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1. Introduction

Type 2 diabetes mellitus (T2DM) results from a combination of genetic and environmental
factors that induces tissue insulin resistance and beta-cell failure.

The purpose of the present chapter is to focus on beta-cell function under physiological
conditions and to review the potential beta-cell failure mechanisms, the place in natural history
of T2DM and implication for treatment of beta-cell dysfunction.

2. Normal beta-cell function

The main role of beta-cell is to synthesize and secrete insulin in order to maintain circulating
glucose levels within physiological range. Although there exist several triggers of insulin
secretion like nutrients (amino acids such as leucine, glutamine in combination with leucine,
nonesterified fatty acid), hormones, neurotransmitters and drugs (sulfonylurea, glinides),
glucose represents the main physiological insulin secretagogue [1].

According to the most widely accepted hypothesis, insulin secretion is a multistep process
initiated with glucose transport into beta-cell through specific transporters (GLUT1 and
GLUT2 in particular) and phosphorylation by glucokinase, which directs metabolic flux
through glycolysis, producing pyruvate as the terminal product of the pathway [2]. Pyruvate
then enters the mitochondria and is decarboxylated to acetyl-CoA, which enters the tricar‐
boxylic acid cycle.

The tricarboxylic acid cycle proper begins with a condensation of acetyl-CoA and oxaloacetate,
to form citrate, a reaction catalysed by citrate synthase. Aconitase catalyses the convertion of
citrate to isocitrate. NAD-linked isocitrate dehydrogenase then oxidatively decarboxylates
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isocitrate to form α-ketoglutarate. The α-ketoglutarate is oxidised to succinyl-CoA in a reaction
catalysed by α-ketoglutarate dehydrogenase. Succinyl-CoA synthase then catalyses the
conversion of succinyl-CoA to succinate, with the concomitant phosphorylation of GDP to
GTP. Succinate dehydrogenase catalyses the oxidation of succinate to fumarate. Fumarase
catalyses the conversion of fumarate to malate and after that malate dehydrogenase catalyses
the final step of the tricarboxylic acid cycle, oxidising malate to oxaloacetate and producing
NADH.

Three pathways enable the recycling of the tricarboxylic acid cycle intermediates into and out
of mitochondrion, allowing a continuous production of intracellular messengers [3-5]. These
three cycles share, as a common terminal step, the conversion of malate to pyruvate concom‐
itant with the production of cytosolic NADPH.

• Pyruvate/malate shuttle,

The oxaloacetate produced by pyruvate carboxylase is converted to malate by mitochondrial
malate dehydrogenase. Malate exits the mitochondria to the cytoplasm where it is subse‐
quently oxidised to pyruvate concomitant with the production of NADPH by cytosolic malic
enzyme. Pyruvate then re-enters mitochondria for the next round of carboxylation by pyruvate
carboxylase [3-5].

• Pyruvate/citrate shuttle,

The oxaloacetate condenses with acetyl-CoA to form citrate, mediated by citrate synthase.
Citrate then exits the mitochondrion to the cytoplasm where it is converted back to oxaloacetate
and acetyl-CoA by ATP-citrate lyase. Oxaloacetate is converted by cytosolic malate dehydro‐
genase to malate before being converted to pyruvate by malic enzyme. Acetyl-CoA is subse‐
quently carboxylated by acetyl-CoA carboxylase to form malonyl-CoA for conversion to long-
chain acyl-CoA by fatty acid synthase. Malonyl-CoA inhibits carnitine palmitoyl transferase-1,
which transports fatty acyl-CoA into mitochondria where it is oxidised, leading to increase in
long-chain acyl-CoAs in the cytosol [3-5].

• Pyruvate/isocitrate shuttle

The oxaloacetate condenses with acetyl-CoA to form citrate, mediated by citrate synthase
before being converted to isocitrate. Isocitrate then exits the mitochondrion to the cytoplasm
via the citrate/isocitrate transporter and is converted to α-ketoglutarate by the cytosolic
NADPdependent isocitrate dehydrogenase. α-Ketoglutarate is further converted to oxaloace‐
tate via the malate/aspartate shuttle as mentioned earlier in the NADH shuttle system [3-5].

The sequences of the tricarboxylic acid cycle and of shuttle pathways are followed by synthesis
of reducing equivalents (NADH, NADPH, FADH2) in the mitochondria and transfer them to
the electron transport chain [6]. The NADPH oxidase complex in the plasma membrane is also
activated through protein kinase C, which is activated by fatty acid derived signalling
molecules.

These events result in an enhanced ratio of ATP to ADP in the cytoplasm, which determines
the closure of the ATP-sensitive K+ channels, depolarization of the plasma membrane, influx
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of extracellular Ca2+ and activation of exocytosis which takes place in several stages including
recruitment, docking, priming, and fusion of insulin granules to the beta-cell plasma mem‐
brane [1,6,7].

Two independent studies, using diazoxide for maintaining the ATP-sensitive K+ channels in
the open state or mice in which the ATP-sensitive K+ channels were disrupted, indicated that
glucose –stimulated insulin secretion can also occur independently of ATP-sensitive K+

channels activity [8].

Under physiological conditions, there is a hyperbolic relation between insulin secretion and
insulin sensitivity. Classically, glucose-stimulated insulin secretion is characterized by a first
phase, which ends within a few minutes, and prevents or decreases glucose concentration and
a more prolonged second phase in which insulin is released proportionally to the plasma
glucose [9].

In addition, it has been demonstrated that the release of insulin is oscillatory, with relatively
stable rapid pulses occurring at every 8-10 minutes which are superimposed on low-frequency
oscillations [10]. In humans the amplitude of insulin oscillations is 100-fold higher in the portal
vein than in the systemic circulation implying preferential hepatic extraction of insulin pulses.

Research to further understand the roles of these pathways may provide strategies for future
therapies of T2DM.

3. Place of beta-cell dysfunction in natural history of type 2 diabetes

T2DM is a progressive condition caused by genetic and environmental factors that induce
tissue insulin resistance and beta-cell dysfunction.

Based on the United Kingdom Prospective Diabetes Study (UKPDS) and on the Belfast
Diabetes Study, it is estimated that at diagnosis of T2DM, beta-cell function is already reduced
by 50-60% and that this reduction of beta-cell function seems to start with 10-12 years before
the appearance of hyperglycemia [11,12].

Several lines of evidence indicated that there is no hyperglycemia without beta-cell dysfunc‐
tion [13,14].

In most subjects with obesity-induced insulin resistance developing increased insulin secre‐
tion, insulin gene expression and beta-cell mass, these compensatory mechanisms can succeed
to maintain glucose homeostasis and avoidance of diabetes mellitus [13-15]. Progression from
beta-cell compensation to failure in the face of obesity-induced insulin resistance occurs in a
subset of genetically predisposed individuals who fail to adequately compensate for the
increased insulin demand, leading to glucolipotoxicity.

In this phase insulin secretion (in relation to the degree of insulin resistance), insulin gene
expression and beta-cell mass are reduced, causing increased levels of glucose and free fatty
acids [13,14].
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In T2DM, the typical beta-cell functional alterations are represented by:

• change of threshold for insulin secretion triggering with relatively selective loss of respon‐
sivity to glucose compared to other insulin secretagogues like arginin or glibenclamide

• alteration of insulin secretion oscillatory patterns with impairment of both high frequency
and ultradian oscillations

• reduced or absent first phase insulin secretion initially to intravenous glucose and then to
mixed meal ingestion

• prolongation of second phase of insulin secretion

• gradual, time-dependent irreversible damage to cellular components of insulin production
[9,13-18].

Longitudinal studies in humans have clearly demonstrated that beta-cell function deteriorates
during the years. In the phase which precedes overt diabetes the decline of beta-cell function
is slow but constant (2% per year) [19]. After the development of overt hyperglycemia there
appears a significant acceleration (18% per year) in beta-cell failure, and the beta-cell function
deteriorates regardless of the therapeutic regimen [11,19,20]. The accelerated beta-cell dys‐
function is the consequence of glucolipotoxicity. Consequent deterioration in metabolic
equilibrium with increasing levels of glucose and free fatty acids, enhance and accelerate beta-
cell dysfunction, lead to beta-cell apoptosis that does not seems to be adequately compensated
by regenerative process and subsequent decrease of beta-cell mass.

4. Potential mechanism and modulators of beta-cell failure

The main focus of the present chapter is on potential beta-cell failure mechanisms in T2DM.

The initial alterations in beta-cell function are likely to reflect intrinsic defects, whereas the
accelerated beta-cell dysfunction which mainly occurs after the development of overt hyper‐
glycemia is the consequence of glucolipotoxicity [21]. This reflects a genetic predisposition for
beta-cell defect, whereas the subsequent beta-cell failure may be a consequence of concomitant
environmental conditions.

Schematic representation of the role of cellular dysfunction in the natural history of T2DM is
included in Figure 1.

5. Genetic factors

Several genes associated with increased risk of developing T2DM have been identified in
genome-wide association studies [22]. There were detected several genetic variants of genes
that confer risk of diabetes by interfering with next three mechanisms:
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• reduction of insulin secretion: KCNJ11 [23], HHEX [24-26], SLC30A8 [25,27], CAPN10 [28],
CDKAL1 [29,30], IGF2BP2 [30,31], CDKN2A/B [24], MTNR1B [32-36], CDC123/CAMK1D
[35,37], JAZF1 [37] and TSPAN8/LGR5 [37]

• impairment in incretin release: TCF7L2 [38], WFS1 [39], KCNQ1 [40,41]

• impaired proinsulin-to-insulin conversion: CAPN10 [28], TCF7L2 [42-45], SLC30A8 [42],
and CDKAL1 [42]

The most important so far type 2 diabetes risk gene, TCF7L2, interferes with all three mecha‐
nisms.

TCF7L2 encodes for the transcription factor TCF7L2, which induces the expression of a number
of genes including the insulin gene [46], the gene coding for intestinal proglucagon [47], genes
coding for proprotein convertases 1 and 2 [43] and for proteins important in insulin exocytosis
and genes critical for beta-cell proliferation [48].

The KCNJ11 encodes the Kir6.2 subunit of the ATP-sensitive K channel of beta-cells. Genetic
variation in this gene obviously affects the beta-cell excitability and insulin secretion [23].

HHEX encodes a transcription factor necessary for the organogenesis of the ventral pancreas
[49] and two SNPs (rs1111875, rs7923837) in HHEX were found to be associated with reduced
insulin secretion [24-26].

Figure 1. Place of beta-cell dysfunction in natural history of type 2 diabetes
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SLC30A8 encodes the protein zinc transporter 8, which provide zinc for maturation, storage
and exocytosis of the insulin granules [50]. Variants in this gene show to be associated with
reduced glucose-stimulated insulin secretion [25,27] and alterations in proinsulin to insulin
conversion [42].

A number of SNPs, and particularly the rs10830963 C>G SNP in MTNR1B enhances the
melatonin-induced inhibition of insulin secretion, leading to higher fasting blood glucose and
an increased T2DM risk [32-36].

The molecular mechanisms by which loci or SNPs in the other genes affect glucose-stimulated
insulin secretion, proinsulin to insulin conversion and incretin-induced insulin secretion are
currently poorly understood.

These observations suggest that a genetic predisposition is associated with an initially beta-
cell intrinsic defect which, in case of increased demand as it is in obesity and insulin resistance,
leads to beta-cell failure.

6. Glucolipotoxicity

Growing evidence indicated that long-term elevated plasma levels of glucose and fatty acids
contribute to beta-cell function decline, a phenomenon known as glucolipotoxicity. Glucoli‐
potoxicity differs from beta-cell exhaustion, which is a reversible phenomenon characterized
by depletion of insulin granules due to prolonged exposure to secretagogues. Unlike glucoli‐
potoxicity, beta-cell exhaustion is associated with normal production of insulin [51].

A multitude of clinical and preclinical studies have shown deleterious effects of beta-cells
chronic exposure to elevated glucose levels.

Given the existence of insulin resistance and a predisposing genetic background, there occurs
the elevation of glucose levels, which lead to progressively decreases of insulin secretion,
insulin gene expression and insulin promoter activity (PDX-1 and MAFA) [52,53].

Chronic exposure of beta-cells to hyperglycemia can also induce beta-cells apoptosis by
increasing proapoptotic genes expression (Bad, Bid, Bik) while antiapoptotic gene expression
Bcl-2 remains unaffected [54].

There is a strong relationship between glucotoxicity and lipotoxicity. Thus, hyperglycemia
increases malonyl-CoA levels, leading to the inhibition of carnitine palmitoyl transferase-1 and
subsequently to decreased oxidation of fatty acids and lipotoxicity [52].

Increased fatty acids in the pancreas leads to intrapancreatic accumulation of triglycerides [55].
Lim E et al showed that the intrapancreatic fat is associated with beta-cell dysfunction and that
sustained negative energy balance induces restoration of beta-cellular function [56].

Elevated levels of glucose and saturated fatty acids in beta cells, stimulates AMP-activated
protein kinase, which contributes to increased expression of sterolregulatory-element-
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binding-protein-1c (SREBP1c), leading to increased lipogenesis [57]. Glucose also increases the
expression of liver X receptor which then contributes to enhancing SREBP1c expression [58].

Several studies provide evidence that prolonged exposure of beta cells to elevated levels of
free fatty acids can have many deleterious effects, such as:

• Decreased glucose-stimulated insulin secretion [52,59]. Activation of the isoform of
protein kinase C (PKCε) by free fatty acids which has been suggested as a possible candidate
signaling molecule underlying the decrease in insulin secretion [60].

• Impaired insulin gene exepression by down-regulation of PDX-1 and MafA insulin gene
promoter activity [61]. PDX-1 is affected in its ability to translocate to the nucleus, whereas
MafA is affected at the level of its expression [61]. Free fatty acid impairs insulin gene
expression only in the presence of hyperglycemia [62]. Palmitate affects both insulin gene
expression and insulin secretion, unlike oleate which affects only insulin secretion [63].
Extracellular-regulated kinase (ERK) 1/2 phosphorylation, JNK activation, PKB phosphor‐
ylation, and Per- Arnt-Sim kinase (PASK) signalling pathways mediate the palmitate-
induced inhibition of insulin gene expression [64,65].

• Increased synthesis of ceramides from palmitic acid only, which impairs insulin gene
expression, induces cell death by inhibition of anti-apoptotic protein Bcl2, without affecting
insulin secretion [62,66,67].

• Up regulation of UCP2, leading to reduction of glucose-stimulated ATP generation [68].

• Activation of the oxidative stress [69].

• Activation of the unfolded protein response [70].

• Increased beta-cells inflammation by stimulations of NF-kB, Il-1β and IFN-γ production
[71].

• Beta-cell apoptosis mediated by several mechanism including increased ceramides,
caspases activation, decreased Bcl2 expression, inflammation response, ROS production,
unfolded protein response [66,72-74]. Saturated fatty acids are involved in beta-cell apop‐
tosis, whereas unsaturated fatty acids are usually protective [75,76].

• Increased islet amyloid polypeptide [77].

Recent studies suggest that deleterious effect of free fatty acids are expressed mostly in the
presence of hyperglycemia which inhibits fatty acid oxidation and lead to accumulation of
cytosolic long-chain acyl-CoA esters, generation of ceramide and lipid partitioning.

Increased intracellular cholesterol content may also lead to glucolipotoxicity. ATP-binding
cassette transporter subfamily A member 1 (ABCA1) appears to mediate intracellular cho‐
lesterol accumulation and impaired insulin secretion, probably at the level of insulin exo‐
cytosis [78].

Several mechanisms have been proposed for glucolipotoxicity induced beta-cell dysfunction
and death, such as: endoplasmic reticulum stress, mitochondrial dysfunction and reactive
oxygen species production, islet inflammation and islet amyloid polypeptide increasing.
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There is a significant relationship between the mechanisms triggered by glucolipotoxicy,
creating thus a vicious cycle that eventually leads to beta-cell failure (Figure 2.).

Figure 2. Potential mechanism of beta-cell failure

7. Endoplasmic reticulum stress

The endoplasmic reticulum is responsible for the protein synthesis, being involved in protein
translation, folding and assessing quality before protein secretion. Chronic hyperglycemia,
elevated levels of saturated free fatty acid in beta-cell lead to sustained increased demand for
insulin biosynthesis via increasing both insulin transcription and translation, and to increased
proinsulin biosynthesis, which generates a heavy load of unfolded/misfolded proteins in the
endoplasmic reticulum lumen. Accumulation of unfolded and misfolded protein in the
endoplasmic reticulum lumen may impose endoplasmic reticulum stress [79,80]. Inflamma‐
tory cytokines such as IL-1β and IFN-γ, can also cause endoplasmic reticulum stress [72].

Endoplasmic reticulum stress induced beta-cell activation of an adaptive system named
unfolded protein response by which it attenuates protein translation, increases protein folding
and promotes misfolded protein degradation [81,82].

The unfolded protein response is mediated by activation of three transmembrane endoplasmic
reticulum proteins:

• protein-kinase-RNA-(PKR-) like ER kinase/ eukaryotic translation initiation factor 2 alpha
(PERK/eIF2α)

• inositol-requiring 1/X-box- bindingprotein-1 (IRE1/XBP-1)
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• activating transcription factor 6 (ATF6) [83,84].

The unfolded protein response alleviates endoplasmic reticulum stress by inducing a number
of downstream responses:

• decrease new proteins arrival into the endoplasmic reticulum by attenuation of further
translation of mRNAs via PERK/eIF2α activation. Thus, it prevents additional protein
misfolding and further accumulation of unfolded protein;

• increase the folding capacity of the endoplasmic reticulum to deal with misfolded proteins
via the induction of endoplasmic reticulum chaperones. This response is mediated by IRE1/
XBP-1 and ATF6;

• increase in the extrusion of misfolded proteins from the endoplasmic reticulum and
subsequently endoplasmic reticulum-associated protein degradation (ERAD);

• triggering apoptosis by the activation of CCAAT/enhancendoplasmic reticulum-binding
homologous protein (CHOP) [81-85].

Among the three different signaling pathways of the endoplasmic reticulum stress response
(ATF6, IRE1/XBP-1, and PERK/eIF2α), only ATF6 down-regulated PDX-1 and MafA insulin
gene promote activity [86].

Extensive studies have indicated that IRE1/XBP-1 activation leads to increases of proinsulin
biosynthesis under transient high glucose conditions like postprandial hyperglycemia and, by
contrast, causes suppression of insulin mRNA expression and increases insulin mRNA
degradation under chronic high glucose exposure [87,88].

Given these data it can be asserted that the appearance of endoplasmic reticulum stress, due
to glucolipotoxicity and inflammatory cytokines, can lead to beta-cell dysfunction and death.

8. Mitochondrial dysfunction and ROS production

Beta cell mitochondria play a key role in the insulin secretion process, not only by providing
energy in the form of ATP to support insulin secretion, but also by synthesising metabolites
that can act as factors that couple glucose sensing to insulin granule exocytosis [3].

Mitochondrial dysfunction and abnormal morphology occur before the onset of hyperglyce‐
mia and play an important role in beta-cell failure [89]. In diabetic state, the proteins from the
mitochondrial inner membrane are decreased, and also may exist transcriptional changes of
the mitochondrial proteins [89].

Mitochondrial dysfunction, induced by glucolipotoxicity, plays a pivotal role in beta-cell
failure and leads to increased ROS production as a result of metabolic stress.

Under conditions of normoglycemia production of ROS - superoxide anion (O2 • -) and
hydrogen peroxide (H2O2) - is performed during mitochondrial electron transport or through
several oxidoreductases and metal-catalyzed oxidation of metabolites [90].
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In the presence of hyperglycemia, hexosamine, sorbitol, PCK activations and Shiff reaction
pathways, may represent sources of oxidative stress along with oxidative phosphorylation and
auto-oxidation of glucose in mitochondria [91].

ROS effects can be reduced by activation of antioxidant enzymes including: superoxide
dismutase, which converts O2 • - to H2O2 and also catalase, glutathione peroxide and
peroxiredoxin that convert H2O2 into oxygen and water. Levels of antioxidant enzymes in
beta cells are very low (catalase and glutathione peroxide levels were much lower than those
of superoxide dismutase), making beta cells be vulnerable to oxidative stress [92].

Low concentrations of ROS contribute to increased glucose-stimulated insulin secretion, but
only in the presence of glucose-induced elevations in ATP [93].

Li N. et al indicated that transient oxidative stress can cause impaired glucose-induced ATP
generation, decreased glucose-stimulated insulin secretion, down-regulation of the respirato‐
ry chain and increased mitochondrial ROS production [94]. All these effects are reversible in
time after transient increase ROS.

Chronic and significant elevation of ROS, resulted from an imbalance between ROS production
and scavenging by endogenous antioxidants, may lead to beta-cell failure [95,96].

Persistent oxidative stress mediates beta-cell failure through several different mechanisms,
including:

• Decreased insulin secretion. Oxidative stress inhibits the respiratory chain, allowing the
transfer of electrons to molecular oxygen to form superoxide, and also inhibits the enzymes
involved in glucose metabolism (glyceraldehyde-3-phosphate-dehydrogenase from
glycolytic pathway and aconitase from Krebs cycle), leading to reduced ATP / ADP ratio
and to impaired insulin release [97-100].

• Decreased insulin gene expression via activation of JNK pathway, also by posttranscrip‐
tional loss of PDX-1 and posttranslational loss of MafA [21,52,101].

• Islet inflammation due to activation of NF-kB pathway [102].

• Mitochondrial dysfunction by promoting DNA fragmentation, the peroxidation of
membrane phospholipids such as cardiolipin [16,103].

• Increased islet amyloid polypeptide and endoplasmic reticulum stress [104-106].

• Beta-cells apoptosis by activating uncoupling protein-2 which results in proton leak leading
to reduced ATP synthesis [107].

• Beta-cells lipid accumulation via SREBP1c [108].

The antioxidant effect varies depending on the type of exposure of beta cells to ROS. Thus,
under beta-cells exposure to low concentrations of ROS, antioxidants lower the insulin
secretion [109,110]. Instead, under the glucolipotoxicity, antioxidants increase the insulin
secretion and reduce beta cell apoptosis [108].
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9. Islet inflammation

Several studies indicated that prolonged exposure of pancreatic islet to chronic hyperglyce‐
mia, increased levels of saturated fatty acids and increased ROS may trigger the production
of inflammatory cytokines such as nuclear transcription factor kB (NF-κB), interleukin-1β
(IL-1β) and γ-interferon (IFN-γ), TNF-α, leading to beta-cells dysfunction and apoptosis
[71]. Additionally, beta-cells dysfunction and apoptosis may also be triggered by pro-in‐
flammatory signals from other organs, such as adipose tissue [111,112].

Transient activation of NF-κB may be beneficial to insulin secretion [113], but persistent ac‐
tivation of NF-kB may induce cell dysfunction, due to the reduction of beta-cell protein ex‐
pression including insulin, GLUT-2, and PDX-1 concomitant with an increase in iNOS
expression [113].

There is good evidence that NF-kB mediates direct or through Il-1β, the activation of induci‐
ble nitric oxide synthase (iNOS) in pancreatic beta-cells which, in turn, induces the expres‐
sion of proinflammatory genes, interferes with electron transfer and inhibits ATP synthesis
in mitochondria, leading to decreased insulin secretion and beta-cell dysfunction [114].

Chronic exposure of beta-cell to inflammatory cytokines, like Il-1β, IFN-γ or TNF-α, can
cause endoplasmic reticulum stress and the unfolded protein response activation in beta-
cells, and also beta-cells apoptosis [72,115]. Because, as indicated by Donath et al, the apop‐
totic beta-cells can provoke, in turn, an immune response, a vicious cycle may develop [115].

Another  cytokine  involved  in  beta-cells  dysfunction  is  the  PANcreatic  DERived  factor
(PANDER).  PANDER  is  a  novel  cytokine  that  is  highly  expressed  in  pancreatic  islets
[116]. Because PANDER protein is cosecreted with insulin from pancreatic beta-cells [117]
it is reasonable to speculate that PANDER may regulate the insulin secretion process [117,
118].

The adipocytokines released by adipocytes, including adiponectin, leptin, resistin, visfatin,
TNF-α and IL-6, may also modulate the beta-cell function and survival.

Adiponectin receptors were found in human and rat pancreatic beta-cells and their expres‐
sion can be upregulated by unsaturated fatty acid but not by saturated fatty acid [116].

In beta-cells, adiponectin may induce phosphorylation of acetyl coenzyme A carboxylase,
leading to inhibition of fatty acids synthesis and preventing of lipid accumulation in beta-
cells [112]. There have not been revealed significant effects of adiponectin on basal or glu‐
cose-stimulated insulin secretion [112].

Leptin is another adipocytokine that may interfere with beta-cell function and survival. In
studies on animal model, leptin has been shown to inhibit insulin secretion via activation
of ATP-regulated potassium channels and reduction in cellular cAMP level [116],  inhibit
insulin biosynthesis by activating suppressor of cytokine signalling 3 (SOCS3) [119], sup‐
press  acetylcholine-induced insulin  secretion [116]  and induce  the  expression of  inflam‐
matory genes [120].
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Studies  performed on human islets  indicated that  chronic  exposure  to  leptin  stimulates
the  release  of  IL-1β  and inhibits  UCP2 expression,  leading  to  beta-cell  dysfunction  and
apoptosis [111].

Other adipocytokines including TNF-α, IL-6, resistin, visfatin may also modulate beta-cell
function and survival, although it is unclear whether the amount released into the circulation
is sufficient to affect beta-cells [111].

10. Islet amyloid polypeptide

Human islet amyloid polypeptide (amylin) is expressed almost exclusively in beta-cells and
is costored and coreleased with insulin in response to beta-cells secretagogues. Glucolipotox‐
icity causes increased insulin requirement and those lead to increased production of both
insulin and amylin. High concentrations of amyloid are toxic to beta-cells and have been
implicated in beta-cell dysfunction and apoptosis [121,122].

The effect of Islet amyloid polypeptide on beta-cell function is not fully elucidated.

Studies in vivo have shown that the islet amyloid polypeptide inhibits the first and second
phase of glucose-stimulated insulin secretion, but this occurs only at concentrations of islet
amyloid polypeptide above physiological range [77].

In vitro studies, however, have yielded contradictory results. Several studies have indicated
an inhibitory effect of islet amyloid polypeptide physiological concentration on insulin
secretion [123], but other studies have reported no inhibitory effect of islet amyloid polypeptide
on insulin release [77].

One possible explanation for these inconsistent  results  may be that  there was not taken
into consideration the islet amyloid polypeptide increased tendency to aggregate in amy‐
loid-like fibrils  and thus the effects of  early islet  amyloid polypeptide preparations may
be questioned [77].

Studies performed on islet amyloid polypeptide knock-out or transgenic mice, using pure and
fully active islet amyloid polypeptide, suggest that islet amyloid polypeptide limits glucose-
induced insulin secretion [124].

11. Beta-cell failure — Implication for treatment

Understanding the causes for beta-cell failure is of capital importance to develop new and
more effective therapeutic strategies.

Taking into consideration the existence of early beta-cell dysfunction and the significant re‐
duction of beta-cell mass in the natural history of T2DM as well as the progressive character
of these pathophysiological modifications, insulin therapy could be an important option for
obtaining and maintaining an optimal glycemic control.
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Li Y. et al indicated that short term intensive insulin therapy of newly diagnosed T2DM may
improve cell function, by restoring the first-phase insulin secretion and by decreased proin‐
sulin/insulin ratio [125].

Increasing insulin levels by exogenous insulin administration for the control of hyperglyce‐
mia may appear initially contraindicated in patients with evidence of insulin resistance, so it
is imperative to simultaneously address insulin resistance with metformin.

Several lines of evidence indicated that metformin could improve beta-cell function and
survival. Incubation of T2DM islets with metformin was associated with increased insulin
content, insulin mRNA expression and glucose responsiveness, and also with reduced cell
apoptosis by normalization of caspase 3 and caspase 8 activities [103].

It has been shown that metformin, and also the PPAR gamma agonists can protect beta-cell
from deleterious effects of glucolipotoxicity [126,127].

Other therapeutic options for beta-cell protection, such as incretins are actually under de‐
bate. Recent studies have shown that effects of incretins vary depending on the time of ex‐
posure of beta-cells to GLP-1 or GLP-1R agonists.

Thus, acute exposure of cells to the incretins, determine stimulation of glucose-dependent
insulin secretion, the subacute exposure leads to increased insulin biosynthesis and insulin
gene transcription, whereas the chronic exposure induces beta-cell mass increase by stimula‐
tion of cell proliferation, neogenesis and inhibition of cell apoptosis [21].

Changing profile of cytokines secretion from pancreatic beta-cells and also of adipocytokines
may be promising therapeutic options for beta-cellular dysfunction [116].

Future advances in the area of beta-cell failure mechanism and modulators may lead to the
identification of possible novel therapeutic strategies.
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