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1. Introduction

Nitric oxide (NO) is a gaseous free radical that acts as a second messenger having an important
biological role in intercellular communication and in intracellular signaling in many tissues,
including the brain (reviewed by [1]). NO is synthesized by the nitric oxide synthase (NOS)
family of enzymes, which convert L-arginine to L-citrulline and NO. There are three different
isoforms of NOS: a) neuronal NOS (nNOS or NOS I), b) endothelial NOS (eNOS or NOS III),
and c) inducible NOS (iNOS or NOS II) (reviewed by [2]). Different members of the NOS family
control different functions of NO (reviewed by [1]).

In  the central  nervous system (CNS),  NO has been linked to  the regulation of  synaptic
plasticity and cognitive functions,  and it  is  also associated with the control of biological
functions including sleep-wake cycle, appetite, body temperature, and modulation of hor‐
mone release as reviewed by [3]. In the last decade, there has been a growing interest in
the  study  of  the  role  of  NO  in  neurogenesis,  the  process  by  which  new  neurons  are
formed in  the  brain.  NO regulates  neurogenesis  in  diverse  ways,  and the  different  NO
synthases  are  important  players  in  the  different  effects  on  neurogenesis.  Under  physio‐
logical conditions NO synthesized from nNOS acts as a negative regulator of neurogene‐
sis [4-9], while in inflammatory conditions, such as neurodegenerative disorders or acute
brain  insults,  a  decrease  in  nNOS  and  an  increase  in  iNOS  expression  may  act  as  a
mechanism to enhance neurogenesis [8,10-13].  In fact,  depending on the source, NO has
a  pro-neurogenic  effect  either  by promoting neural  stem cell  (NSC)  proliferation,  as  re‐
cently  described by our group [13,14],  but  also by favoring other  steps of  neurogenesis
such as migration [15], differentiation and survival [10,16]. Although the exact molecular
mechanisms underlying this dual effect of NO on neurogenesis are not fully clarified, the
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modulation of the NO system seems be a good target for the development of strategies
to improve endogenous neurogenesis following brain damage.

In  this  chapter,  we  describe  the  use  of  two different  strategies  for  the  enhancement  of
endogenous  neurogenesis  using  drugs  that  are  linked  to  the  nitrergic  system:  1)  Nitric
oxide-releasing non-steroidal anti-inflammatory drugs (NO-NSAID); 2) Phosphodiesterase
type  5  (PDE5)  inhibitors.  PDE5  inhibitors  are  suitable  to  be  used  in  the  clinic  for  the
treatment of several pathologies, such as erectile dysfunction [17] and pulmonary arterial
hypertension [18], while NO-NSAID are being studied as an alternative to NSAID in the
treatment  of  systemic  inflammatory  conditions  [19].  Although little  is  known about  the
use of  these drugs for the treatment of  CNS disorders,  the evidence so far is  encourag‐
ing.  Several  reports  describe these drugs as  a  good strategy to promote regeneration of
lesioned areas or to be used as an adjuvant approach in cell replacement therapies since
they  favor  neurogenesis  [20-22].  Thus,  the  design  of  therapeutic  strategies  using  these
drugs to efficiently enhance the different steps of  neurogenesis,  such as a)  proliferation,
b)  migration,  c)  differentiation,  d)  integration  and,  e)  survival  of  NSC  in  the  injured
CNS, seems to be a valuable therapeutic approach to improve brain repair.

2. Neurogenesis in the adult mammalian brain

The discovery of NSC in the adult mammalian brain had a strong contribution for the
understanding of adult CNS plasticity. Two regions have been classically described as having
the characteristics necessary for the maintenance of NSC: a) the subgranular zone (SGZ) of the
dentate gyrus (DG) of the hippocampus [23,24], and b) the subventricular zone (SVZ) of the
lateral ventricles [25]. NSC can be isolated from the SGZ or SVZ and cultured in vitro, since
some of the characteristics of these regions can be kept in culture in the presence of growth
factors such as the epidermal growth factor (EGF) [26] and/or basic fibroblast growth factor
(bFGF) [27].

In vivo, from the SVZ and SGZ, NSC undergo a complex process leading ultimately to the
formation of new neurons, a phenomenon referred to as neurogenesis, which enables the
continuous production of neuronal cells throughout the adult life of mammals, including
humans. Neurogenesis can be summarized into six main stages: 1) proliferation of precursor
cells; 2) fate determination; 3) migration; 4) differentiation; 5) integration in the neuronal
circuitry, and 6) long-term survival of functional newborn neurons. Each of these stages is
tightly regulated locally, and numerous agents have been described to be responsible for the
physiological regulation of neurogenesis, such as EGF, bFGF, Numb, Notch, Sox, Sonic
hedgehog, Noggin, among others (for review see [28,29]).

When trauma occurs  in the CNS,  new needs arise  for  the brain,  mainly for  repair,  and
various signals are released from injured areas influencing neurogenic niches and the be‐
havior  of  NSC,  which can migrate  to  the affected sites.  Brain damage may be a)  acute,
such as traumatic brain injury, ischemic stroke or prolonged brain seizures, or b) chron‐
ic,  such  as  slow-progressing  neurodegenerative  diseases.  All  these  conditions  are  fol‐
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lowed by an inflammatory response [30].  Indeed, several studies have shown that adult
neurogenesis  is  influenced  by  various  pathological  conditions,  as  discussed  previously
[31].  Models  of  brain  damage  were  used  to  demonstrate  that  neurogenesis  may  be  fa‐
vored  following  injury,  particularly  acute  injury,  which  is  generally  accepted  as  an  at‐
tempt  of  the  brain  to  repair  [31].  On  the  other  hand,  the  neurogenic  capacity  is
decreased in neurodegenerative diseases,  such as  Alzheimer's  disease,  Huntington's  dis‐
ease or Parkinson’s disease [32-34].

However,  several  questions remain unclear  about  this  issue,  in  particular:  a)  which fac‐
tors  regulate  neurogenesis  during  inflammation;  b)  which  signaling  pathways  are  in‐
volved  in  the  recruitment  of  NSC  for  the  injured  sites;  c)  how  new  neurons  are
integrated and are able to survive long term; d) how can neurogenesis be modulated to
improve its efficiency in an inflammatory context. The search for the answers to some of
these questions is the challenge of regenerative medicine and a major target by the scien‐
tific community nowadays.

3. Neuroinflammation

Neuroinflammation is a biological response to noxious stimuli affecting the CNS, such as
stress, injury or infection by external pathogens [35,36]. The main role of the inflammato‐
ry response is  that  of  providing an harmful  environment  for  external  agents  that  cause
injury and to regain homeostasis, being mediated by the activation of two major groups
of cells from the immune system: a) CNS resident cells - microglia and astrocytes, and b)
hematopoietic system migrating cells - lymphocytes, monocytes and macrophages [37,38].
The  activation  of  these  cells  is  characterized  by  the  release  of  different  regulatory  sub‐
stances,  including chemokines such as stromal derived factor  (SDF)-1alpha,  complement
molecules,  monocytes  chemoattractant  protein-1  (MCP-1),  cytokines  such  as  interferon
(IFN)-gamma, tumor necrosis  factor  (TNF)-alpha,  interleukine (IL)-1beta,  IL-18 and IL-6,
glutamate,  reactive  oxygen  species  (ROS)  and  reactive  nitrogen  species  (RNS)  like  NO
(for review see [31]).  Although the main function of neuroinflammation is to protect the
brain by promoting the removal  of  noxious stimuli  and committed/dead cells,  and thus
reestablishing brain tissue homeostasis, neuroinflammation may also become deregulated
and  contribute  to  perpetuate  secondary  tissue  damage,  as  reported  previously  [39].  In
fact,  the  creation  of  a  positive  feedback loop through inflammation itself  may result  in
neuronal loss and/or neuronal damage.

In short, neuroinflammation may have a dual effect on the cellular environment, being
beneficial or detrimental, depending on the time and state of activation of inflammatory cells
[40]. Accordingly, the inflammatory response has been linked to the mechanisms that lead to
various CNS diseases, also affecting SVZ and SGZ niches, therefore compromising neurogen‐
esis [41]. Whether this means that inflammation is always detrimental to neurogenesis, or
whether it is harmful only when the homeostasis of SVZ and/or SGZ is compromised, will be
discussed in the next section.
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4. Neuroinflammation and neurogenesis

As  mentioned  in  the  previous  section,  it  is  now  widely  accepted  that  neuroinflamma‐
tion  modulates  neurogenesis  in  different  ways,  either  by  increasing  or,  alternatively,
decreasing  it  [42].  Depending  on  the  severity  and  complexity  of  the  inflammatory  re‐
sponse,  which  can  range  from  a  mild  acute  to  a  chronic  uncontrolled  process,  neuro‐
genesis  may  be  dually  regulated.  Factors  such  as  a)  the  type  of  inflammatory  stimuli,
b)  the  type of  inflammatory cells,  c)  the  type of  inflammatory mediator,  d)  the  area  of
injured  tissue  and  e)  for  how  long  the  inflammatory  cells,  particularly  microglia,  re‐
main  activated,  are  decisive  for  the  shift  from  a  pro-neurogenic  to  an  anti-neurogenic
inflammatory status [43].

In  this  context,  the  involvement  of  a  particular  type  of  inflammatory  cells  such  as  mi‐
croglia,  considered  by  most  authors  as  the  "hallmark  of  neuroinflammation",  seems  to
be  of  major  importance  in  the  modulation  of  neurogenesis.  The  main  features  of  mi‐
croglial  cells  are a)  the expression of  scavenger receptors,  b)  antigen presentation mole‐
cules  (Major  Histocompatibility  Complex  (MHC)  class  II),  c)  pattern-recognition
receptors,  and d)  production of  various  cytokines  and other  inflammatory factors  (ROS
and  RNS)  [44].  For  a  long  time,  microglial  cells  were  considered  as  the  damaging
agents  of  the  inflammatory  response,  with  a  default  response  always  leading  to  detri‐
mental  effects  on  neuronal  surrounding  environment.  However,  recent  studies  describe
microglial  activity  to  be  plastic  (for  review see  [42]).  In  fact,  the  plasticity  of  microglia
seems  to  be  a  determining  factor  in  this  dual  regulation  of  neurogenesis,  since  it  can
assume  different  morphologies  and  different  phenotypes  and  subsequently  release  me‐
diators  along  an  inflammatory  response  that  may influence  the  physiology  of  the  NSC
[45].  Apparently,  microglial  cells  and  factors  released  during  inflammatory  responses
appear to  have a  dual  role  in neurogenesis  [13,42].

Therefore,  numerous  studies  have  reported  the  involvement  of  different  microglial-de‐
rived  inflammatory  mediators  in  the  regulation  of  neurogenesis  and/or  neuroprotection
[31,46,47].  Moreover,  it  has  been  reported  that  chronic  microglial  activation  can  stimu‐
late  one  or  more  stages  of  neurogenesis,  such  as  NSC proliferation,  migration  and dif‐
ferentiation,  while  the  long-term  survival  of  newborn  neurons  seems  to  be  reduced  in
this  context  [31].

4.1. Anti-neurogenic role of inflammation

Neuroinflammation,  in  particular  microglial  activation,  was  initially  described  to  be
detrimental  to neurogenesis  [48,49].  Several  studies have demonstrated microglia activa‐
tion by lipopolysaccharide (LPS)  to  hinder  neurogenesis  in  adult  rats  [48],  by a  mecha‐
nism  mediated  through  TNF-alpha  increased  production  [50,51].  Other  studies  have
linked  this  anti-neurogenic  effect  of  inflammation  to  the  increased  production  of  other
proinflammatory  mediators  such  as  interleukins  IL-1  beta  and  IL-6,  or  cytokines  IFN-
gamma and TNF-alpha [52-55].  In  addition,  ROS and RNS,  in  particular  NO, have also
been described as  being involved in  the  detrimental  effect  of  neuroinflammation in  the
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formation of  new neurons  in  the  adult  brain  of  rodents  [49,56,57].  In  Table  1  we sum‐
marize  the  main  findings  concerning  the  effect  of  the  most  important  proinflammatory
mediators  in neurogenesis.

In  addition,  the  deleterious  role  of  inflammation  in  neurogenesis  was  corroborated  by
numerous  studies  which  demonstrated  that  neurogenesis  can  be  restored  when  the  in‐
flammatory response is controlled by the administration of:  a) antibiotics,  such as mino‐
cycline  [48,58,59],  or  b)  non-steroidal  anti-inflammatory  drugs,  such  as  indomethacin
[48,49,60,61].

4.2. Pro-neurogenic role of inflammation

Contrary to initial observations, recent studies indicate that neuroinflammation may also
support different stages of neurogenesis, thus favoring the formation of new neurons follow‐
ing injury to the CNS [44]. Thus, the inflammatory microenvironment is responsible for
sending “activating signals” to NSC resident in neurogenic niches, such as SVZ or SGZ, that
thereafter migrate to the injured areas where they differentiate and integrate the neuronal
network [62,63]. In this context, microglial cells are described as central in the regulation of
this process, suggesting an ambiguous role of microglia in the regulation of neurogenesis in
inflammatory conditions [64].

Apparently, although microglia may be detrimental to neurogenesis in early stages of the
inflammatory response after acute insults, prolonged inflammatory response, also referred as
chronic inflammation, appears to have a protective effect by directing the replacement of
damaged or lost cells [45,65-68]. Thus, it was shown in several studies that inhibition of
microglial activation results in continuous production of new neurons from adult NSC [69,70].
Moreover, chronic activation of microglia is concomitant with long-term survival of newly
formed neurons [71,72].

Several proinflammatory mediators have been related to the pro-neurogenic effect of inflam‐
mation, including: a) cytokines such as IFN-gamma or TNF-alpha, b) chemokines such as
SDF-1alpha and its receptor CXCR4 [69,73], or c) trophic factors such as brain-derived
neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) involved in the
removal of damaged synapses [72] (see Table 1). In addition to the pro-neurogenic effect, these
studies also suggest a neuroprotective role of microglial cells for newborns cells.

4.3. Future studies

Overall, it seems clear that more knowledge about the crosstalk between inflammation and
neurogenesis is lacking. For instance, it is necessary to better characterize the genetic and
proteomics of the microglial response, as well as more targeted studies are needed to clarify
how neuroinflammation modulates each of the neurogenic stages. Identifying which genes are
expressed, and subsequently, what kind of proteins are present during an inflammatory
response will allow the development of different strategies to control or mitigate the delete‐
rious effects of neuroinflammation on neurogenesis.
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Inflammatory

mediator

Proliferation of

NSC

Differentiation

of NCS

Survival of

NSC
Signaling pathway References

SVZ DG SVZ DG SVZ DG

IL-1 beta - - 0 0 + + SAPK/JNK [74,75]

IL-6 - - - - - - JAK/STAT and MAPK [48,56,67]

IFN-gamma
- 0 + + - 0 ERK 1/2 pathway [52,64,76-78]

+ 0 0 0 = 0 NF-kappaB [79,80]

TNF-alpha

+ 0 0 - 0 - 0 [50]

0 0 0 0 - - TNF-R1 and TNF-R2 [53,76]

+ 0 - 0 = 0 TNF-R1 [81]

+ + + + + + TNF-R2 [82]

+ 0 + 0 + 0 TNF-R1 [83]

0 - 0 - + 0 TNR-R1 [54]

+ + + + + + TNF-R2 [43,54]

SDF-1alpha + + + 0 + 0 CXC-R4 [69,73,84]

The effects listed in Table 1 may not be direct. +, Increase; -, decrease; =, not changed; 0, not reported.

Table 1. Modulation of adult neurogenesis by inflammatory mediators.

5. Nitric oxide

NO is a short-lived gaseous free radical synthesized by different members of the nitric oxide
synthase family of enzymes. NOS are present in most tissues of the body and convert L-
arginine to L-citrulline and NO [2,85]. The NOS family of enzymes is characterized by the
existence of three different isoforms in mammalian cells: a) neuronal NOS (nNOS, type I), is
constitutively expressed in neurons, where it localizes to synaptic spines, and is activated by
calcium/calmodulin following the activation of glutamate receptors; b) endothelial NOS
(eNOS, type III), is constitutively expressed in endothelial cells and astrocytes, is regulated by
phosphorylation/dephosphorylation and/or by calcium/calmodulin; and c) inducible NOS
(iNOS, type II), which regulation is dependent on de novo synthesis of the enzyme, particularly
in inflammatory conditions [2,86,87].

Involved in a variety of physiological processes, NO has been described as an important
regulator of the activity of systems such as the cardiovascular, immune and nervous systems
[88]. There are several biological functions that depend on NO formation, including the
regulation of body temperature, appetite and sleep-wake cycle (for review see [3]). The main
mechanism regulating NO activity is at the level of its synthesis. In the CNS, NO has a distinct
action when compared to classical neurotransmitters, as it is synthesized on demand, diffusing
from synaptic terminals, acting not only in NO-releasing cells, but also in neighboring cells
[89]. Initially described as an intracellular messenger, NO has also been associated with
synaptic plasticity, which is linked to cognitive function, neuronal development and modu‐
lation of hormone release [90]. In this context, the role of NO as an intracellular messenger is
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mediated by increasing cyclic guanosine 3', 5'-monophosphate (cGMP) levels, following the
activation of N-Methyl-D-aspartate (NMDA)-type glutamate receptors [91]. Unlike classical
neurotransmitters, which are stored in vesicles or released by exocytosis and further inacti‐
vated by re-uptake or enzymatic degradation, NO ends its action after reacting with intracel‐
lular substrates [1]. According to the literature, the action of NO in the brain has been associated
with two different outcomes: a) regulation of physiological events, by its action as an intra‐
cellular messenger [90], or b) regulation of cell death mechanisms, due to its action as a
cytotoxic agent [92,93]. This will be explored next in section 5.1.

5.1. Nitric oxide and neuroinflammation

As mentioned in the previous section, the action of NO in the CNS is characterized by the
interaction with multiple intracellular targets, activating or inhibiting various signaling
pathways. Thus, NO has been described to be involved in the regulation of several physio‐
logical functions, but also of various pathophysiological processes [2,85]. This dual action
depends on the NOS isoform that catalyzes the formation of NO: a) nNOS and eNOS-derived
NO is more involved in the regulation of physiological functions, and b) iNOS-derived NO is
more involved in pathophysiological processes. In fact, iNOS is not normally expressed in the
healthy brain, but in the presence of pro-inflammatory stimuli such as cytokines, external
pathogens, such as bacteria or virus, or stress, such as hypoxia, iNOS may be expressed
primarily on macrophages, astrocytes, microglia and endothelial cells [3,86,94,95], but also in
neurons [96,97]. However, it should be mentioned that NO overproduction has also been
linked to nNOS activation following persistent glutamate excitatory input during an inflam‐
matory response, which has also been linked to iNOS expression [3]. Once expressed, iNOS
continuously produces NO, and high levels are reached, in a process that can last for several
days, having a cytotoxic effect by inhibiting mitochondrial respiratory chain enzymes,
ultimately inducing apoptosis in target cells [95,98-101]. A key factor for the local effect of NO
is the concentration achieved. Thus, in physiological conditions, NO concentrations could
range from 0.1 to 100 nM, which is lower than those observed in inflammatory conditions,
being less reactive. Accordingly, the action of NO is accomplished primarily by binding to the
heme group of soluble guanylate cyclase (sGC), whose activation leads to the subsequent
production of cGMP [102].

Increased levels of NO have been linked to oxidative and nitrosative stress phenomena, which
have been described as involved in the development of several neurodegenerative disorders
[2,85]. Thus, a massive release of NO can lead to the production of nitrogen dioxide (NO2),
after the direct reaction between NO and oxygen. NO2 is a highly reactive nitrosative specie
that can react with NO, producing dinitrogen trioxide (N2O3). Moreover, NO2 can also oxidize
or nitrate a wide variety of molecules, being the nitration of tyrosine to 3-nitrotyrosine a
classical example [103]. N2O3, in turn, is involved in other phenomena such as nitrosation/
nitrosylation, by reacting with amine or thiol groups, being a good example cysteine, which
may be nitrosated to S-nitrosocysteine [103]. Furthermore, NO can also react with superoxide
to produce peroxynitrite (ONOO-), another extremely reactive molecule which can oxidize or
nitrate other molecules, which has been described to be involved in the pathogenesis of several
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neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, Huntington's
disease, multiple sclerosis and amyotrophic lateral sclerosis [2,104-106]. Likewise, both S-
nitrosylation and nitration lead to alterations in the function of proteins, which may be
regarded as regulatory phenomena of its activity [103].Thus, understanding the involvement
of these phenomena in the pathoetiology of disorders affecting the brain may highlight a
potential therapeutic role in modulating these events.

5.2. Nitric oxide and neurogenesis

The involvement of NO in the regulation of neurogenesis is a matter of debate given the range
of different observations reported in the literature. In fact, the role of NO in neurogenesis only
recently has been identified [4,5,107]. Depending on the source and concentration attained
locally in the brain, NO has a dual influence in the neurogenic process both by inhibiting or
stimulating neurogenesis.

Based on the distribution of NO-producing cells in stem cell niches, several works have
proposed to study the involvement of NO produced at the perivascular niche - which includes
pericytes and smooth muscle fibroblasts, endothelial cells, microglia, glial progenitors and
astrocytic endfeet – in the regulation of neurogenesis, thus reinforcing the involvement of NO
signaling in angiogenesis and neurogenesis [4,108,109]. Indeed, the discovery of blood vessels
expressing eNOS and neurons expressing nNOS, close to SVZ and SGZ neurogenic niches,
was essential for the establishment of a causal relationship between NO and the formation of
new neurons. Moreover, it was also shown that nNOS-derived NO is involved in the regulation
of neurogenesis, particularly by regulating NSC function, so that a cytostatic function can be
assigned to NO in the CNS [4,5,107]. Thus, NO production occurs in close proximity to the
NSC. Other authors have shown that nitrergic neurons expressing nNOS are arranged in close
relationship throughout the rostral migratory stream (RMS), also describing a regulatory
action of NO in the migration of SVZ-derived progenitor cells along the RMS [110].

Although most studies initially performed reported NO as an anti-neurogenic agent in the
normal adult brain, in hypoxic ischemic stress conditions its effect can be radically different
favoring stem cell proliferation, as demonstrated in recent studies [4,12,13,108,111,112]. In fact,
the oxygen tension environment appears to modulate the effect of perivascular NO in
neurogenesis [112,113], which may vary from: a) pro-neurogenic action, dependent on the
expression of eNOS and nNOS, in physiological condition [108]; b) to anti-neurogenic action,
dependent on the expression of iNOS, in extreme environments such as hypoxic and ischemic
tissue and/or tumors [12,13,114,115]. However, more studies should be conducted to clearly
understand how NO produced by different cell types from the perivascular niche regulate
neurogenesis. In fact, it still remains to clarify the limit of oxidative stress and other redox
states that lead to the differential production of NO by each NOS isoforms - nNOS, eNOS and
iNOS - so that one can describe its perivascular action for neurogenesis.

During development, NO is differentially and transiently produced in the brain [116-118].
Moreover, the differential cellular and subcellular localization of nNOS in the CNS may explain
different functions of NO produced by nNOS [119]. In fact, in the cortex, there are two types
of NOS neurons whose distribution is of particular interest due to the relationship between
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the sites of NO production and the sites of development of particular pathologies [119].
Furthermore, its pre- or postsynaptical expression influences nNOS functions [120,121]. In the
adult olfactory bulb (OB), nNOS is highly expressed in developing neurons of the olfactory
epithelium during embryogenesis [120,122] and in the periglomerular cells and granule cells
in the OB in the adult [120,123], being necessary for the early postnatal development and for
the glomerular OB organization, respectively [123,124]. Furthermore, following a lesion in the
OB, nNOS expression is upregulated causing repopulation of this region [117,122,123].
Moreover, developing ependymal cells, which are in close association with SVZ-derived
progenitor cells, also transiently express nNOS after birth, but its activity decreases with the
maturation of the central canal [125], thus suggesting a role of NO synthesized by nNOS in the
development of ependymal cells [125]. Ependymal cells, together with astrocytes, create an
appropriate environment for neurogenesis [126].

NO production may be induced by neurotrophic factors, which results in an antiproliferative
effect on target cells by inducing cell cycle arrest/exit favoring cell differentiation [127-129].
Most of the studies on the involvement of NO in adult neurogenesis characterized its effect on
cell proliferation. However, the evaluation of survival and integration of newly-generated
neurons in the neuronal circuitry is also important, since NO is known to be an important
regulator of apoptosis [130]. In this context, different studies have shown that NO increases
short-term survival of progenitor cell progeny in the DG of adult rats by inhibiting apoptosis
after SE [131], and further preventing increases in the activity of caspase-3 [132].

5.2.1. Anti-neurogenic role of nitric oxide

The  anti-neurogenic  effect  of  NO  has  been  attributed  to  its  production  via  nNOS,  as
demonstrated in several  studies using in vitro  and in vivo  experimental  models.  Thus,  it
was reported that nNOS-derived NO has an antiproliferative effect,  and may be also in‐
volved in neuronal differentiation, survival and synaptic plasticity [4-6,133,134]. The anti‐
proliferative  effect  of  NO  was  confirmed  by  several  authors,  which  showed  that  the
inhibition  of  NO production  by  intra-ventricular  infusion  of  a  NOS inhibitor  or  by  the
knockout of nNOS increase cell proliferation in the DG or in the olfactory subependymal
zone of rodents [4,6,7,108]. Indeed, other studies were performed where the selective in‐
hibition of nNOS with 7-nitroindazole (7-NI) was shown to greatly increase cell prolifera‐
tion  in  the  SVZ,  RMS  and  OB  of  adult  rats,  but  not  in  the  DG  [5].  Moreover,  the
inhibition of  nNOS was also shown to increase neurogenesis  and to reduce infarct  size,
following a stroke [135]. The presence of differentiated nitrergic neurons in the periphery
of  the  neurogenic  areas,  mainly  surrounding  the  SVZ,  and  its  anatomical  organization,
contributes  to  this  physiological  downregulation  of  neurogenesis  [5,110].  However,  the
inhibitory role of  nNOS-derived NO in neurogenesis  was also demonstrated in the DG,
after  cerebral  ischemia  [135].  In  the  DG,  the  neural  precursors  of  the  SGZ are  in  close
proximity  with  the  nitrergic  neurons  of  the  hilus,  also  suggesting a  role  for  NO in  the
control of adult neurogenesis in this region [136].  These studies showed that chronic in‐
hibition  of  nNOS increases  neurogenesis,  supporting  the  idea  that,  physiologically,  NO
produced by nNOS has an anti-neurogenic effect. Recently, several studies have suggest‐
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ed  a  mechanism  for  the  negative  effect  of  NO  on  neurogenesis  in  the  SVZ.  These  au‐
thors suggested the inhibition of  the EGF receptor [134]  by a mechanism dependent on
the nitrosylation of  specific  cysteine residues and the activation of  the phosphoinositide
3-kinase (PI3-K)/Akt signaling pathway [9] as the main mechanisms by which NO nega‐
tively regulates neurogenesis in the SVZ (Table II). Furthermore, these authors described
the  antimitotic  effect  of  NO  as  being  related  to  the  nuclear  presence  of  the  cyclin-de‐
pendent kinase inhibitor p27Kip1 [9].

5.2.2. Neurogenic role of nitric oxide

The pro-neurogenic effect of NO has been reported in several studies using genetic or phar‐
macological approaches, showing that increased levels of iNOS after an insult to the brain are
related to increased neurogenesis in the hippocampus, an event correlated with concurrent
decreases in nNOS levels [8,137-139] (Table 2). However, in a study regarding the effect of NO
on cell proliferation it was described the involvement of NO derived from both iNOS and
nNOS in the enhancement of neurogenesis in the DG of adult rats, following seizures [140].
Other studies also showed that NO synthesized by iNOS following ischemia or by eNOS
stimulates neurogenesis in the SVZ or DG, respectively [12,111]. Furthermore, we recently
showed that the iNOS-derived NO promotes the proliferation of NSC in the hippocampus of
adult rats following SE [13]. Following an injury, the concomitant neuroinflammation results
in the activation of microglial cells, which continuously express iNOS [141]. This event leads
to the production of large amounts of NO that was shown to be favorable to increasing
neurogenesis following acute brain injuries.

Although some questions remain to be assessed,  several  studies have sought to explore
the signaling pathways by which NO from inflammatory origin exerts its pro-neurogenic
effect, namely in the regulation of proliferation. Recently, we have shown that supraphy‐
siological concentrations of NO induce the proliferation of SVZ-derived NSC through the
activation of at  least two signaling pathways, in a biphasic manner:  a)  the mitogen-acti‐
vated protein (MAP) kinase ERK 1/2 pathway, and/or b) the cGMP/cGMP-dependent kin‐
ase  (protein  kinase  G;  PKG)  pathway.  Thus,  the  proliferative  effect  of  NO seems to  be
initially  mediated  by  the  direct  activation  of  ERK1/2  signaling  pathway  [13].  The  in‐
creased activation of the ERK 1/2 signaling pathway after exposure to NO, leads to the ac‐
tivation of several downstream targets, namely the kinase p90RSK, subsequently leading
to decreased nuclear levels of its target p27Kip1, allowing cell cycle progression and cell di‐
vision  [13].  Moreover,  the  activation  of  cGMP/cGMP-dependent  kinase  (PKG)  pathway
appears to be involved following longer periods of exposure to supraphysiological levels
of  NO [14].  NO involvement  in  the  regulation of  other  stages  of  neurogenesis  has  also
been investigated. NO released in inflammatory conditions is also involved in NSC differ‐
entiation into  astrocytes,  a  process  also  referred to  as  astrogliogenesis,  by a  mechanism
dependent on the activation of JAK/STAT-1 signal transduction pathway [142].

Taken together, these findings show that NO is an important regulator of neurogenesis. The
effect of NO on neurogenesis seems to be dependent on the developmental period and of the
source of NO. Furthermore, depending on the local concentration and surrounding molecular
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environment NO may regulate neurogenesis in various ways, either favoring it, or impairing
it [136,143,144]. As discussed above, NO has concentration-dependent effects. Thus, under
physiological conditions NO acts as a negative regulator of neurogenesis [4,5,107], whereas in
inflammatory conditions a decrease in nNOS and an increase in iNOS can act as a mechanism
to enhance neurogenesis [12,13,134,145,146]. However, the exact molecular mechanisms
underlying this dual effect are not fully understood and more studies are needed to determine
the downstream targets of NO, particularly to identify potential therapeutic targets and to
assess whether modulation of these players is possible to improve the outcome of neurogen‐
esis. Most of the drugs used in studies for the characterization of NO involvement in neuro‐
genesis are therapeutically used with other purposes unrelated to brain injury recovery. So,
its implementation as a therapeutic strategy to modulate neurogenesis should be explored.
Next, some of the most promising pharmacological approaches intended to modulate signal‐
ing pathways dependent on NO will be discussed.

NO

source

Proliferation of

NSC

Differentiation of

NCS

Survival of

NSC
Signaling pathway References

SVZ DG SVZ DG SVZ DG

nNOS

- 0 = 0 = 0
Nitrosylation of EGF

receptor
[9]

- 0 = 0 0 0 (PI3-K)/Akt pathway [9,134]

0 - 0 - 0 0 PSA-NCAM and CREB [147]

0 - 0 - 0 - cAMP phosphorylation [6]

eNOS
+ 0 + 0 0 0 BDNF and VEGF [148]

0 + 0 + 0 = VEGF [111]

iNOS

+ 0 0 0 = 0
ERK 1/2 pathway [13]

cGMP/PKG pathway [14]

+ + + + 0 = NMDA receptor [62,149,150]

+ + + + 0 0 L-VGCC [151]

+ 0 +* 0 = 0 JAK/STAT-1 pathway [142]

The effects listed in Table II may not be direct. +, increase; -, decrease; =, not changed; 0, not reported; Polysialylated-
neuronal cell adhesion molecule, PSA-NCAM; cAMP response element-binding, CREB; Brain-derived neurotrophic factor,
BDNF; Vascular endothelial growth factor, VEGF; L-type voltage-gated Ca2+ channel, L-VGCC. * - astrogliogenesis.

Table 2. NO-dependent modulation of adult neurogenesis.

6. The nitric oxide system as a target to enhance endogenous neurogenesis

In physiological conditions, damaged cells and tissues are continuously being repaired in order
to maintain homeostasis and normal function of the organism. A deregulation or malfunction
of self-repair mechanisms could lead to the emergence of several pathologies as referred in
sections 3 and 4. In the adult CNS, the major limitation that researchers face is the restricted
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ability for regeneration. Moreover, this process is even more limited during an inflammatory
process as the surrounding environment is detrimental to the survival of newborn cells [43].
Acute brain lesions, such as stroke, spinal cord injury, trauma and seizures, which are
accompanied by an inflammatory response, have a strong participation on neuronal loss [43].
Neuroinflammation is also a hallmark of chronic pathologies, such as Alzheimer’s disease,
Huntington’s disease and Parkinson’s disease [31]. Thus, to overcome the limited ability for
brain repair and as an attempt to revert the loss of neurons following inflammation, some
strategies have been studied. The most promising strategies include a) stimulation of endog‐
enous neurogenesis, or b) transplantation of exogenous neural precursors/stem cells. Trans‐
plantation of exogenous stem cells is a complex approach with several disadvantages including
ethical concerns. Furthermore, the risk of rejection and uncontrolled proliferation of grafted
cells, which may lead to tumor formation, raises some concerns about its therapeutic applic‐
ability. However, although the potentiation of endogenous neurogenesis appears to be a better
approach, with higher possibility for therapeutic application, some disadvantages/limitations
should be taken into account, such as: a) low yield in the formation of new neurons, b) low
rate of long-term survival of new neurons, and c) poor specificity for increasing neurogenesis
in the target/lesioned tissue. Here we focus on the stimulation of endogenous neurogenesis by
targeting the pre-existing pools of NSC, particularly in SVZ and SGZ niches, mainly by
modulating the nitrergic pathways.

As discussed in section 5.2, NO has been widely described as a dual regulator of adult
neurogenesis, being involved in the regulation of proliferation, migration, neuronal differen‐
tiation and survival of NSC (see Table II). The great majority of studies in the literature
characterized the involvement of NO in the regulation of NSC proliferation. In fact, as reported
by our group, NO from inflammatory origin has a proliferative effect in the SVZ and SGZ [13].
However, more studies about the involvement of NO in the regulation of migration, differen‐
tiation in functional neurons that must correctly integrate neuronal circuits and survival of the
newly formed neurons must be performed in order to understand how these neurogenic steps
are regulated in an inflammatory context. Although little is known about the in vivo applica‐
bility of this strategy, recent encouraging evidences are already in the literature where the
pharmacological modulation of different players in the nitrergic system has been proved to
promote neurogenesis. However, we believe that this approach in a regenerative context
should not be considered as an isolated approach, but instead, it could be adjuvant to other
strategies in order to ensure an efficacious therapy. Therefore, two different strategies should
be considered to enhance neurogenesis: a) controlled increase in NO levels by using NO
donors, particularly NO-NSAID and, b) prevention of cGMP degradation by the use of PDE5
inhibitors. Next, these therapeutic approaches for brain repair will be discussed.

6.1. Nitric oxide-releasing non-steroidal anti-inflammatory drugs

NO-releasing drugs have been widely used in several studies for the characterization of the
involvement of NO in the regulation of different steps of endogenous neurogenesis. These
pharmacological tools were essential to understand that NO-mediated effects on neurogenesis
are time and concentration-dependent [14,142]. A wide variety of NO-releasing compounds
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are available, being the most common the diazeniumdiolates, also referred as NONOates (such
as DEA/NO, SPER/NO or DETA/NO), that spontaneously release NO under physiological
conditions [152]. NONOates were also used in numerous studies to investigate the effect of
supraphysiological concentrations of NO on neurogenesis, thus mimicking high NO concen‐
tration achieved in the brain in inflammatory conditions [13,142]. However, NO-releasing
drugs are chemically distinct, having different half-life times, releasing different amounts of
NO in vitro. The major disadvantages of the use of these drugs lie in the inability to control the
amount of NO released in vivo, and the incapacity to specifically release NO in the target tissue/
cells. Moreover, factors such as pH, temperature, some co-factors and light, are able to alter
the release of NO by these compounds [152,153]. As described above, given that different
amounts of NO have different effects on neurogenesis, it is essential to control the release of
NO in order to keep it in levels that are beneficial to neurogenesis. Thus, it arises the need to
develop new NO-releasing drugs in order to overcome these disadvantages.

More recently, a new class of NO-releasing compounds has been developed, NO-NSAID.
These drugs are synthesized by adding a nitric oxide donating group to classical NSAID.
Conventional NSAID are broad-spectrum compounds used worldwide due to their properties
as analgesics, antipyretics and, at higher doses, anti-inflammatory. However, chronic use of
NSAID is limited, mainly due to increased side effects in the gastrointestinal (GI) tract,
cardiovascular system and kidneys (extensively reviewed by [154-156]). Traditional NSAID
exert their effect by inhibiting both isoforms of cyclooxygenase enzyme (COX-1 and COX-2),
thus blocking the synthesis of prostaglandins. The great majority of side effects associated to
the use of these drugs are associated with the inhibition of COX-1 pathway, and subsequent
decrease in gastroprotective prostaglandins.

To overcome these side effects and improve safety of NSAID, new drugs were designed
a) coxibs, selective COX-2 inhibitors, and b) hybrid prodrugs, which include NO-NSAID.
The latter drugs take advantage of some characteristics of NO such as its potent vasodila‐
tor effect, inhibition of leukocyte adherence to the gastric vascular endothelium and inhib‐
ition of caspase activity, thus mimicking the biological effects of prostaglandins in the GI
tract [19,157,158]. Several in vivo studies have shown that NO released by NO-NSAID has
a reduced GI toxicity profile compared to NSAID alone, without affecting the anti-inflam‐
matory effectiveness [159-161]. In fact, low levels of conventional NO donors were shown
to inhibit cell apoptosis in vivo by inhibiting caspase activity and, thus, sparing the gastric
mucosa from the pro-apoptotic  effect  induced by TNF-alpha,  an effect  that  seems to be
dependent on cGMP formation [161-164]. In addition, NO released by NO-NSAID inacti‐
vates caspases,  contributing to the gastric-sparing effect  of  these drugs.  Moreover,  these
NO-donating drugs release NO in amounts that mimics in vivo NO production by constit‐
utive NOS, which seems to be linked to a reduced toxicity when compared to the parent
NSAID [19,165]. In addition, the relatively slow rate of NO release by NO-NSAID when
compared to classic NO donors, such as sodium nitroprusside (SNP) [166], allows a more
controlled release of NO and a long-lasting protective effect, which should be considered
a major advantage in the use of these drugs. Since there is no massive burst in NO levels,
excitotoxic events are prevented when compared to classical drugs.
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Chronic inflammatory events were linked to Alzheimer’s disease, where several pro-inflam‐
matory mediators are released, such as the cytokines IL-1beta and TNF-alpha [167], and
caspase enzymes are activated [168]. Chronic administration of NSAID appears to reduce the
risk for developing Alzheimer’s disease [169-172], also ameliorating impairment of cognitive
functions in patients (reviewed in [173]). Other studies have been performed to study the effect
of anti-inflammatory drugs in the treatment of acute brain lesions, such as status epilepticus and
ischemia. In this context, anti-inflammatory drugs, such as indomethacin, have been described
to reduce microglial activation and to promote NSC proliferation and improve migration and
survival of newborn cells, thus restoring neurogenesis following cranial irradiation or focal
ischemia [49,174]. Therefore, although the neuroprotective effects of NSAID in models of
chronic brain inflammation have been recently described in the literature, the side effects of
NSAID in other biological systems should not be ignored. Given the advantages of NO-NSAID,
and given their ability to rapidly cross the blood-brain barrier (BBB) [175], NO-NSAID have
been considered for the treatment of CNS disorders, particularly for the control of neuroin‐
flammation that, as already discussed, may affect neurogenesis [165]. However, to date, little
is known about the effect of NO-NSAID on neurogenesis following acute or chronic brain
injury. Nevertheless, studies in models of chronic brain inflammation showed that chronic
administration of NO-flurbiprofen significantly attenuated brain inflammation by decreasing
the density and reactive state of microglial cells [176,177]. In this study, treatment with NO-
flurbiprofen reduced brain inflammation and attenuated the effects of LPS-activated microglia
in young and adult rats, but not in aged rats, which suggested this drug to be a possible
therapeutic tool to be used in the onset of Alzheimer’s disease, before the development of
chronic inflammatory events associated with age [178]. Besides the reports that NSAID
decrease the expression of iNOS in inflammatory cells, NO-flurbiprofen appears to upregulate
the expression of this enzyme in LPS-activated microglial cells [179]. This effect leads to an
even higher increase in NO production, which has been attributed to NO released from NO-
flurbiprofen, since traditional NO donors lead to similar results. Interestingly, the activation
of microglial iNOS following a brain insult enhances NSC proliferation in the SGZ following
epileptic seizures, thus promoting neurogenesis [13].

Overall, the beneficial effects of NO-NSAID observed in experimental models of neurodege‐
nerative diseases are encouraging for the development of strategies to control neuroinflam‐
mation and target endogenous neurogenesis by using these drugs [165]. However, further
studies need to be conducted in order to understand the mechanisms and within which
concentrations NO-derived from NO-NSAID may promote neurogenesis.

6.2. Phosphodiesterase 5 inhibitors

The main intracellular target of NO is the heme-containing enzyme sGC. Activation of sGC
leads to an increased production of cGMP [102,180], which subsequently activates cGMP-de‐
pendent PKG [181,182]. PKG regulates various physiological events, such as synaptic plastici‐
ty  or  synthesis  and  release  of  neurotransmitters  (reviewed  by  [183]).  In  physiological
conditions, intracellular cGMP levels are controlled through cyclic nucleotide phosphodiester‐
ases (PDE), enzymes that hydrolyze the 3’-phosphodiester bound of cyclic AMP (cAMP) or
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cGMP, originating their respective inactive monophosphates, 5’-AMP or 5’-GMP. PDE are
ubiquitous enzymes classified in 11 families by their different substrate specificity, kinetic
properties and cellular and subcellular distribution (extensively reviewed in [184]). As differ‐
ent PDE families present such a wide distribution among the tissues, including the brain, inhib‐
ition of one or more PDE has been studied as an approach for the treatment of several diseases,
mainly by controlling the levels of the respective second messengers cAMP and/or cGMP.

cGMP-dependent physiological functions, may be regulated by controlling PDE type 5
isoenzyme activity, which specifically hydrolyzes cGMP. Thus, a good strategy to increase
intracellular levels of cGMP may be through inhibition of this enzyme [185]. PDE5 is a widely
expressed cytosolic enzyme, whose protein activity was found in the lung, vascular and
tracheal smooth muscle, spleen, platelets, corpus cavernosum [186-188], being also highly
present in several brain regions, including Purkinje cells and SVZ [189-191]. PDE5 and PDE5
inhibition have been extensively studied in the last decades and several PDE5 inhibitors have
been developed. The most characterized PDE5 inhibitor is sildenafil, commercially available
as Viagra, a drug used for the treatment of erectile dysfunction and pulmonary arterial
hypertension. However, besides PDE5, sildenafil also inhibits PDE 1 and 6 with lower potency
[192]. In order to overcome this issue, more selective PDE5 inhibitors were developed for the
treatment of erectile dysfunction: vardenafil (Levitra), tadalafil (Cialis) and, more recently,
avanafil (Stendra). In addition, a new compound with even higher selectivity for PDE5 was
also developed, T0156 [193].

The decrease in cGMP levels appears to be one of the causes for the decreased neurogenesis in
aging, which normally correlates with the development of neurodegenerative diseases [194].
Although neurogenesis is increased in early stages of neurodegenerative diseases, as a compen‐
satory mechanism, the more advanced or severe stages are characterized by impairment of neu‐
rogenesis [195]. In the aged brain, there is a decrease in NO levels with a concomitant decline in
cGMP levels, ultimately resulting in the abolishment of cell proliferation and impairments in
learning and memory [194]. Targeting an enzyme specific for the hydrolysis of cGMP, such as
PDE5, has been proven to be a good strategy to reverse this process and, thus, enhance neuro‐
genesis following acute or chronic brain insults. In fact, PDE5 inhibitors are known to modu‐
late several functions in the adult brain. Several reports showed that PDE5 inhibitors, such as
sildenafil, have a neuroprotective role, by improving memory and learning [20,196-201]. Be‐
yond the important role in memory and cognition, PDE5 inhibitors could also be used to target
endogenous neurogenesis in the adult brain. In neurodegenerative diseases such as Alzheim‐
er’s disease, the progressive neurodegeneration results in cognitive dysfunction, with memory
loss and motoneural impairment. The administration of PDE5 inhibitors has been studied as a
possible therapy for this disease, due to their ability to reverse long-term memory deficits
[202,203]. Sildenafil has also been described to improve symptoms of multiple sclerosis [22],
while chronic administration of sildenafil or tadalafil appears to have an anxiolytic effect [204].
Moreover, following an acute injury, PDE5 inhibitors are described to enhance endogenous
neurogenesis and neuronal function recovery in models of ischemic injury or stroke [205-208].
In addition, sildenafil was shown to stimulate SVZ-derived NSC proliferation, an effect that ap‐
pears to be dependent on the activation of the PI3-K/Akt pathway [191].
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Overall, apart from small differences in the selectivity for PDE5, the majority of PDE5 inhibitors
present similar effects in increasing cGMP levels and subsequent activation of nitrergic
pathways. In spite of the fact that inhibition of PDE5 does not have an anti-inflammatory effect
as NO-NSAID, the neuroprotective effect of PDE5 inhibitors appears to be consensual.
However, in the CNS, the effect of PDE5 inhibitors is highly dependent on their permeability
to the BBB, and more studies need to be conducted in order to correctly characterize the kinetics
on PDE5 inhibitors permeabilization into the CNS. Within this background, the modulation
of PDE5 activity could be a good approach to control the levels of cGMP, which could be used
in the treatment of several pathologies in which the levels of cGMP are altered. Although there
are some studies focused on the stimulation of neurogenesis, the use of inhibitors for PDE5
deserves further investigation in order to clarify their role in controlling different stages of
neurogenesis, including migration, differentiation, functionality and survival of newborn
neurons, and further understand the mechanisms underlying these effects.

6.3. Other strategies

The involvement of NO in a wide-range of physiological processes and cell function makes it
a desirable molecule to use in the clinics, being a major target of pharmaceutical industry.
Besides the strategies mentioned above, many synthetic compounds with various chemical
and biological modifications have been developed in order to overcome some limiting factors
of NO such as its short half-life, the instability during storage and its potential toxicity. Thus,
recent innovations in the field of nanotechnology of the profile of NO-donating drugs are being
tested to increase the utility and the safety of these compounds in order to be used in biomedical
applications, as described below.

There is a wide variety of NO donors that are capable of releasing NO spontaneously or in a
controlled way to certain target tissues. The great challenge is how to release NO and to achieve
an optimal concentration locally in the brain, thus promoting a therapeutic effect with
minimum toxicity [209]. Recent investigations aim at incorporating NO donors into biopoly‐
mers mimicking endogenous production of NO at target sites [202]. Nanomaterials are
delivery systems with many advantages and a promising therapeutic applicability. These new
systems are advantageous due to their: a) small size; b) ability to target specific tissues or cells,
having the capacity to cross several biological barriers, such as BBB, reaching tissues that are
inaccessible to classic drugs; c) ability to accumulate high drug concentrations; d) enhancement
of bioavailability and drug solubility; e) facilitation of drug administration; f) increase of drug
circulation in the blood; g) reduction of the dose required to exert an efficient therapeutic effect;
and e) decreased local toxicity and reduction of side effects (reviewed by [203]).

The application of nanomaterials to classic NO donors may be an alternative to improve their
stability and to therapeutically deliver NO. Among the most studied nanosystems are
liposomes and polymeric nanocarriers, such as micelles and hydrogels. Overall, this emergent
field of study is of great interest since it allows the development of compounds that release
NO in a controlled and sustained way. However, there is a lack of studies concerning the
application of these strategies to the CNS. To date, none of these nanosystems is commercially
available to target/improve endogenous neurogenesis and further studies are needed in order
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to develop effective NO-releasing drugs. By these strategies, NO levels in certain targets can
be regulated overcoming the traditional limitations of classical NO donors, thus allowing the
control of NO levels in specific regions of adult brain in an attempt to repair the lesioned brain.

7. Future directions

Most brain disorders have common features such as neurodegeneration and neuroinflamma‐
tion. Understanding the mechanisms underlying the evolution of these pathologies, the factors
that lead to their onset and the biology of neuronal injury is of extreme importance for the
development of efficient therapies, thus allowing to act on risk groups in order to prevent their
occurrence. Neurogenesis is an important mechanism of repair in the adult brain, being
considered as a critical target to counteract the loss of neurons. As discussed above, two
promising strategies could be considered to improve neurogenesis, which include a) trans‐
plantation of exogenous neural precursors/stem cells, or b) stimulation of endogenous
neurogenesis. However, both strategies for increasing neurogenesis have been linked to an
inflammatory response.

Transplantation of exogenous stem cells is a complex and invasive approach with several
disadvantages, raising questions about its therapeutic applicability, such as: a) uncontrolled
proliferation of grafted cells that may lead to tumor formation, b) the risk of rejection, and c)
ethical concerns. However, potentiation of endogenous neurogenesis appears to be a better
approach, although with some disadvantages/limitations, such as: a) low yield in the formation
of new brain cells, b) low rate of long-term survival of newly generated neurons, and c) poor
specificity for increasing local neurogenesis in the target/lesioned tissue. Overall, stimulation
of endogenous neurogenesis appears to have higher possibilities for a therapeutic application
although it is a less efficient strategy, it has been considered a safer approach when compared
to the invasive transplantation of exogenous precursor/stem cells.

Knowing how the inflammatory response affects neurogenesis and the factors that are altered
following brain lesion will allow the modulation of certain signaling pathways involved in the
regulation of neurogenesis. In fact, the modulation of the nitrergic system could be beneficial
for controlling neurogenesis following brain inflammation.

Nitric oxide, by its importance as a regulator of neurogenesis, appears as potential target for
the enhancement of endogenous neurogenesis, thus, the development of selective drugs for
modulation of the nitrergic signaling pathways is an increasing challenge to pharmaceutical
companies. Currently, many strategies are under study for the treatment of CNS disorders,
some of them targeting the nitrergic system. The development of NO-NSAID is of great interest
as it combines the anti-inflammatory effect to the release of NO, thus reducing the deleterious
effects of neuroinflammation and, simultaneously, taking advantage of the pro-neurogenic
effect of NO [165]. Moreover, PDE5 inhibitors also seem to be a good strategy to improve
neurogenesis, although they lack an anti-inflammatory effect when compared to NO-NSAID
[210]. Although little is known about the applicability of this strategy in a regenerative context,
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recent encouraging evidences support that NO-NSAID and PDE5 inhibitors should be
considered as therapeutic strategies to enhance neurogenesis as discussed in this chapter.

In spite of all the evidences showing the important role of the nitrergic system in the modula‐
tion of neurogenesis, further studies are needed. In fact, more studies regarding the regulation
of migration, differentiation in functional neurons and survival of the newly generated cells
must be performed in order to fully understand how these neurogenic events are regulated in
an inflammatory context, given the large number of molecular players involved besides NO.
Modulation of the nitrergic pathways in a regenerative context should be considered, not as an
isolated approach, but instead, as an adjuvant strategy in order to ensure an efficacious therapy.
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