, we do 
not have fuzzy rules, but “fuzzy constraints” among the actions that can be done in a given 
state. These works, however, only adjust the parameters of FIS online. Structure 
identification, such as partitioning the input and output space and determination of the 
number of fuzzy rules are still carried out offline and it is time consuming.  In [4] a novel 
online self-organizing learning algorithm is developed so that structure and parameters 
identification are accomplished automatically and simultaneously based only on Q-learning. 
In [45], [48], a dynamic fuzzy Q-learning is proposed for fuzzy inference system design. In 
this method, the consequent parts of fuzzy rules are randomly generated and the best rule 
set is selected based on its corresponding Q-value based genetic reinforcement learning. The 
problem in these approachs [4], [45], [50] is that if the optimal solution is not present in the 
randomly generated set, then the performance may be poor.  
In order to solve these problems, this paper provides a systematic procedure for designing 
Fuzzy PID (FPID) controllers based on a reinforcement learning method. It is an automatic 
method capable of self-tuning parameters of a FLC based only on reinforcement signals. 
Continuous states are handled and continuous actions are generated by fuzzy reasoning. 
Prior knowledge can be embedded into the fuzzy rules, which can reduce the training time 
significantly. The proposed method is an efficient learning method whereby not only the 
conclusion part of a FLC can be tuning online, but also the parameters of antecedent part of 
a FLC can be tuning.  We employ this approach for testing output voltage control of a 
DC/DC buck converter which is a traditional benchmark for testing nonlinear controllers, 
due to their inherent nonlinear characteristics [62], [63]. 
The best-known industrial process controller is the proportional-integral-derivative (PID) 
controller because of its simple structure, easy of design, inexpensive maintenance, low cost, 
and robust performance in a wide range of operations. However, it has been known that 
conventional PID controllers generally do not work well for nonlinear systems, higher order 
and time-delayed linear systems, and particularly complex and vague systems that have no 
precise mathematical models. To overcome these difficulties, the FPID controllers were 
developed and their improvement is still investigated [64]-[82]. This paper is devoted to this 
problem and describes some of the design aspects of the FPID. 
The key concept of the proposed learning scheme is to evaluate all the principal parameters 

FPID in a procedure in three stages. The idea is to start with a basic FPID controller with its 

structure is chosen a priori and fixed during learning. In this work, we employ a Takagi–

Sugeno of order zero as the controller of the system and the parameters tuning of fuzzy 

controler are the main issue researched. The membership functions or consequent 

parameters of each input/ouput variable are determinated with an equidistant partition. 

The neccessary scaling factors of the basic FPID are deduced from an initially one open-loop 

experimental response indicial as Ziegler-Nichols or Broida methods. This simple 

experimental on-site can be thought of as initial knowledge of the system and this basic 

FPID controller can yield an action that is feasible but far from optimal. In view of this, 

Reinforcement Learning is added to tune the fuzzy controller online. The predefined 

settings are used as starting points, also it is possible to determine the optimal parameters 

without too many iterations and the system can be operated safely even during learning. 
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Also in stage second FQL algorithm is used to select the optimal parameters of the FPID 

from an finite discrete set around the precedent predefined settings. This can be thought of 

as roughly tuning.  The FQL algorithm proposed by Jouffe [52] is here extended for the 

antecedent parameters. Finally, in the third stage, a fine tuning procedure is follow to 

improve the FPID performance. This fine tuning is developped into an architecture 

composed of two integrated feedforward networks is proposed. One network (Q estimator 

QE-FIS) acts as a critic network to guide the learning of the other network (the action 

network). The action network is our FPID controller. Using the temporal difference (TD) 

prediction method, the critic network can predict the external reinforcement signal and 

provide a more informative internal reinforcement signal to the action network. The action 

network uses the gradient-descent algorithm to adapt itself in continuos according to the 

internal reinforcement signal. With the proposed architecture, the best parameters of the 

FPID in considering an IAE-criterion are determinated. This stage can be seen of as fine 

tuning and this way can solve the local minima problem.  As a result, unlike many fuzzy Q-

learning approaches that select  the optimal action based on finite discrete actions [83]-[85],  

our proposed algorithm allows to obtain a continuos control output, the agent to learn more 

effectively, and helps reduce the time spent acting randomly. The salient features in our 

method are: (1) antecedents parameters of the fuzzy rules also can be updated, (2) not only 

discrete-valued antecedents/consequents parameters but also continuous-valued can be 

treated. (3) our technique can be used a precise simulator to speed up the learning process 

after final learning is achieved through the real system. Simulation and experiment results 

of a DC/DC Buck Converter indicate that efficiency and effectiveness of the proposed 

approach. Furthermore, the FPID controller learned by this approach has robust and 

adaptability, and can be applied to the different environments. 

This paper is organized as follows. Section II briefly introduces reinforcement learning. The 

implementation and the limits of the Fuzzy-Q-Learning algorithm are introduced in section 

III. The architecture of the controller is described in section IV. The learning algorithms and 

parameter update laws are presented in section V. Section VI illustrates the performance of 

our proposed method through a static converter and compares experimental results with 

related works. Finally, conclusions and prospects are drawing in section VII. 

2. Fuzzy PID system presentation 

2.1 Control structure 

The aim of this paper is the implementation of a FPID controller achieving the following 
properties: 
1. Robustness around the operating point (e.g., in the case of a load change); 
2. Good dynamic performance (i.e., rise time, overshoot, settling time, and limited output 

ripple) in the face of input voltage variations (and load changes); 
3. Invariant dynamic performance in presence of varying output operating points. 
We use a FPID based on the Takagi-Sugeno-type zero order method. In the FLC literature 

many forms of FPID structures [66], [71], [74] have been proposed. The controller in our 

work is a simple and classical FPID controller drawn on Fig.1.  It is divided in two parts: a 

fuzzy part which performs the proportional-derivative action and a crisp integrator which is 

placed parallel of this fuzzy part so as to ensure a zero steady state error. Such a FPID 
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combines a high effciency with implementation easyness and is userfriendly because of its 

FPID-like action.  

The two inputs of the controller are the error e(k) between the reference signal y* and the 

measured signal y and the variation of this error de(k). The output variable is the change in 

the control quantity ∆cn(k). So as to ensure a good portability of the FPID controller, 

normalisation factors called em, dem and gm are used (Fig.1). 

 

Fig 1. Structure of the Fuzzy PID Controller 

The FPID considered here uses triangular membership functions with strong fuzzy partition 
because of its facilties and excellent approximation properties, and have been shown to be 
sufficient in a number of applications. We adopt for the  two normalised input values en(k) 
and den(k) seven triangular membership functions on each input and seven singletons at the 
output. We use the Mac Vicar-Whelan ‘base rules (1977) with 49 fuzzy rules. The 
membership functions are called PB, PS, PVS, Z, NVS, NS andNB (P: Positive, N: Negative, 
B: Big, S: Small, VS: Very Small). So as to warrant a similar response of the system for 
positive or negative sollicitations, a zero-symmetry can be imposed for both input 
membership functions and output singletons and a classical antidiagonal rules table is used. 
In addition, for a good portability of the FPID, the two inputs and the output are normalized 
on a [-1, +1] universe of discourse. Furthermore, the FPID is supposed to be well-
normalized, it implies that the position of PB's and NB's apex are assigned to ±1 
respectively. For the two inputs and the output of the FPID, the positions of the PS’s and 
PVS’s membership function’s apex are mobile.  Furthermore, the and-method is based on 
the product and the defuzzyfication method on the center of gravity is considered.  

2.2 Factors definitions 

In this part, we suppose that we don’t know the dynamic of the system to control. Even for 
such a very simple fuzzy control structure, the tuning parameters of such a FPID are very 
numerous (positions of membership functions, normalisation gains, fuzzy rules, …). In this 
paper and so as to limit the number of tuning parameters, we just hold 15 or 26 of these 
parameters back, which contributions to the optimization process according to the IAE 
criterion seam to be the greatests. These 15 or 26 parameters, that constitute the set of 
controlable factors, are the following: 
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Fig 2. Membership functions for the two inputs e, de 

• On the input e of the FPID: the position of the membership functions apex PS and PVS, 
the position of the membership functions apex NS and NVS is obtained by symmetry 
(fig.2.). The normalization factor em is supposed to be equal to the magnitude of the 
step sollicitation.  

• On the input de of the FPID: the position of the membership functions apex PS and PVS 
and the position of the membership functions apex NS and NVS is obtained by 
symmetry.  

• On the output ∆cn of the FPID: the positions of the PS's and PVS's singletons. The 
principle of reinforcement learning allows considering for each fuzzy rule an individual 
discrete action set. Also at the end of the learning processus, the same linguistic label 
(Table I.4.) can have other significance in the base rule. Consequently, we obtain 11 or 
22 tuning parameters in the case of a classical antidiagonal rules table or not 
respectively. 

The normalization factor dem, the denormalization gain gm and the integrator gain Ki are 
fixed during the learning processus. They are determited by an open-loop identification test. 

3. Q-learning algorithms 

As previously mentioned, there are two ways to learn either you are told what to do in 
different situations or you get reward or punishment for doing good respectively bad 
actions. The former is called supervised learning and the latter is called learning with a 
critic, of which reinforcement learning (RL) is the most prominent representative with the 
self learning ability. It is shown that supervised learning is more efficient than reinforcement 
learning [32]. However, reinforcement learning only needs the critic information (evaluative 
signal) with respect to the different states of the controlled system [35]. This evaluative 
signal contains much less information than the reference signal used in supervised learning; 
also the reinforcement learning is appropriate for systems operating in a knowledge-poor 
environment [28]. 
The basic idea of reinforcement learning is that agents learn behaviour through trial-and-
error interactions with the controlled system, and receive a critic, called reinforcement, 
which can be thought of as a reward or a punishment for behaving in such a way that a goal 
is fulfilled. This learning method is based on the common-sense idea that if an action is 
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followed by a satisfactory state, or by an improvement, then the tendency to produce that 
action is strengthened, i.e., reinforced [58].  Reinforcement learning does not need teacher 
signal to guide action, since the learner is not told which action to take, it must discover the 
policy most effective, i.e. to know, in each possible situation, which action is achieved to 
maximize the expected cumulative reward in the long-term. In reinforcement learning, the 
final evaluation of process can be only known after a long sequence of actions. Thus, an 
internal evaluation function that is more informative than the evaluation function by the 
external critic is considered. This internal evaluation function takes the form of the expected 
sum of infinite horizon discounted payoffs, called the evaluation value of a policy:  

 ∑∞==
0t

t

k rR γ  (1) 

Where Ǆ is the discount factor (0 ≤Ǆ≤1) used to determine the present value of future 
rewards.and rt is the external reinforcement signal received at time t. 
The idea of Reinforcement Learning can be generalized into a model, in which there are two 

components: an agent that makes decisions and an environment in which the agent acts. For 

every time step t, the agent is in a state st ∈S where S is the set of all possible states, and in 

that state the agent can take an action ut∈  (Ut), where (Ut) is the set of all possible actions in 

the state st. As the agent transits to a new state st+1 at time t + 1 it receives a numerical 

reward rt +1,. It  up to date then its estimate of the evaluation function of the action ( ),t tQ s u using the immediate reinforcement, rt +1, and the estimated value of the following 

state, ( )'1* ,t t tQ s u+ , which is defined by: 

 ( ) ( )
1

' '

1 1
'

* , max ,
t s

t

t t t t
u U

Q s u Q s u
+

+ +∈=  (2) 

The Q-value of each state/action pair is updated by 

 ( ) ( ) ( ) ( ){ }'

1 1 1, , * , ,t t t t t t t t t t t t tQ s u Q s u r Q s u Q s uβ γ+ + += + + −  (3)         

Where ( ) ( )1 1* , ' ,t t t t t t tr Q s u Q s uγ+ ++ −  is the temporal difference (TD) error and ǃ is the 

learning rate. This algorithm is called Q-Learning. It shows several interesting 

characteristics. The estimates of the function Q, also called the Q-values, are independent of 

the policy pursued by the agent. To calculate the evaluation function of a state, it is not 

necessary to test all the possible actions in this state but only to take the maximum Q-value 

in the new state (eq.4). However, the too fast choice of the action having the greatest Q-

value: 

  ( )
1

1' arg max ,
t s

t

t t t t
u U

u Q s u
+

+∈=  (4) 

Can lead to local minima. To obtain a useful estimate of Q, it is necessary to sweep and 

evaluate the whole of the possible actions for all the states: it is what one calls the phase of 

exploration [35].  
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In the previous equation, at state, only the Q-value of the activating action is updated, and 

the actions taken during the past time steps are not considered. But as is often the case with 

real, a reinforcement signal may not be available at a time long after the occurrence of a 

sequence of actions. This requires improving long-term consequences of an action or of a 

strategy for performing actions, in addition to short-term consequences. This problem is 

known as temporal credit assignment problem, i.e., how to distribute reward or punishment 

to each individual state/action pair to adjust the chosen action and improve its performance 

Also, to speed learning Sutton [35] extended the evaluation in all the states, according to 

their eligibility traces that memorise the previously visited state/action pairs weighted by 

their proximity to time step. They work  like a short-term memory process activated by the 

occurrence of state/action pairs.  The eligibility traces combined with Q-learning can be 

defined in several ways [48], [51].  Accumulating eligibility is defined by: 

 ( ) ( )
( )11

1                      

                  otherwise

t t

t

t

e s if s s
e s

e s

γλ
γλ

−
−

+ =⎧⎪= ⎨⎪⎩
  (5) 

where λ is the eligibility rate used to weight time, since it accumulates whenever a 

state/action pair is selected and decays gradually when is not selected.  

The algorithm Q (λ) is a generalization of Q-Learning (when λ=0) which uses the eligibilities 

traces.  With eligibility trace, equation (3) is changed to: 

 ( ) ( ) ( ) ( ){ } ( )1 1 1, , * , ' ,t t t t t t t t t t t t t tQ s u Q s u r Q s u Q s u e sβ γ+ + += + + −   (6)                      

4. Fuzzy Q-learning algorithms   

The discrete Q-Learning such as we described it uses a discrete space of states and actions 

which must be have reasonable size to enable the algorithms to converge in an acceptable 

time in practice. In this case, a look-up table can be built up by listing the state/action pairs 

with their Q values. However in many applications, the number of state/action pairs is very 

large.  Thus a method that is able to make Q-Learning applicable to the continuous problem 

domain is necessary. The Fuzzy Inference System (FIS) learner is one existing generalization 

methods which can be introduce generalization in the state space and generate continuous 

actions in the reinforcement-learning problem.   

A- FQL algorithm for  consequents part (discrete parametrs tuning) 

The principle of Fuzzy Q-Learning (FQL) proposed by Jouffe [51] is reinforcement learning 

method that tunes with only the consequent part in an incremental way based only on 

reinforcement signals. Each fuzzy rule Ri has possible k discrete candidate consequents 

(actions) ( )
1 2
, ,.....,i i i

i kU u u u=  and it memorizes the parameter vector q associated with 

each of these actions. Local actions (
1,......., ku u ) selected from U compete with each other 

based on their q-values so as to maximize the discounted sum of rewards obtained while 

achieving the task. Each Rule Ri of the FPID can be described as follow: 
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),(  with   is or                                     

-----               -----                                    

),(  with  is or                                     

),( with   is  then  is  and  is e 

22

112

i

1

i

k

i

k

i

iii

iiii

uSquu

uSquu

uSquuLdeLIf

i

mL  is linguistic label related to each 

input state, i

ju  is a rule consequent (action) which corresponds to the consequent part of i-th 

fuzzy rule Ri and has its own q-value i

jq .   

1-Generation of Continuous Actions 
The current state St is perceived by the means of its activated degree of its firing rules. The 
winning local action cooperates to produce the global continuos output action which is 
defined by the weighted sum of the local actions elected in the fired rules that describe this 
state. It is given by  

 
,

1 1

( ) ( )
n n

i i i

t t U t t t t t

i i

U S S q uπ α α
= =

= =∑ ∑  (7) 

Where i

tu  is the selected action of rule Ri, at time step t by a policy 
,( )U t tS qπ and i

tα  is the 

rule’s normalized firing strength.  

After application of the global action, ( )t tU S , the states change to St+1. 

Optimal or sub-optimal FPID can be constructed by choosing the fuzzy consequence with 
the highest q value for each rule. But, at the beginning stage for training, q-value can not 
correctly describe the valuation of action and taking the greedy actions or exploiting the 
previous experience too much during the learning would lead to local optima. The learnin 
algorithm would fail to find good actions On the other hand, taking random actions or 
exploring the spaces too much would affect both the learning convergence and the learning 
rate. Therefore in order to explore the set of possible actions and acquire experiences 
through the reinforcement signals, the actions are selected using an Exploration-Exploitation 
strategy. There are some random policies and the Boltamann probability distribution and -
greedy method are the effective exploration/exploitation policy (EEP) to choose action. The 
algorithm FQL proposed in this paper uses an EEP [50], [51], combining an undirected 

exploration part ( )i uρ and directed exploration part ( )i uη  which are introduced by a 

random vector and a counter associated to actions. The proposed exploration-exploitation 
policy selects a local action from possible discrete actions vector, as follows:  

 ( )( , ) arg max( ( , ) ( , ) , )U t t t t t t
u U

S q q S u S u S uπ η ρ∈= + +  (8)    

The undirected term of exploration η stems from a vector of random values Ψ, (exponential 
distribution) scaled up or down to take into account the range of q values. 
 

1 max ( ( , )) min ( ( , ))

(max ( ( , )) min ( ( , )))
, ,

max( )

u t u t

f

p u t u t

if q S u q S u

s
s q S u q S u

otherwiseψ

=⎧⎪⎪= ⎨ −⎪⎪⎩
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 ( , )t fS u sη ψ=  (9) 

where sp is the noise size, with respect to the range of q qualities, and sf is the corresponding 
scaling factor. Decreasing the factor sp implies reducing the undirected exploration 
The directed term ρ gives a bonus to the actions that have been rarely elected 

 
, ( , )

( )
t t

t n S u
S u

e

θρ =  (10) 

where θ represents a positive factor used to weight the directed exploration and nt(St,u) is 

the number of time steps in which action u has been elected. This term is not directly 
available;  it is approximated by the following fuzzy inference: 

 

1

( , ) ( )
n

i i

t t t t

i

n S u n u α
=

= ∑  (11) 

where ( )itn u is the number of applications, at time step t, of  action u in rule Ri. Let be i

tu  

the elected discrete action at time step t in rule Ri. ( )itn u is then defined according to 

 
1( ) ( ) 1,i i

t tn u n u−= +  (12) 

2-.Update of  Q-Values  
We define also a function Q, which gives the action quality with respect to states. Q-values 
are also obtained by the FPID outputs, which are inferred from the quality of local discrete 
actions that constitute the global action.  

 

1

( , ) ( , )
n

i i

t t t t t t t

i

Q S U q S u α
=

= ∑   (13)       

where Ut is the global continuos action, i

tu  is the selected action of rule Ri at time step t and 

qt is the q-value associated with fuzzy state, Si and action, i

tu  

   Based on TD Learning, the Q-values corresponding to the rule optimal action are used to 
estimate the TD error, which is defined as follows : 

 ( ) ( )1 ' 1

1

( max , '
n

i

t t u U t t t t

i

Q S q S u α∗ + ∈ +=
=∑   (14) 

and the TD error is defined only with quantities available at time step t + 1 as follow 

          * ( ) ( , )
1 1 1
r Q S Q S u

t t t t t t
t

ε γ= + −+ + +#  (15) 

This TDerror can be used to evaluate the action just selected. If the TD error is positive, it 
suggests that the quality of this action should be strengthened for future use, whereas if the 
TD error is negative, it suggests that the quality should weakened [4]. The learning rule by 
taking the eligibity traces is given by  
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( , ) ( , ) ( , )

1 1 j
i i i iq S u q S u e S u

t i t t i t t t t t i
β ε α= ++ +#   (16) 

Where i
t

β is the adaptative learning rate  of rule Ri at time step t which is updating as 

follow: 

1.
i i

t t tδ ε α+= #  Integrates eligibility trace  

          
1

1 1

. 0,

(1 ) . 0,

i i i

t t t

i i i i

t t t t

i

t

k if

if

otherwise

β δ δ
β β ψ δ δ

β
−

+ −

⎧ + >⎪= − <⎨⎪⎩
 (17)                          

i
t

i
t

i
t 1)1( −+−= δϕδϕδ  Represents the geometric average 

  i
t

β  is used in order to increase the convergence rate during the FPID approximation and 

prevent oscillations and it is based on the Delta-Bar-Delta learning rule [51]. The rule (17) 
increments the critic learning rates linearly to prevent them from becoming too large too fast 
and decrements them exponentially to ensure that they always stay positive and to enable 
them to decrease rapidly  

and ( , )e S u
t i j

is the trace associated with discrete action ui of rule Ri at time step t,  

 

( )

(

( ), otherwise

,
1

, )

,
1

t

i
e S

e St
e S

iu if u ui ti jt
u
i j

u
i jt

γλ α
γλ

+
=

=−
−

⎧⎪⎨⎪⎩  (18) 

The traces are updated between the action computation and its application. 

B- FQL algorithm for  antecedents part ( discrete parametrs tuning) 
In the previous method, the antecedent parameters are set using the a priori task knowledge 
of the user. To restrict a FPID optimization to the only tuning of the parameters of the 
consequent part is often insufficient to reach high performances.  Also in this paper, we 
bring a slight difference to the algorithm proceeding by introducing an extension to the 
Fuzzy Q-Learning algorithm to also allow the online tuning of the parameters of the 
antecedent part (positions of input fuzzy sets). 
The principle of the FQL algorithm applied to the antecedent parameters will consist in 
selecting for each membership function a modal point from a possible discrete candidate 

modal points set basing on the evaluation function of the action ( ),t tQ s u  because as the 

equations (7, 13) show it, the calculation of the action U and its  quality Q(S,u) is closely 
linked to the antecedent parameters by the means of the degrees of activation of the fuzzy 

rules 
i

tα . The algorithm principle is depicted in Fig.3, 4. 

Let us consider the FPID controller with the two input variables e or de. Each universe of 
discourse of e  or de is partitioned in Nmfi  membership functions 
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j

iF  :{
Nmfi

i

j

iii FFFF ,,,,, 21 AA } with each membership function.
j

iF has an possible 

discrete modal points set { }jiNnivj

i

kj

i

j

i

j

i aaaajiA ,,,2,1, ,,,,:),( AA ,    where 
kj

ia
,

 is 

the  keme  point modal possible of  the  jeme membership function of the input i 
j

iF and Nnivi,j  

is the cardinal of the set. Each Rule Ri of the FPID can be described as follow: 

,1 ,1
 ( ) ( )

1 1 2 2

,2 ,2
                ( )                      ( )

1 1 2 2

                  .........                             .........

,
                ( )  

1 1

i ii i iIf e is F a and de is F a Then u is u
t

i ii ior F a or F a

i kior F a
,

                    ( )
2 2
i kior F a

 

 

Fig. 3.  FQL Structure for the antecedent part 

As for the previous algorithme (section IV-A) local modal points (
1,......., ka a ) selected from 

A compete with each other based on their q-values so as to maximize the discounted sum of 

rewards obtained while achieving the task. Global quality Q for the state St is then defined 

by the inference of these qualities locally elected 

 ( ) ( )2
( )

1 1

jN m f Fi j iQ S q a x
t t t i t i

i j

μ= ⋅∑ ∑= =
 (19) 

where j

ia is the elected modal point at the time step t 

for the membership function j

iF   by an exploration-exploitation policy and ( )iF
x

j
iμ  is  the 

membership degree of the input variable xi (x1=e , x2=de) to j

iF  and  it measures the 

contribution of the modal points to the generation of the globale action . 
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Execution Procedure 
In order to describe the working principle of the FQL algorithm applied to the antecedent 
parameters, a one-time-step global execution procedure is presented.  Let t+1 be the current 
time step; the learner has performed the action Ut and has received a reinforcement signal 
rt+1according to the state transition St to St+1. After the fuzzification step and rule strength 
computations (describing the new state ) by using the modal points (at) elected with the step 
of previous time t,, the eight stages are as follows: 
 

 

Fig. 4. FQL Algorithm Principle for the antecedent part   

1. Estimation of the t-optimal evaluation function corresponding to the current state from 
the best modal points of each membership function, as follows.  : 

Associated 

qualities to the 

elected modal 

points 

Membership 

functions 

Inference : 
j

i

j

iq μ*
11 * iiq μ ii Nmf

i
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iq μ*
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 ( )( ) ( ),

i,j

2
,

1
1,Nniv    

1 1

( )
i j

j
i

Nmf

Fj k

t t t i t i
k

i j

Q S Max q a xμ∗ + == =
⎛ ⎞= ⋅⎜ ⎟⎝ ⎠∑ ∑  (20)         

2. Compute the TD error ; 

 
1 1 1( ) ( )t t t t t tr Q S Q Sε γ ∗+ + += + −#   (21)                         

3. Update the adaptative learning rate ( ), 1j k

i tϑ +  with the Delta-Bar rule by using  the 

equation defined in (17) ; 
4. Tune parametr vector  q based on on current eligibility trace ; 

  ( ) ( ) ( ) ( ), , , ,

11 1j k j k j k j k

i i i t iq t q t t e tϑ ε ++ = + + ⋅ ⋅#  (22) 

        where: 
jii NnivkNmfjni ,,...,1,,...,1,,...,1 ===  

5. Elect the modal points j

ia for each membership function j

iF  by using an exploration-

exploitation strategy identical to that used in algorithm FQL for the  consequents part 
and defined as (8) ; 

6. Estimation of the new evaluation functions for the current state t+1 with the new modal 
points vector. We recompute the membership degrees of the inputs to the new 

membership functions (
j
iF

t 1+μ ). 

7. Update the eligibility trace which will be used in parameter updating at the next time 
step: 

 
, ,

, 1

,

( ) ( ),
( 1)

( ),

j
iFj k j k j

j k i t i i i

i j k

i

e t x if a a
e t

e t otherw ise

γλ μ
γλ

+⎧ + =⎪+ = ⎨⎪⎩
 (23)  

        Eligibility trace values need to be reset to zeros at the end of each episode ; 
8. New estimation of the evaluation function corresponding to the elected modal points at 

the current state for the current state with the new updating parametrs:   

 ( ) 2

1 1 1 1

1 1

( ) ( )
i

j
i

Nmf
Fj

t t t i t i

i j

Q S q a xμ+ + + += =
= ⋅∑ ∑  (24)                     

         ( )1 1t tQ S+ +  will be used in the error computation at the next time step.  

5. Continuos fuzzy Q-learning algorithm (continuous parametrs tuning) 

Until now, the definition of controlable factors for the FPID in the reinforcemnt learning 
algorithms has just been led on discrete levels [83]- [85] which are kept unchanged during 
learning. This is the basic idea of most existing algorithms which adopt Q-learning. In 
general, however, this is not case and then the algorithm may fail. Indeed, for complex 
systems like static converter, priori knowledge are not available, then it becomes difficult to 
determine a set of parameters in which figure the optimal controlable factors for each fuzzy 
rule and thus the FPID controller can’t accomplish the given task through Fuzzy Q- 
Learning.   
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To ensure a fine optimization of these parameters in the vicinity of those obtained in the last 
section, a continue reinforcement learning algorithm [58] has been proposed. Compared to 
the idea in this article, we employ an FIS, in the place of a neural network, to estimated Q(S, 
u) which is only used to tune the parameters of the FPID. As a result, our proposed 
algorithm is more applicable to real systems because we combine reinforcement learning 
with an Fuzzy  Logic Controller (FLC) and it learns more effectively, and helps reduce the 
time spent acting randomly.  
The overall architecture of this FLC, inspired of [58]  is shown in Fig. 5. It is similar to that of 
the FACL [51]. The proposed controller is constructed of two parts: a critic, a Q(S, u) 
estimator FIS (QE_FIS ) and an actor, the FPID which have two main responsabilities 
respectively : the critic is to estimate the optimal-action value function Q*(S,u), and the actor 
is to get the control output based on the estimated-action value function Q(S,u). There is an 
indirect coupling between the two.  Indeed, when  action U acts in the system, the state St 
transites towards the new state St+1. According to this transition, the system emits a 

reinforcement rt+1which is used in the error  TD 1tε +# . According to the latter, we adjust the 

parameters of the evaluation function Q(S,u) which is then used to tuning in a continuous 
way the controlable parameters of the FPID in such manner to maximize quality Q(S,u)by a 
rise of gradient. The architecture of this FLC is explained in detail in the following parts of 
this section. 
 

 

Fig. 5. Architecture proposed for the continuous tuning of the parameters FPID 

A.  FIS System for Estimating the Optimal-Action Value Function 

As the approximator of the value function for reinforcement learning, different types of 
approximators have been proposed for different tasks and different objectives. Interested 
readers can see references indicated in [58] for more information about approximator 
methods. In this paper, we use a Fuzzy Inference System (FIS) to approximate and to predict 
the optimal-action value function Q*(S,u) due its good approximation property. The 
Q*(S,u)estimator fuzzy (QE-FIS) is associated with the same inputs S of the FPID also they 
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can be to amalgamate as an only one fuzzy controller which allows a considerable profit in 

the computing time.The QE-FIS is based on the prediction TD error 1tε +#  (Fig. 5) for the 

optimization of its parameters.  It  is used to guide the FPID controller to tune parameters so 
that the fuzzy controller will achieve better performance.  

B. FPID for producing the control output 

The FPID generates the control output u that maximizes the action value function Q (S,u) 
produced by the QE-FIS incrementally. The final output provided by FPID maximizes  
Q (S,u) with respect to all possible u, instead of the finite candidate discrete action set U in 
the last section. By its robustness,  the FPID can achieve acceptable performance even in the 
early stage of learning, in which the approximation error of Q (S,u)is large [58] and the 
information, obtained in the section preceding, about the candidate discrete factors set U 
and A allow it to learn more effectively by narrowing the research space and to speed up the 
learning processus. 
Consider a multiple-input single-output (MISO) Fuzzy Logic Controller (FLC) that performs 

a mapping from a state vector nT

nxxxx ℜ∈⋅⋅⋅= ),,,( 21
 to a control input u ∈ℜ . Using the 

Takagi–Sugeno model, the If–Then rules of the FLC may be expressed as  

   0 1 1

1 1: ,
_

l l l l

n nl l l

n n l

u K K x K x FPID
R If x is F and x is F Then

q q QE FIS

⎧ = + + ⋅⋅⋅ + →⎪⋅⋅⋅⋅ ⎨ = →⎪⎩
 

where 
l

iF is the label of the fuzzy set in xi for l= 1, …M (M is rules number), 

0 1, ,l l l

nK K and K⋅ ⋅ ⋅   are the constant coefficient of the consequent part of the fuzzy rule and ql 

is local action quality ul. We consider in a way general the first input x1 has Nmf1 membership 
functions and the second input x2 has Nmf2 membership functions. In our application  

1 22, ( )n x e and x de= = = , Nmf1=7, Nmf2=7,
0 10, 0, 0l l l

nK K and K≠ = ⋅⋅⋅ =  

have different consequents and the local quality ql entirely qualifies the Rl rule, from where 
the idea to use it to tune the controlable parameters of the FPID. We use product inference 
for the fuzzy implication and t norm, singleton fuzzifier, and center-average defuzzifier; 
consequently, the final output value of the FPID and the final quality value of the QE_FIS 
are respectively  

 

1 2

1 2

, ,

1 1 0

,

1 1

( )

Nmf Nmf n
k t k t

i i

k t i

Nmf Nmf
k t

k t

K x

u x

α
α

= = =

= =

⎧ ⎫⎛ ⎞⋅⎨ ⎬⎜ ⎟⎝ ⎠⎩ ⎭=
∑ ∑ ∑

∑ ∑
 (25) 

 

1 2

1 2

, ,

1 1

,

1 1

( , )

Nmf Nmf
k t k t

k t

Nmf Nmf
k t

k t

q

Q x u

α
α

= =

= =

⋅
= ∑ ∑

∑ ∑
 (26) 
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where  lα  is the firing strength of the fuzzy rule Rl calculated as follow )(
1

i

n

i

Fl x
l
i∏== μα ,   

µ l

iF  is the membership degree of the fuzzy set l

iF  , ⎟⎠
⎞⎜⎝

⎛∑=
n

i

i

l

i xK
0

 is the conclusion part of 

the fuzzy rule Rl , ( x0 = 1) and ql is the local action quality of the fuzzy rule Rl . With the 

choice of strong fuzzy partitions 1
1 2

1 1

, =∑ ∑= =

Nmf

k

Nmf

t

tkα .  

C. Stochastic Action Modifier (SAM) 

In order to guarantee that Q(x, a) converges to Q*(x, a) with a probability equal to 1, we 

implement an exploration strategy for the control output u provided by the FPID which 

deals with continuos actions. For that, we add a stochastic action modifier (SAM) after the 

FPID and before the system input [58]. The SAM generates the control command uc, which is 

a gaussian random variable with mean u recommended by the FPID and standard deviation 

σu, and σu satisfies the condition that it will converge to zero gradually, i.e.   

 ( ) ( ), lim ( ) 0c u u
t

u u t n t and tσ σ→∞= + ⋅ =  (27) 

where n(t) represents a gaussian random variable normalised and centred. 
The adopted standard deviation is as follow: 

 ( ) .0,exp)( Zαασ avecttu −=   (28)  

D. Learning algorithms for FLC 

In this section, we develop the learning algorithms for the QE-FIS and the FPID. The 
learning mechanism (estimation of local qualities ql) of the QE-FIS is the combination of the 
TD methods and the gradient descent algorithm. The learning mechanism of the FPID is 
based on gradient rise algorithm. Indeed, the global quality Q (x, u) (see equation 26) 
qualifies the action u but also the FPID [45].  Thus more its value is high, plus the 
performances of FPID are better.  We adjust consequently the antecedents parameters 

(modal points of the membership functions) and the consequents parameters (the l

iK   

coefficients parameters) of  the FPID in such manner to maximize global quality Q (x, u). 
While starting of a SIF optimized in the phase of discrete reinforcement learning, the 

proposed algorithm uses two stages to avoid all risk of instability.  These two stages 

constitute the continuous reinforcement learning algorithm: - the first stage is the 

simultaneous optimization of the antecedent and consequent parameters of the QE_FIS, 

while fixing the consequent parameters of FPID ([values found in the phase of the discrete 

reinforcement learning) - the second stage is the simultaneous optimization of the 

parameters of the FPID and the QE_FIS, while fixing the antecedent parameters to the 

values found in the stage one.   

1. Learning algorithm for consequent (QE-FIS) 
From the previous section on reinforcement learning, we know TD methods learn their 

estimates, in part, on the basis of other estimates. We can also tune the consequent 
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parameters of our proposed QE-FIS based on this method. We can achieve the task of 

approximating the optimal-action value function with the QE-FIS by reducing the TD 

error 1tε +# , continuously with a descent gradient algorithm. 

The quality-update rule of the QE_FIS is then given by: 

 1 1 1

l l l

t t t t tq q eη ε+ + += + ⋅#   (29) 

The adaptative learning rate ηt+1 and the eligibility traces for the QE-FIS are determided on 

the rules by using respectively  the equations  (17)  and (18) ; 

The  TD error  is calculated as follows:   

 ( ) ( )ttt
u

tt uxQuxQr ,,max~
111 −′+= +′++ γε   (30) 

In this expression, we consider that ( ) ( )111 ,,max +++′ ≈′ ttt
u

uxQuxQ  because ut+1 is the ouput 

FPID tuned continuously to maximize Q (x, u), therefore 1
~ +tε  is written as follows: 

 ( ) ( )tttttt uxQuxQr ,,~
1111 −+= ++++ γε  (31) 

2. Learning algorithm for FPID and antecedent parameters QE-FIS 
Now, we consider how to improve the control policy using the associated value function. In 

other words, we consider how to tune the parameters of the FPID controller based on the 

approximated Q (x, u)obtained from the previous section. 

In order to optimize the output of the FPID, we can update the parameters of the FPID to 

maximize the action value function Q(x, u) with respect to the control output u for the 

current state. As a result, the learning algorithms of the FPID can be derived using gradient 

rules 

2.1 Learning algorithm for antecedent parameters 

The parameters of the modal point vector (
i

j

i Nmfjnia ,...,1;,....,1 ==  ) are updated 

by a rise gradient algorithm : 

 ( ) ( ) ( )
j

i

ttj

i

j

i
a

uxQ
tata ∂

∂+=+ ++ 11 ,
1 ρ  (32)                 

Let us consider the case of a modal point of the first input. The calculation of the   ( )
ja

uxQ

1

,

∂
∂  revealed the three expressions ( ) ( ) ( )111

1

11

1

1 , x
F

etx
F

x
F

jjj μμμ +−
 where the 

modal point ja1
  can intervene in two expressions in maximum among these three. The 

calculation of the membership degrees of different fuzzy set 11 , +− j

i

j

i

j

i FetFF ) shows 

that it exists  four possible cases  : 

The table 1 recapitulates every case to be considerate. 
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TABLE I Summary of the calculation of  
j

ia

uxQ

∂
∂ ),(  Some remarks are to be noted. 

1. There is a discontinuity to the point  j

ia  (superior limit of 1−j
iF  , modal point of j

iF  

and  inferior limit of  1+j
iF  ), indeed : 
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∂
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lim
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∂
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iF : ( ) ( )( ) ( )( )jij
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⎪⎬⎫⎪⎩
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Modal point  of  
j

iF  :          0
),( =∂

∂
= j

iax

j

ia

uxQ   

In order to solve this problem of discontinuity, we impose the following constraint: 

0
),(

lim =∂
∂

→ j

i
ax a

uxQ
j
ii

 

In this case the modal point is not adjusted and it keeps its old value )()1( tata j

i

j

i =+ . This 

constraint doesn’t really affect the performances of the tuning algorithm because the 
parameters of the FPID are sufficiently close to the optimum.   

2. The calculation of the  
( , )
j

i

Q x u

a

∂
∂  becomes indefinite when  1−= j

i

j

i aa  and  1+= j

i

j

i aa . 

We can ovoid this case by imposing constraints of non overlappings of the membership 
functions to keep the legibility of the fuzzy rules       
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3. In order to insure the legibility of the fuzzy rules ovoiding labels inversions of the 
inputs membership functions, we imposed constraints during the adjustment process.  
Therefore we have to fix a superior limit and an inferior limit for each mobile  modal 
points as can be shown  in  Fig. 6. 

 

Fig. 6. Fixation of the variation limits modal points  

The modal points of  PS and  PVS  are mobile, so we have fixed their limits in order to  have 

a  maximal movement   field    which explains the choice of percentage  (70%)  to the right 

and to the left of   respectively PS and of  PVS .The field between the two modal points is 

equally shared  (50%). The modal points of the negative part (NS et NVS) are obtained by 

symetry.  
2-2 Learning algorithm for consequents parameters 
The constant coefficient of the consequent part of the fuzzy rule is also updated by a rise 
gradient algorithm: 

 ( ) ( ) ( )1 1,
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i i l
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Not having a mathematical model of the process, we approximate the Jacobian  
u

uxQ

∂
∂ ),(  

as follow: 
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1111 ),(),(),(  (35)   

The previous expression becomes very large if ut ≈ ut-1   which can cause an inflation of the 

FPID parameters. To remedy it, we adopt an important and frequently used simplification 

which consists in replacing the Jacobian by its sign [86]. Finaly, we obtain the following 

equation: 
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ltt
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tt x
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uxQ
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2.3. Execution Procedure 
We present the detailed of an one-time-step global execution procedure as follows. Let t+1 

be the current time step; the FPID obtain the new control output ut+1 based on (25) by using 

perception ( )tt xα . The action  ut+1 after its transformation by the SAM becomes the uc,t+1 

(27). The action uc,t+1 is applied on the system and makes it transits from the state xt  towards 

xt+1. The performance of the FPID controller is evalueted by the signal of reinforcement rt+1. 

The perception organ in common to the FPID and QE_FIS, perceives then this state xt+1 by 

the means of the firing strength of the rules ( )1

l

t txα + .  Let us note that ( )1+tl

t xα  is 

subscripted by t, for it is the perception of xt+1 but using the perception parameters (modal 

points) which we adjusted to the time step t. 

A. The one stage of the learning algorithm consists in the execution procedure of the 

continuous tuning of the antecedent parameters of the FPID/QE-FIS. The eight steps are as 

follows: 

1. Estimation of the function of evaluation t-optimal of the current state that is provided 
by the QE_FIS; 

 ( )∑ ∑= = +++ ⋅= 1 2

1 1

,

1

,

11

* ),(
Nmf

i

Nmf

j

ji

tt

ji

tttt qxuxQ α  (37) 

        The indice t indicates that we have used the parameters adjusted to the previous time  
        step.  

2. Compute the TD error 1tε +# using (21); 

3. Tune parameter vector q of the QE_FIS according to (22) and (17); 
4. Tune the antecedent parameters (modal points) of the FPID as defined in (32). The term 

of adjustment ( )
j

ia

uxQ

∂
∂ , is given by table 1 and the learning rate ρ is also adaptive 

according to the rule Delta Bar Delta seen in equation (17); 
5. Recompute the perception since we adjusted the position of the modal points which 

makes change perception ; 

   ( ) ( ))1()1()( 211

,

1
21 +⋅+=++ txtxx
ji FF

t

ji

t μμα  (38)        

21 ,...,1;,...,1 NmfjNmfi ==  

6. Update the eligibility trace used for the parameters tuning of the QE_FIS according to (23); 
7. New calculation of the evaluation function corresponding to the action (ut+1) and the 

current state (xt+1) with the new parameters ; 

  ( )∑ ∑= = +++++ ⋅= 1 2

1 1

,

11

,

111 ),(
Nmf

i

Nmf

j

ji

tt

ji

tttt qxuxQ α  (39)   

        This value will be used for the calculation of the  TD error at the next step of time.  
8. Calculation of the control ouput ut+1, by using new perception; 
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t

ji

tt uxu α  (40) 

B. The stage seconde of the learning algorithm consists in the execution procedure of the 
continuous tuning of the consequent parameters of the FPID. The antecedent parameters are 
fixed to the values found in the stage one The sevent steps are as follows: 

1. Estimation of the function of evaluation t-optimal of the current state 
*

1 1( , )tt tQ x u+ + as 

defined in (38) , that is provided by the  QE_FIS ;         

2. Compute the TD error 1tε +# using (21 ); 

3. Tune parameter vector q of the QE_FIS according to (22) and (17); 
4. New calculation of the t-optimal evaluation function of the current state by using the 

new parameters of the QE_FIS: 

 ( )∑ ∑= = +++++ ⋅= 1 2

1 1

,

11

,

111 ),(
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i
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j

ji

tt

ji

ttt qxuxQ α  (41)     

5. Update the eligibility trace used for the parameters tuning of the QE_FIS according to 
(23) ; This stage completes the learning part of the QE_FIS   

6. Tune the parameters of the FPID according to (33) and (36) ; 

We use perception ( )tl xα and xj(t) for the tuning parameters of FPID, for it is them which 

are responsible for the issue of the control ouput ut+1 
7.  Calculation of the control ouput ut+2, by using the new parameters of FPID: 

 ( )∑ ∑= = +++ ⋅= 1 2

1 1

,
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,

2
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i
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j

ji

tt

ji

t uxu α  (42) 

6. Simulations-experimentations 

The proposed fuzzy reinforcement-learning controller has been simulated for the DC/DC 
buck converter control problem and some simulation and experimentation results are 
presented.  

1. DC/DC Buck Converter 

The system is a 1kW DC/DC Buck Converter with the control of its output voltage in 
current mode which consists in imposing the current peak which crosses  the smoothing 
inductance L therefore also the output current in the variable resistive load. It has an 
impulse response under deadened.  We will carry out a voltage fuzzy control of the cascade 
type. To restrict the influence of measure noise, the output voltage is filtered using a 50 Hz 
low-pass first-order filter. The general diagram of such a chopper is given in fig.7. The 
values of the different components of the system are given by table 2. 
The inner structure of the FPID part and its Fifteen (or twenty six) resulting tuning factors 
are defined on the normalised universe of discourse by the user. Thus values for the scaling 
factors dem and gm and the integrator gain called Ki have to be defined. The scaling factor 
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em is supposed to be defined considering the benchmark step magnitude. Due to their 
global effect on the control performance and robustness, optimal input and output scaling 
factors play critical role in the FPID controller and they have the highest priority in terms of 
tuning and optimisation [68],[79]. To tune theme a lot of strategies have been proposed. 
Only these last three parameters pre-established values that we will provide in this part will 
depend on the open-loop identification of the process and on the sample period. In this way, 
this methodology can be seen as a Ziegler-Nichols -like tuning strategy for fuzzy controllers. 
In order to evaluate the performances of the control strategy, this pre- established set will be 
provided for a very common industrial benchmark: no-load step response, nominal load 
regulation, no-load regulation. It will warrant a high performances process response on this 
benchmark combined with a high robustness. The non-linear charge will be connected or 
disconnected according to the following functioning cycle fixed for the whole of our tests at 
0.5 second: the no-load starting (R0 = 20Ω) is carried out at t=0s; to sudden maximum load 
connection (R = 150Ω) at t=0.166s (at the third of the horizon); and sudden disconnection (R0 
= 20Ω) intervenes at t=0.333s (at the two thirds of the horizon). 

 

Fig. 7. General diagram of the Buck chopper 

Ve 60V ǂmin 0.05 

L 1.3 mH Rload 20 Ω  

Cs 165 μ F R0 150  Ω  
I ≤10A Vs 0 to 10 V 

TABLE II. System Parameters Values 

2.Open-loop identification test 

In this paper, in the first part we want to propose pre-established settings for this FPID that 
are based on just one open-loop step identification test of the process.These predefined 
settings already exist in case of use of the FLC with an open-loop stable or evolutive process 
[62-63], that are widely found in electrotechnical applications. The control quality for this 
system will be evaluated considering the Integrative Absolute Error (IAE) between the 
reference and the measured signal on the specified benchmark. The FPID will then be all the 
more robust since these IAE-criterion remains insensitive to uncontrolable factors (white 
noise, process misindentification ...).       
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The open-loop identification of this stable process like DC/DC Buck converter will provide 
three parameters called K, T and τ for an open-loop transfer function of the process that can 
be expressed as Eq. 4. Figure 8 presents the open-loop response of the considered system. 

 

Fig. 8. Open-loop response of the considered system 

 ( ) .
1

Tpe
FT p K

pτ
−== +  =

0.0028

50 14.7
1 0.0174

p
H

Hz

e
FT

p

−= ⋅ +  (43)         

with: K=14.7,   T=0.0028s, τ=0.002.8s 
Pre -established settings for the FPID-like FLC is provided in Table 3. The choice is inspired 
from the Broïda predefined settings [62] for conventional PID controllers by imposing an 
equal distribution of the membership functions of the inputs/outputs variables and in the 
case of a value step magnitude c with Tech the sampling period equal to 0.00015 s. 
 

Factors   
rs

Level 

PSe 0.67 

PVSe
0.33 

PSde 0.67 

PVSde 0.33 

PSs 0.67 

PVSs 0.33 

me c = 60V  

Ki 
0 .8

K
i K T
= ⋅ = 19.4363  

dem 
2.5

( 0.4 )m echde T T c
T

ττ= ⋅ + ⋅ ⋅ ⋅⋅ =8.5530 dV/dt  

gm 0 .8
( 0 .4 )mg T c

K T
τ= ⋅ + ⋅ ⋅⋅ = 21.5977  

TABLE III. Pre-Defined Factors Levels 

Fig. 9 and Fig. 10 give the simulation results for the DC/DC converter controlled either by a 
conventional PID controller whose parameters have been set according to the Broida 
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settings or by our FPID with pre-established settings (table 2) i.e. equally -distributed for 
antecedent memberships function and consequent values. With the FPID, all the simulations 
lead to an outstanding improvement of the behavior with respect to the standard tunings of 
the Broida PID controller. The measured IAE-criterion is 0.9729 V.s in the FPID case and 
1.134 V.s in the classical PID case. Beyond this 17%-criterion improvement, we can underline 
the similar behavior of the two controllers. 
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Fig. 9. Broida PID controller 

3. Discret parameter tuning 

Now, we apply the discret FQL algorithms to tuning the antecedent parameters then the 
consequent parameters of the FPID controller determined previously. The values for the 
scaling factors dem, gm, Ki and em are fixed during the learning processus and therefore we 
have eight parameters tuning (table 3). This doesn’t  constitute a difficulty because the 
reinforcement learning method doesn’t depend on the parameter number to tune , which 
constitute a considerable advantage as compared to the other  tuning methods such as the 
experimental product-plan method [62],[63]. 
First of all, it’s necessary to define the levels (two in our case) for each of the considered 
controlable factors. Referring to Figure 2 and seeing the 50%-overlapping rate as a 
mechanical constraint, the positions of the PVS’s and PS’s membership functions apex aren’t 
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totally independent. When the position of PS is fixed at x (x between 0 and +1), the position 
of PVS can only be between 0 and x. Thus, it’s more advisable to define the two levels of 
these input factors relatively [62]. Under his assumption, the two chosen levels for each of 
the eight tuning factors are provided in Table 4. 
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Fig. 10.  Broida FPID controller 
 

Factors 
Level 

1 
Level 

2 
Level 

3 
Level 

4 

PSe 0.30 0.40 0.60 0.75 

PVSe 0.12 0.17 0.23 0.28 

PSde 0.30 0.40 0.60 0.75 

PVSde 0.12 0.17 0.23 0.28 

PSs 0.20 0.40 0.60 0.80 

PVSs 0.20 0.40 0.60 0.80 

NSs -0.20 -0.40 -0.60 -0.80 

NVSs -0.20 -0.40 -0.60 -0.80 

TABLE IV. Controlable Factors Levels 

The choice of these levels has been achieved so a to sweep the area of researches. 

www.intechopen.com



 Robotics, Automation and Control 

 

380 

3.1 Reinforcement function 
The next step is to define the reinforcement signal r. The process performances are evaluated 
by the maximum absolute value of the error deviation e, because the objective of the FPID 
controller is to minimise this error as small as possible in tracking and in regulation. The 
reinforcement signal r may be defined as follows: 

 max

max

max

, success 
( )

1 , failure

e
If e e

er t

If e e

⎧− ≤⎪= ⎨⎪−⎩ Z

 (46)   

We adopt a reinforcement function with a punitive policy in order to obtain optimal 
parameters in a short time period. In our simulations, we assume the maximum allowed 
error as 0.05. The parameters used in the simulations and experimentations are summarized 
in Table 5. The second value of parameter indicated in this table relates to the learning 
algorithm for consequents parameters. 
 

Parametres Symbol Value 

Discount factors γ
 0.9/0.95 

Proximity factors of the omission function 
(eligibility traces ) 

λ  0.9 

Initial learning rate ρ
 0.1 

Interferer in the adaptative learning rate ρK  

0.0001/ 
0.001 

Interferer in the adaptative learning rate ρψ
 

0.5/ 
0.001 

Interferer in the adaptative learning rate ρϕ  
0.5 

Tolerance Noise/Amplitude of the quality pS  
0.1 

Proportioning of the exploration θ  1 

TABLE V. Parameters of the Discrete FQL algorithm 

At first we tried to put into functions the two algorithms (FQL applied to the premises and 
FQL applied to the conclusions) similarly. But different attempts have shown that a 
simultaneous tuning of antecedent and consequent parameters lead to instability, therefore 
we opted for a separated tuning procedure beginning with the FQL for antecedent part 
followed by those of the consequent part.  
The final tunings are provided in Table 6. Figures 11, 12 and 13 present the simulations 
results on the DC/DC converter. The “before optimisation” results have been obtained 
when the membership functions and the singletons are equidistributed on the universe of 
discourse. This kind of “medium”setting can be seen as a preliminary setting but constitutes 
unfortunately often the final setting of the FLC too.  

3.2 Simulations and experimental  results 
Stage one: antecedent parameters tuning  
We use the FQL algorithm applied to the antecedents with equally -distributed consequent 
values. We obtain the following results.  
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Factors PSe PVSe PSde PVSde 
Level 

selected 
0.75 0.12 0.3 0.17 

TABLE VI. Modal points determined  by discrete tuning 

The results of simulations (fig.11) during the learning stage give an IAE criterion equals to 

0.8544. We can notice then an improvement due to a larger space of solutions.  
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Fig.11. tecedent tuning of the FPID controller  

Stage second: consequent parameters tuning  
Initially, to show the importance to tune the antecedents parameters, we execute classic 

algorithm FQL with equally -distributed for antecedent memberships function. The results 

of simulations obtained during the learning stage give an IAE criterion equals 0.938, what 

corresponds to a deterioration of 10% of the optimization criterion as compared to the value 

obtained with classic FQL algorithm. Then we use the consequent FQL algorithm with the 

modal point values of the input membership functions determined in stage one.We get then 

the rule base showned in the table 7. The results of the simulations obtained during the 

learning (fig 12 and 13) show an improvement of the IAE criterion, equals now to 0.5318 

compared to respectevely 0.8544 for the during the learning and validation phase. Therefore 
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we have reached an improvement of the criterion of 12% as compared to the stage one. 

These simulations results show an important decreasing of the optimisation criterion (about 

45%) as compared to the value obtained before the tuning by FQL algorithms. More over the 

behaviour of tracking is improved because the response time is shorter.  
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Fig. 12. Consequent tuning of the FPID controller with classic FQL algorithm 
 

de 

 
NB NS NVS Z PVS PS 

PB 
 
 

NB -1 -1 -1 -1 -0.2 -0.8 0 

NS -1 -1 -1 -0.4 -0.4 0 0.8 

NVS -1 -1 -0.8 -0.6 0 0.4 0.2 

Z -1 -02 -0.8 0 0.6 0.4 1 

PVS -0.8 -0.8 0 0.8 0.8 1 1 

PS -0.4 0 0.8 0.2 1 1 1 

e 

PB 0 0.4 0.8 1 1 1 1 

TABLE VII Antidiagonal rule base 
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Fig.13. Consequent tuning of the FPID controller (table 6 with antidiagonal rules table 7) 

4. Continuous parameter tuning 

The previous obtained results (tables 6 and 7) constitute values close to the optimum which 

just need to be refined by means of the proposed continuous tuning algorithm. The 

parameters of the continuous FQL algorithm used in the simulations/experimentations are 

summarized in Table 8. 

The simulation results obtained with non antidiagonal table 10 shown on  system responses 

of the  fig.14 , an  IAE criterion of  0.4789 during the learning phase, which constitute a 

decreasing of  10% in comparison to  the discreet  tuning and of  58%  in comparison to the   

classic Broïda PID.  Let’s remind also that the method of experimentation plans measure an 

IAE criterion of 1.05 (standard tuning) and 0.56 (robust tuning) with 16 experimental tests, 

therefore we have reached an improvement of 54% (standard tuning) and 15% (robust 

tuning)  in relation to this method. 
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Parametres Symbol Value 

Discounted factor Ǆ 0.9 

Proximity factor of the omission function 
(eligibility traces) λ  0.9 

Learning rate QE_FIS ρ 0.0001 

Interfere in  the adaptative  learning rate ηK  
0.00001 

Interfere in the adaptative learning rate ηψ
 

0.5 

Interfere in the adaptative learning rate ηϕ  
0.5 

Learning rate  FPID control ǃ 0.00001 

Learning rate of the antecedents ρ 0.00001 

TABLE VIII Parameters of the Continuous FQL algorithm 

We obtain the following results with the continuous FQL algorithm. 
 

Factors PSe PVSe PSde PVSde 

Level 
selected 

0.75 0.07 0.3 0.171 

TABLE IX Modal points determined by continuous tuning 

 

 de 

NB NS NVS Z PVS PS PB

NB -1 -1 -1 -1 -0.2 -0.8 0

NS -1 -1 -1 -0.4001 -0.4 0 0.6

NVS -1 -1 -0.8 -0.6006 0 0.4 0.4

e Z -1 -0.2 -0.8 0 0.6 0.4 1

PVS -0.8 -0.8 0 0.8005 0.8 1 1

PS -0.4 0 0.8 0.2 1 1 1

 PB 0 0.4 0.8 1 1 1 1 

TABLE X Non Antidiagonal rules base 

The best values controllable factors determined by simulations are then used to carry out the 

experimental tests.The experimental results (fig 16) are very similar to the simulation 
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results, which confirms the performances of experimental methodology proposed. 

Moreover, it has better results on the the system responses and IAE criterion in comparison 

with standard and robust methods experimental plans as can be seen in Fig.15. The Table 11 

relating to the IAE criterion confirmed the quality of the obtained responses by our 

approach. The different results show that it carries out one compromised for the two types 

of operation in tracking and in regulation. Also, the performances of the system can be 

greatly improved by executing a specific FPID controller for each operation type in 

comparison to one FPID controller functioning on all the operating range.The figure 17 

shows that the time of response and the time of reject of the perturbations have considerably 

decreased. These simulations results show an important decreasing of the optimisation 

criterion (about 2%) as compared to the value obtained with the only using of one FPID 

controller  tuning by FQL algorithms. 
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Fig. 14. Continuous tuning of the FPID controller 
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Fig.15. Experimental results of FPID controller (standard and robust methods of 
experimental plans) 
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Fig.16. Experimental results of the FPID controller continuous tuning  

 

Methods IAE 

PID Broida 1.134 

FPID Broida 0.9729 

Classic FQL 0.9 

Discret FQL 0.5454 
Continous FQL 

(one FPID), 
0.5396 

Continous FQL 
(two FPID) 

0.4693 

Expermental 
plans (standard) 

1.05 

Expermental 
plans (robust) 

0.56 

TABLE XI Comparative table of the various methods 
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Fig.17. Simulation results ofcommutation between two FPID controller obtained by method 
continuous tuning  

7. Conclusion 

On the whole, this paper provides some new and original headlines for the on-site tuning 
PID like fuzzy logic controllers.With the Broida methodology for conventional PID 
controllers; it is possible to obtain satisfying basic FPID.  These settings depend only on two 
or three parameters (K, T and eventually τ) extracting from an open-loop identification test 
of the process.  
A second set of pre-defined settings for the controllable factors FPID is proposed and 

selected from the reinforcement learning design procedure. Two discrete tuning algorithms 

are developed based FQL for antecedent parameters and consequent parameters tuning 

respectively. The process performances are always evaluated considering the IAE-criterion 

between the reference and the measured signal. The FPID will then be all the more robust 

since this IAE-criterion remains insensitive to uncontrollable factors (here white noise, 

process misidentification or high order process). This second stage tuning could be seen as 

an on-site roughly FPID tuning strategy. 
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Finally the paper presents the controller architecture composed of the QE-FIS and the FPID 
for solving continuous space reinforcement learning problems and fine tuning controllable 
factors. The QE-FIS is used to estimate the optimal action-value function, and the FPID is 
used to get the control output based on the estimated action value function provided by the 
QE-FIS. With the proposed architecture, the parameters learning algorithms for the QE-FIS 
and the FPID are developed based on techniques of temporal difference and rise gradient 
algorithm. The two stages (discrete tuning  and continuous tuning)  complete one another  
because the first stage does a preliminary tuning which reduces the field of researches  and 
provides an initialization  to the second stage.This  initialization  of the parameter  vector  
close to the optimum enables to ovoid  the local optimums of the  gradient methods. Finally, 
the simulations and the experimentation of the DC/DC converter demonstrate the validity 
and performance of the proposed learning algorithms and give better results as compared to 
the method of experimentation plans.   

8. Acknowledgment 

Hacène Rezine: was born in 1955 in El-Kala, Algeria. He received an engineering degree 
from the Ecole Nationale d’Ingénieurs et de Techniciens, Alger in 1979, the Engineer Degree 
from the Ecole Nationale Supérieur d’Electrotechnique, d’Electronique, d’Informatique, et 
d’Hydraulique, Toulouse, France in 1980 and the Doctor-Engineer Degree from the Institut 
Nationale Polytechnique of Toulouse in 1983. He is currently the Head of Unit of teaching 
and control research of the Algerian Polytechnic Military School. His current research areas 
include Electrical drives, Mobile robotic, Fuzzy control and Artificial Intelligent Control. 
Rabah Louali: was born in October, 15th, 1982 in Blida (Algeria). He received the 
Engineering degree in 2006, from the Military Polytechnic School (Algeria). Currently, he is 
Magister student at this school. His current research areas include Mobile Robotic, Control 
of System and Fuzzy control.  

 9. References 

[1] M. Fei, SLHo, “Progress in On-line Adaptive, Learning and Evolutionary Strategies for 
Fuzzy Logic Control”, IEEE 1999 International Conference on Power Electronics 
and Drive Systems, Hong Kong. , pp 1108-1113. July 1999] 

[2] Chin-Teng Lin, ’’ A neural fuzzy control system with structure and parameter learning’’, 
Fuzzy Ssets and Systems, (70), pp 183-212, 1995 

[3] F. Herrera, M. Lozano & J.L. Verdegay, “Tuning fuzzy logic controllers by genetic 
algorithms,” Int. J. Approximate reasoning, v. 12, pp 299-315, 1995. 

[4] Meng Joo Er, Member, IEEE, and Chang Deng, "Online Tuning of Fuzzy Inference 
Systems Using Dynamic Fuzzy Q-Learning ", IEEE Transactions on Systems, Man, 
and Cybernetics—PartT B: Cybernetics, Vol. 34, No. 3, June 2004 

[5] L. Jouffe: “Actor-Critic Learning Based on Fuzzy Inference System”, Proc of the IEEE 
Conference on Systems1996. Man and Cybernetics. Beijing, China, pp.339-344, 1996  

[6] C. Watkins, P. Dayan: “Q-Learning Machine Learning”, pp.279-292, 1992. 
[7] P. Y. Glorennec and L. Jouffe, “Fuzzy Q-learning,” Proc. OfIEEE Int. Con$ On Fuzzy 

Systems, pp. 659-662, 1997 

www.intechopen.com



 Robotics, Automation and Control 

 

390 

[8] Dongbing Gu- Huosheng Hu- Libor Spacek, “: Learning Fuzzy Logic ontroller for 
Reactive Robot Behaviours”, Proceedings of the 2003 IEEEASME International 
Conference on Advanced Intelligent Mechatronics, pp 46-51, 2003. 

[9] C.C. Lee, “Fuzzy logic in control systems: fuzzy logic controller- part I&II,” IEEE T-SMC, 
v.20, n.2, pp404-435, 1992. 

[10] Mitra, S., Hayashi, Y. (2000). Neuro-Fuzzy Rule Generation: Survey in Soft Computing 
Framework, IEEE Trans. On Neural Networks, Vol. 11, No. 3... 

[11] Dongbing Gu and Huosheng Hu, « Reinforcement Learning of Fuzzy Logic Controllers 
for Quadruped Walking Robots”, Copyright 2002 IFAC 15th Triennial World 
Congress, Barcelona, Spain. 

[12] Chia-Feng Juang, « Construction of Dynamic Fuzzy If-Then Rules through Genetic 
einforcement Learning for Temporal Problems Solving », IEEE, pp 2341-2346, 2001. 

[13] Meng Joo Er, Member, IEEE, and Chang Deng, "Online Tuning of Fuzzy Inference 
Systems Using Dynamic Fuzzy Q-Learning ", IEEE Transactions On Systems, Man, 
And Cybernetics—PartT B: Cybernetics, Vol. 34, No. 3, June 2004. 

[14] Jang J. C, ‘’. ANFIS: Adaptive-Neural-Based Fuzzy Inference System’’, IEEE Trans. on 
SMC, Vol. 23, pages 665- 685, Aug. 1993. 

[15] J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing.Englewood 
Cliffs, NJ: Prentice-Hall, 1997. 

[16] S. Wu, M. J. Er, and Y. Gao, “A fast approach for automatic generation of fuzzy rules by 
generalized dynamic fuzzy neural networks,” IEEE Trans. Fuzzy Syst., vol. 9, pp. 
578–594, Aug. 2001.]. 

[17] C. W. Anderson, “Strategy learning with multilayer connectionist representations,” in 
Proc. 4th Int. Workshop on Mach. Learn., Irvine, CA, June 1987, pp. 103–114. 

[18] Bonarini, A. Evolutionary Learning of Fuzzy rules:competition and cooperation, In 
Pedrycz, W. (Ed.), FuzzyModelling: Paradigms and Practice, Kluwer Academic 
Press,Norwell, MA, pp265 – 284,1997. 

[19] Juang, C. F., Lin, J.Y., and Lin, C. T. (2000). Genetic Reinforcement learning through 
Symbiotic Evolution for Fuzzy Controller Design, IEEE Transactions on SMC-Part 
B, Vol. 30, No. 2, pages 290-301. 

[20] C. Karr, “Genetic algorithms for fuzzy controllers,” AI Expert, vol. 2, pp. 27–33, 1991. 
[21] M. Lee and H. Takagi, “Integrating design stages of fuzzy systems using genetic 

algorithm,” in Proc. 2nd IEEE Int. Conf. Fuzzy Systems, San Francisco, CA, 1993, 
pp. 612–617. 

[22] K. Kropp, “Optimization of fuzzy logic controller inference rules using a genetic 
algorithm,” in Proc. EUFIT'93, Aachen, Germany, 1993, pp.1090–1096. 

[23] T. Kawabe, T. Tagami, and T. Katayama, “A genetic algorithm based minimax optimal 
design of robust I-PD controller,” in Proc. IEE Int.Conf. Control, London, U.K., 
1996, pp. 436–441. 

[24] Berenji, H. R., Khedkar, P. (1992). Learning and Tuning Fuzzy Logic Controller through 
Reinforcements, IEEE Trans. OnNeural Networks, Vol. 3, No. 5, pages 724-740. 
September, 1992. 

[25] Chin-Teng Ling, C. S. George Lee, "Reinforcement Structure/Parameter Learning for 
Neural-Network- Based Fuzzy Logic Control Systems", IEEE Trans. on Fuzzy 
Systems, vol. 2, no. 1, Feb. , 1994.  

www.intechopen.com



An Approach to Tune PID Fuzzy Logic Controllers Based on Reinforcement Learning 

 

391 

[26] C. T. Lin and C. S. G. Lee, “Reinforcement structure/parameter learning for an 
integrated fuzzy neural network,” IEEE Trans. Fuzzy Syst., vol. 2, pp. 46–63, Feb. 
1994  

[27] Kaelbling, L. P., Moor, A. W. (1996). Reinforcement Learning: A Survey, Journal of 
Artificial Intelligence Research, Vol. 4, pages 237-285   

[28] C. K. Chiang, H. Y. Chung, and J. J. Lin, “A self-learning fuzzy logic controller using 
genetic algorithms with reinforcements,” IEEE Trans. Fuzzy Syst., vol. 5, no. 3, pp. 
460–467, Jun. 1997. 

[29] C. T. Lin and C. P. Jou, “Controlling chaos by GA-based reinforcement learning neural 
network,” IEEE Trans. Neural Networks, vol. 10, no. 4,pp. 846–859, Jul. 1999. 

[30] Lin, C. T., C. P. Jou,. “ GA-Based Fuzzy Reinforcement Learning for Control of a 
Magnetic Bearing System”, IEEETrans. On SMC-Part B, Vol. 30, No. 2, pages 276-
289, 2000. 

[31] Hyo-Byung Jun and Kwee-Bo Sim, "Behavior Learning and Evolution of Collective 
Autonomous Mobile Robotsbased on Reinforcement Learning and Distributed 
Genetic Algorithms",IEEE International Workshop on Robot and Human 
Communication 1997 IEEE,pp 248,253  

[32] A. G. Barto and M. I. Jordan, “Gradient following without backpropagation in layered 
networks,” in Proc. of IEEE I” Annual Con$ Neural Networks, vol. 2, San Diego, 
CA, 1987, pp. 629-636  

[33] C. W. Anderson, ‘’Learning and Problem Solving With Multilayer Connectionist 
Systems ‘’ , Ph.D. disseration, Univ. Massachusetts, Amherst, 1986. 

[34] Kaelbling, Littman, and Moore (1996)[ Kaelbling, L. P., Littman, M. L., & Moore, A. W. 
(1996). Reinforcement learning: A survey.Journal of Arti_cial Intelligence Research, 
4, 237{285. 

[35] Sutton, R. S., & Barto, A. (1998). Reinforcement Learning: An Introduction. MIT Press, 
Cambridge, MA  

[36][David E Moriarty- Alan C.Schultz-John J.Grefenstette, “Evolutionary Algorithms for 
Reinforcement Learning”, Journal of Arti_cial Intelligence Research 11 (1999) 241-
276 .  

[37] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Mach. 
Learn., vol. 3, no. 1, pp. 9–44, 1988. 

[38] R. S. Sutton and A. G. Barto, Reinforcement Learning. Cambridge, MA: MIT Press, 1998. 
[39] J. N. Tsitsiklis and B. V. Roy, “An analysis of temporal-difference learning with function 

approximation,” IEEE Trans. Autom. Control, vol. 42, no. 5, pp. 674–690, May 1997 
[40] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuron like adaptive elements that can 

solve difficult learning control problems,” IEEE Trans. Systems, Man, Cybern., vol. 
SMC-13, no. 5, pp. 834–846, Sep. 1983. 

[41] C.W. Anderson, “Learning to control an inverted pendulum using neural networks,” 
IEEE Control Syst. Mag., vol. 9, pp. 31–37, 1989. 

[42] C. J. Wakins, “Learning from delayed rewards,” Ph.D. dissertation, King’s College, 
Cambridge, U.K., 1989. 

[43] C. J.Wakins and P. Dayan, “Technical note: Q-learning,” Mach. Learn., vol. 8, pp. 279–
292, 1992. 

[44] C.W. Anderson, “Learning to control an inverted pendulum using neural networks,” 
IEEE Control Syst. Mag., vol. 9, pp. 31–37, 1989 

www.intechopen.com



 Robotics, Automation and Control 

 

392 

[45] Chia-Feng Juang,  « Combination of Online Clustering and Q-Value Based GA for 
Reinforcement Fuzzy System Design”, IEEE Transactions On Fuzzy Systems, Vol. 
13, No. 3, June 2005, pp 289-302. 

[46] H. R. Berenji, “Fuzzy Q-learning for generalization of reinforcement,”in Proc. IEEE Int. 
Conf. Fuzzy Systems, 1996, pp. 2208–2214. 

[47] Rummery, G. A., On-Line Q-Learning Using Connectionist Systems, Tech. Rep., 
CUED/F-INFENG/TR 166, CambridgeUniversity, 1994. 

[48] P. Y. Glorennec, “Fuzzy Q-learning and dynamic fuzzy Q-learning,” in Proc. IEEE Int. 
Conf. Fuzzy Systems, vol. 1, Orlando, FL, 1994, pp. 474–479. 

[49] T. Horiuchi, A. Fujino, O. Katai, and T. Sawaragi, “Fuzzy interpolationbased Q-learning 
with continuous states and actions,” in Proc. IEEE Int. Conf. Fuzzy Systems, 1996, 
pp. 594–600. 

[50] P. Y. Glorennec and L. Jouffe, “Fuzzy Q-learning,” in Proc. IEEE Int. Conf. Fuzzy 
Systems, 1997, pp. 659–662. 

[51] L. Jouffe, “Fuzzy inference system learning by reinforcement methods,” IEEE Trans. 
Syst., Man, Cybern. C, Appl. Rev., vol. 28, no. 3, pp. 338–355, Aug. 1998. 

[52] M. S. Kim and J. J. Lee, “Constructing a fuzzy logic controller using evolutionary Q-
learning,” in Proc. 26th Annu. Conf. Industrial Electronics Society, 2000, pp. 1785–
1790 

[53] R.Ssutton, ‘’Integrated Architecture for Learning, Planing, and Reacting Based on 
Approximating Dynamic programming’’, Proc.of 7th international Conference on 
machine Learning, pp 216-224, 1990 

[54] R.A Mccallum, ‘’Using Transition Proximity for Faster Reinforcement Learning, Proc.of 
9th international Conference on machine Learning, pp 316-321, 1992 

[55] S.P.Singh, ‘’Transfert of learning by composing solutions of elemental sequential tasks, 
Proc.of 7th international Conference on machine Learning, pp 323-339, 1992 

[56] J.Peng, “Efficient memory-based Dynamic programming, Proc.of 12th international 
Conference on machine Learning, pp 438-446, 1995 

[57] P. Y. Glorennec and L. Jouffe, “A reinforcement learning method for an autonomous 
robot,” in Proc. EUFIT’96, 4th Eur. Congr. Intell. Tech. Soft Comput. Aachen, 
Germany, pp. 1100–1104 

[58] Xiaohui Dai, Chi-Kwong Li, « An Approach to Tune Fuzzy Controllers Based on 
Reinforcement Learning for Autonomous Vehicle Control”, IEEE Transactions On 
Intelligent Transportation Systems, Vol. 6, No. 3, September 2005, pp 285-293 

[59] R. S. Sutton, “Integrated architectures for learning, planning, and reacting based on 
approximating dynamic programming,” in Proc. 7th Int. Workshop Machine 
Learning, 1990, pp. 216–224. 

[60] L. J. Lin, “Self-improving reactive agents: Case studies of reinforcement learning 
frameworks,” in Proc. 1st Int. Conf. Simulation of Adaptive Behavior: From 
Animals to Animals, 1991, pp. 297–305 

[61] H. R. Berenji, “Fuzzy Q-Learning: A new approach for fuzzy dynamic programming,” 
in Proc. IEEE Int. Conf. Fuzzy Systems, 1994, pp. 486–491  

[62] D. Hissel, P. Maussion, G. Gateau, J. Faucher,"Fuzzy Logic Control Optimization of 
Electrical Systems using Experimental Designs", in Proceedings of the EPE'97 
Conference, Trondheim, Norv_ege, pp. 1.090-1.095, 1997.  

www.intechopen.com



An Approach to Tune PID Fuzzy Logic Controllers Based on Reinforcement Learning 

 

393 

[63] P. Maussion, D. Hissel, "Optimized Fuzzy Logic Controller Parameters for Open-loop 
Stable or Evolutive Electromechanical Systems", in Proceedings of the IECON'98 
Conference, Aachen, 1998. 

[64] S. Joe Qin, ‘’ Auto-Tuned Fuzzy Logic Control’’, Proc.of the America Control 
Conference Baltimore, Maryland, June 1994, pp 2465-2469 

[65] Yang Xinxin" Yang Lei, He Kezhong, Huang Shengle, Guo Muhe, Zhang Bo, “A 
Double-Level Fuzzy Controller with an Intelligently Adjusting Strategy of 
Quantization and Scale Factors,1996 IEEE, pp 280-285. 

[66] George K. I. Mann, Bao-Gang Hu, and Raymond G. Gosine, “Analysis of Direct Action 
,Fuzzy PID Controller Structures”, IEEE Transactions On Systems, Man, and 
Cybernetics—Part b: Cybernetics, Vol. 29, No. 3, June 1999, pp 371-388. 

[67] Baogang Hu,- George K. I. Mann, and Raymond G. Gosine, “New Methodology for 
Analytical and Optimal Design of Fuzzy PID Controllers »,  IEEE Transactions On 
Fuzzy Systems, VOL. 7, No. 5, October 1999, pp 521-539 

[68] Zhi-Wei Woo, Hung-Yuan Chung, jin-Jye Lin, ‘’ A PID type Fuzzy controller with self-
tuning scaling factors‘’, Fuzzy sets and Systems , 2000, pp 321-326 

[69] P.T.Chan, W.F.Xie, A.B.Rad, ‘’ Tuning of  Fuzzy controller for an open-loop unstable 
system: a genetic approach ‘’, Fuzzy sets and Systems , 2000, pp 137-152 

[70] K. S. Tang,- Kim Fung Man,- Guanrong Chen, Sam Kwong, “An Optimal Fuzzy PID 
Controller”, IEEE Transactions On Industrial Electronics, Vol. 48, No. 4, August 
2001, pp 757-765. 

[71] Bao-Gang Hu,- George K. I. Mann, and Raymond G. Gosine, “A Systematic Study of 
Fuzzy PID Controllers—Function-Based Evaluation Approach »,IEEE Transactions 
On Fuzzy Systems, vol. 9, No. 5, October 2001, , pp 669-712 

[72] A. Balestrino, A. Landi, and L. Sani, “CUK Converter Global Control Via Fuzzy Logic 
and Scaling Factors » IEEE Transactions On Industry Applications, Vol. 38, No. 2, 
March/April 2002, pp 406-413. 

[73] Michail Petrov, Ivan Genchev, and Albina Taneva, “ Fuzzy PID control of nonlinear 
plants”, 2002 first international IEEE Symposium “Intelligent systems”, September 
2002,   pp 30-35. 

[74] P.G.Escamilla-ambrosio,  N. Mort, “ A  novel design and tuning procedure for PID type 
fuzzy logic controllers”, 2002 First International IEEE Symposium “Intelligent 
Systems”, September 2002,   pp 36-41. 

[75] Ning wang, “ A Fuzzy PID Controller For Multi-Model Plants”, proceedings of the first 
international conference on machine learning and cybernetics, bijing, 4-5 November 
2002, ,  pp 1401-1404 

[76] I.S. Akkizidisa,*, G.N. Robertsa, P. Ridaob, J. Batlleb , “Designing a Fuzzy-like PD 
controller for an underwater robot”, Control Engineering Practice , pp 417-480, 
2003. 

[77] Yu Yongquan- Huang Ying- Zeng Bi, “The Dynamic Fuzzy Method to Tune the Weight 
Factors of Neural Fuzzy PID Controller”, IEEE 2004, pp 2397-2402. 

[78] Jingwei Xu- Xin Feng, « Design of Adaptive Fuzzy PID Tuner   Using Optimization 
Method”, Proceedings of the 5" World Congress on Intelligent Control and 
Automation, June 15-19, 2004. Hangzhou, PR. China, IEEE, pp 2454-2458. 

[79] Huiwen Deng, Yi Wang, « An Adaptive Fuzzy Logic Controller with Self-tuning Scaling 
Factors Based on Neural Networks*, 2005 IEEE, pp 392-396. 

www.intechopen.com



 Robotics, Automation and Control 

 

394 

[80] Guihua Han, Lihua Chen, Junpeng Shao, Zhibin Sun, “Study of Fuzzy PID Controller 
for Industrial Steam Turbine Governing System”, Proceedings of ISCIT2005, 2005 
IEEE, pp 1228-1232. 

[81] Jian Pei1, Li-Ming Zhao1, De-Jun Wang1, Liang Chu, “  Fuzzy PID Control Of Traction 
System For Vehicles”, Proceedings of the Fourth International Conference on 
Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005, IEEE , pp 773-
777. 

[82] Han-Xiong Li, , Lei Zhang, Kai-Yuan Cai, Guanrong Chen,’’ An Improved Robust 
Fuzzy-PID Controller With Optimal Fuzzy Reasoning’’, IEEE Transactions on 
Systems, Man, and Cybernetics—Part b: Cybernetics, Vol. 35, No. 6, December 
2005, pp 1283,1294 

[83] Y. Koike and K. Doya, “Multiple state estimation reinforcement learning for driving 
model: Driver model of automobile,” in Proc. IEEE Int. Conf. Systems, Man, and 
Cybernetics (SMC), Tokyo, Japan, 1999,vol. 5, pp. 504–509, 

[84] I. H. Suh, J. H. Kim, and F. C.-H. Rhee, “Fuzzy Q-learning for autonomous robot 
systems,” in Proc. Int. Conf. Neural Networks, Houston, TX, 1997, vol. 3, pp. 1738–
1743 

[85] I. H. Suh, J. H. Kim, and S. R. Oh, “Region-based Q-learning for intelligent robot 
systems,” in IEEE Int. Symp. Computational Intelligence Robotics and Automation 
(CIRA), Monterey, CA, 1997, pp. 172–178. 

[86] Renders JM, “Metaphores biologiques appliquées à la commande de processus, Thèse 
de doctorat, Université libre de Bruxelles, 1994 

www.intechopen.com



Robotics Automation and Control
Edited by Pavla Pecherkova, Miroslav Flidr and Jindrich Dunik

ISBN 978-953-7619-18-3
Hard cover, 494 pages
Publisher InTech
Published online 01, October, 2008
Published in print edition October, 2008

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

This book was conceived as a gathering place of new ideas from academia, industry, research and practice in
the fields of robotics, automation and control. The aim of the book was to point out interactions among various
fields of interests in spite of diversity and narrow specializations which prevail in the current research. The
common denominator of all included chapters appears to be a synergy of various specializations. This synergy
yields deeper understanding of the treated problems. Each new approach applied to a particular problem can
enrich and inspire improvements of already established approaches to the problem.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hacene Rezine, Louali Rabah, Jèrome Faucher and Pascal Maussion (2008). An Approach to Tune PID Fuzzy
Logic Controllers Based on Reinforcement Learning, Robotics Automation and Control, Pavla Pecherkova,
Miroslav Flidr and Jindrich Dunik (Ed.), ISBN: 978-953-7619-18-3, InTech, Available from:
http://www.intechopen.com/books/robotics_automation_and_control/an_approach_to_tune_pid_fuzzy_logic_c
ontrollers_based_on_reinforcement_learning



© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and
derivative works building on this content are distributed under the same
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

