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1. Introduction

Neurogenesis is the production of new nerve cells or neurons, a specialized class of cells that
make up the functional components of the central nervous system (CNS). Throughout most
of the CNS this process of neurogenesis is limited to the developmental period before birth,
after which time no new cells are added to the pre-established circuitry. In mammals including
humans however, neurogenesis persists into the early postnatal period in two discrete brain
regions: the subgranular zone in the hippocampus and the subventricular zone (SVZ) lining
the lateral ventricles [1-5]. It is unknown why neurogenesis continues in such discrete locations
yet is excluded from most other brain regions. A finite number of neurons is thought to afford
us a stable set of circuitry that is able to accumulate and assimilate experiential information
throughout our lifetimes. However, this predetermined number of neurons is also our Achilles’
heel as any accidental or pathological damage to the CNS often results in irreparable damage
to neurons. Consequently, there is a great unmet need for endogenous sources of brain repair,
for conditions such as neurodegenerative disorders, cognitive neurological impairments,
epilepsy, and cancer. This reason is one of the primary driving forces behind the study of
postnatal neurogenesis and it is hoped that once the mechanisms are understood, this process
can be harnessed to provide therapeutic avenues for intractable neuropathologies. Consider‐
able progress has been made in the last twenty years to unravel the mechanisms that both
define and limit postnatal neurogenesis.

In this chapter we will limit our discussion to therapeutically relevant regulators of SVZ
neurogenesis. We will first start with potentially manipulable intracellular and extracellular
factors that have been found to control SVZ neurogenesis. Then, we will evaluate the signaling
cascades downstream of neurotransmitter receptor activity that have also been shown to play
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regulatory roles within the SVZ. Finally, we will discuss the neuropathologies in which SVZ
neurogenesis has been implicated.

In the two neurogenic regions, resident pools of slow-dividing, astrocyte-like stem cells
generate highly proliferative transit amplifying progenitors that then give rise to fate-com‐
mitted neuronal or glial precursors [1-4]. These precursors (called neuroblasts or glioblasts)
then migrate to their final destinations and differentiate into postmitotic neurons, astrocytes
and oligodendrocytes. In the case of neurogenesis, newborn neurons undergo additional
maturation steps to develop an appropriate dendritic morphology, receive and form synapses,
and survive an activity-dependent competitive process to integrate into the local circuitry [5].
Thus, neurogenesis may be broadly divided into two phases: an early phase that includes (a)
stem cell proliferation, neuronal vs. glial fate commitment and migration; and a later phase
that involves the (b) morphological and synaptic development and survival of newborn
neurons. Throughout this chapter, astrocytic stem cells are defined as the self-renewing,
multipotent cells present in the SVZ that express glial markers, including the glutamate
aspartate transporter (GLAST), the intermediate filament proteins glial fibrillary acidic protein
(GFAP) and nestin, and the carbohydrate Lewis X (Lex) [1;6]. Intermediate progenitors, also
called transit amplifying progenitors, express epidermal growth factor receptor (EGFR) and
mammalian achaete-scute homolog 1 (Ascl1/Mash1), while neuroblasts, or neuronal precur‐
sors, are defined by the presence of immature neuronal markers, including doublecortin (DCX)
and βIII-tubulin (Tuj1) [7-10].

In the SVZ, astrocytic stem cells reside in-between the striatal parenchyma and the ependymal
cell layer that lines the lateral ventricles [11]. These stem cells generate rapidly dividing transit
amplifying progenitors, which give rise to neuroblasts that migrate by moving tangentially
through the rostral migratory stream (RMS) and into the olfactory bulb (OB) [12-14]. During
migration these proliferative cells travel in chains, and are ensheathed by specialized astrocytes
[15]. In the OB the neuroblasts exit the RMS, change direction and migrate radially outward
to differentiate into dopaminergic and GABAergic periglomerular and granule interneurons
[16-20]. Granule cells form dendrodendritic reciprocal synapses with mitral and tufted neurons
in the bulb and inhibit their activity to fine-tune their output, ultimately playing a role in
olfactory discrimination and learning [21]. Periglomerular cells make one-way as well as
reciprocal synapses with the apical dendrites of the mitral/tufted cells and the terminals of the
olfactory nerves that converge into the glomeruli [20;22;23]. The progression from astrocytic
stem cell to neuronal progenitor to synaptic integration requires tightly coordinated, complex
regulation by a multitude of factors.

2. Progenitor proliferation, fate commitment and migration in the SVZ

2.1. Intracellular factors

SVZ neurogenesis is subject to tight regulation, confined to isolated microenvironments and
sensitive to neuronal activity, stress, and aging. This control may be required to prevent
network instability, maintain experience-driven memory and behavioral patterns, and prevent
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tumorigenesis. To this end, cell-intrinsic factors comprise a major component of this regulation
and help coordinate neurogenesis by forming the bulwark of how cells make choices and adapt
to changes in their environments. Importantly, these intracellular factors may represent
clinically tractable opportunities for the treatment of neuropathologies.

In the postnatal SVZ, progenitor fate commitment is sequentially driven by a family of
proneural proteins called the basic helix-loop-helix (bHLH) transcription factors, such as
Mash1/Ascl1, neurogenin2 (Ngn2), Neuro-D1, Neuro-D2, Tbr1 and Tbr2, in a pattern similar
to cortical and hippocampal neurogenesis [24;25]. This bHLH-driven fate commitment is
thought to develop in a temporally successive fashion, from more broadly proneural proteins
(Mash1/Ascl1) to more neuronal and subtype-specifying (Neuro-D1) [26]. Although more
work needs to be done to fully flesh out the role of bHLH proteins in the postnatal SVZ, in
vitro transient expression of bHLH proteins is sufficient to induce neuronal fate commitment.

Recently, a synthetic small molecule isoxazole 9 (Isx-9) has shown promise in enhancing
hippocampal neurogenesis in vivo, by targeting a family of regulatory interactors of Mash1/
Ascl1, the myocyte-enhancer family (Mef2) [27]. This study heralds future therapies that can
target and harness specific intracellular pathways within the neurogenic niche to direct
neurogenesis.

The bHLH proteins are thought to induce differentiation in part by activating cyclin-depend‐
ent kinase inhibitors that then induce cell cycle exit. This finding has been shown in culture
and awaits confirmation in vivo [28]. Cdk inhibitors p27KIP1 and p19INK4d have also been
shown to modulate proliferation in the SVZ. Mice lacking p27KIP1 show increased progenitor
proliferation and a reduction in neuroblast number [29;30]. Furthermore, mice deficient for
both p27KIP1 and p19INK4d display renewed proliferation of post-mitotic neurons and
increased cell death- causing seizures, movement disorders, and death by postnatal day 18
[31]. This indicates that cdk inhibitors positively regulate cell cycle exit in SVZ progenitors and
their absence prolongs or renews cell cycling. Cdk inhibitors mediate cell cycle exit by
inhibiting phosphorylation of the retinoblastoma protein (Rb) [32]. Dephosphorylated Rb
binds to and sequesters the E2F transcription factor that normally functions in the nucleus to
positively regulate cell cycle progression, thereby promoting cell cycle exit. In the SVZ, E2F-
deficient mice show reduced progenitor proliferation and neuroblast numbers, suggesting that
E2F transcriptional activity is required for cell cycle progression and the maintenance of
neurogenic ability [33]. Additionally, mice lacking the gene encoding the tumor suppressor
p53, another cell cycle regulator, displayed enhanced proliferative capacity and increased
differentiation into neurons and oligodendrocytes [34]. Taken together, these results outline a
stereotyped program of cell-intrinsic mechanisms at work within the SVZ to regulate the
proliferation and fate commitment of SVZ progenitors in the early steps of postnatal neuro‐
genesis. The development of therapies that can target these pathways within neurogenic niches
is the next step for endogenous sources of brain repair.

MicroRNAs (miRs) are short, non-coding, single-stranded RNA molecules approximately
19-23 nucleotides in length that regulate gene expression by binding to complementary
elements in the untranslated regions of target mRNAs and inhibiting protein synthesis. They
exert epigenetic control either to maintain the status quo in a cell, (i.e. to maintain tissue
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identity), or they act in dynamic processes occurring within cells to refine and sharpen
transitional states, (i.e. facilitating the switch in expression profile occurring at active synapses
that were previously silent) [35-37]. Their role in shaping the temporal dynamics and pheno‐
typic outcome of gene regulatory networks means that the functions of particular miRs become
especially resolvable in plastic processes like postnatal neurogenesis, and miRs have recently
been implicated in regulating the fate commitment of SVZ progenitors [38]. Although as yet
untested, one idea for how bHLH proteins are sequentially activated and repressed and the
transitions from multipotent progenitor to post-mitotic neuron more sharply defined is the
successive miR-mediated downregulation of targeted bHLH proteins. In the SVZ, micro‐
RNA-124 was shown to be upregulated upon neuronal differentiation in the SVZ, and
overexpression increased the number of mature neurons at the cost of proliferative progenitors
and neuroblasts, while knockdown decreased mature neuron production and increased the
number of glia [38]. MiR-124 was shown to mediate these effects by antagonizing Sox9, a
transcription factor that directs glial differentiation. MiR-124 has also been shown to target
SCP1, a component of the REST/NRSF complex that represses neuronal genes in non-neuronal
cells and PTBP1, a repressor of neuron-specific alternative splicing [39-42].

Together these results indicate that miR-124 is a critical regulator of neuronal development
and tissue identity, acting early on in the shift from neuronal precursor to mature neuron.
Synthetic miR anologues composed of locked nucleic acid technology (LNA) demonstrate a
robust half-life and good tolerance in animal models and may prove a good strategy to induce
neurogenesis in a therapeutic setting. Furthermore, transplantable cells stably expressing a
complement of miRs may prove beneficial in cellular replacement strategies. Cell-intrinsic
factors and their roles in the early phases of postnatal neurogenesis have only begun to become
amenable to experimental dissection, and exciting developments are forthcoming.

2.2. Extracellular factors

Neurotrophic factors have long been implicated in the dynamic regulation of postnatal
neurogenesis. In the SVZ, fibroblast growth factor 2 (FGF-2) has been shown to affect the early
steps in neurogenesis, positively regulating progenitor proliferation and leading to an increase
in the number of neurons migrating from the SVZ into the OB [43;44]. Furthermore, FGF-2 is
known to interact with epidermal growth factor (EGF) receptor signaling in neuronal progen‐
itors, wherein prior FGF exposure is necessary for progenitors to respond to EGF or trans‐
forming growth factor β (TGFβ), the endogenous ligand for EGF receptors [45-49]. EGF has
been shown to also increase proliferation specifically in the SVZ transit amplifying progenitor
population at the cost of neuronal differentiation. Exposure to EGF induces transit amplifying
progenitors to increase their cycling and downregulate neurogenic markers [50]. Vascular
endothelial growth factor (VEGF), an angiogenic protein that can produce neurotrophic effects,
has been shown to stimulate proliferation and neuroblast production in the SVZ, while insulin-
like growth factor-I (IGF-I), a growth factor implicated in mediating the positive effects of
exercise on adult neurogenesis, has been also implicated in enhancing proliferation and
migration in the postnatal SVZ [51;52].
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Apart from modulating proliferation, diffusible factors have also been shown to affect the
initial establishment of the neurogenic niche itself, by influencing stem cell self-renewal and
cell fate decisions. The factors that regulate such homeostatic effects within the niche may
comprise a separate class of growth factors and unlike FGF-2, VEGF and IGF-I, are not
circulating systemically in the bloodstream at appreciable levels nor produced in an acute,
dynamically regulated manner. Based on this hypothesis, sonic hedgehog (Shh), Wnts, bone
morphogenic proteins (BMPs) and Notch/Delta are extracellular factors possibly acting in a
more local fashion. Sonic hedgehog signaling is required for establishing and maintaining the
quiescent pool of stem cells in the postnatal SVZ. Ablating Smoothened, the transmembrane
protein required for hedgehog signaling, specifically in the SVZ results in the depletion of stem
cells and proliferative transit amplifying progenitors by postnatal day 8 and the depletion of
neuroblasts by postnatal day 30 [53]. The Notch-DSL (Delta/Serrate/LAG-2) pathway is a very
highly conserved cell-cell signaling system that acts through single-pass transmembrane
proteins. Binding of Notch to its ligand causes cleavage of an intracellular domain that
translocates to the nucleus where it interacts with transcriptional regulators to initiate
expression of target genes like Hes1 and Hes5. In mammals, Notch ligands like Delta-like and
Jagged bind Notch on stem and proliferative cells to maintain self-renewal and prevent
terminal differentiation. In the neonatal SVZ, retrovirally delivered activated Notch enhances
the numbers of quiescent SVZ progenitors at the cost of migratory neuroblasts [54]. Another
study shows that conditional ablation of Notch signaling in the ependymal cells reprograms
these cells and enables them to leave their position in the epithelium, take on SVZ stem cell
characteristics and differentiate into granule and periglomerular neurons in the OB [55]. BMPs,
a family of growth factors within the transforming growth factor β superfamily, have been
shown to instruct a glial lineage in SVZ stem cells, and noggin, a BMP antagonist secreted by
the adjacent ependymal cells, blocks glial differentiation of stem cells in favor of neurogenesis
[56]. However, deletion of Smad4, a downstream target of BMP signaling, instead of increasing
neurogenesis has been shown to result in oligodendrocyte production and a neurogenic deficit
[57]. Therefore, it seems that BMP signaling can have divergent effects in the SVZ.

Exciting justification for these disparate lines of research is now beginning to emerge. Small
molecule inhibitors of glycogen-synthase kinase 3 (GSK-3) inhibitors have shown promise in
enhancing neurogenesis in human neural progenitor cells [58]. GSK-3 is involved in the notch,
Shh, Wnt/β-catenin and FGF signaling pathways and represents a movement of the field
toward a more clinically oriented direction.

In the SVZ, neuroblasts have to migrate a greater distance than do their analogues in the
dentate gyrus, to arrive at their ultimate destinations in the OB. Furthermore, the migration
behavior exhibited by SVZ neuroblasts has two phases; it is tangential from the SVZ to the
RMS-OB, and then becomes radial-like as the neuroblasts exit the RMS and begin synaptic
integration into the granule cell layer. For our purposes in this review both phases of this
migration are being considered within the “early” phase of neurogenesis, prior to dendritic
arborization, reception of synaptic inputs, and survival. This feature of SVZ neurogenesis
distinguishes it from hippocampal neurogenesis where the neuroblasts migrate very short
distances, and has allowed for the isolation of a few important guidance molecules that enable
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this directed migration. Slit-1 and Slit-2 expression in the SVZ and septum is thought to repel
neuroblasts away from the SVZ and towards the OB, while netrin expression in the mitral cells
of the OB, and the coincident expression of netrin receptors neogenin and deleted in colorectal
cancer (DCC) in neuroblasts may form a chemoattractive cue drawing neuroblasts towards
the OB [59-61]. The secreted protein prokineticin2 (PK2) has also been shown to act as potent
chemoattractant for SVZ neuronal progenitors. PK2 is expressed in the OB, and attracts SVZ
cells to the OB through the two G-protein coupled prokineticin receptors (PRK1 and PRK2]
[62]. Both ephrins and their Eph tyrosine kinase receptors are expressed in the SVZ and have
been shown to play a role in both regulation of progenitor proliferation and neuroblast
migration. EphA7, EphB2 and ephrin-B2 are associated with astrocytic progenitors in the SVZ,
while ephrin-A2 is expressed in the neuroblasts. Ephrin-B2 and EphB2 signaling seem to
positively regulate progenitor proliferation while also disrupting neuroblast migration in the
postnatal SVZ, while ephrin-A2 seemed to positively regulate progenitor proliferation [63;64].
Tangential migration in the RMS has also been shown to involve the α6β1 integrin [65]. Once
in the OB, neuroblasts have to reorient from tangential to radial migration into the GCL. This
process has been shown to involve the expression of tenascin-R, in both the GCL and internal
plexiform layers of the OB, and reelin, expressed by the mitral cells [66-68].

There is now a large amount of information regarding the effects of neurotrophic factors on
early stages of SVZ neurogenesis, all of which is not discussed here. Many exciting avenues
are emerging for therapeutic intervention into neurodegenerative diseases and psychiatric
illnesses and knowledge of how neurogenic niches are formed, maintained, and neuronal and
glial programs directed is fundamental for devising a clinical paradigm of directed neurogen‐
esis. However, these data on extracellular factor-based modulation of postnatal neurogenesis
needs more critical validation within the context of in vivo experiments and behavioral
analyses.

2.3. Dopamine

The SVZ is innervated by dopaminergic fibers originating in the substantia nigra, while the SGZ
is innervated by dopaminergic fibers coming from the ventral tegmental area (VTA). Dopami‐
nergic signaling has been shown to regulate progenitor proliferation through D2 receptors in
both the SVZ and SGZ and D3 receptors in the SVZ [69-71]. In patients with Parkinson’s Disease,
SVZ proliferation is markedly reduced. This effect on proliferation has been shown to be mediated
through the induction of EGF and CNTF secretion from SVZ stem cells in response to dopami‐
nergic activity [72;73]. Dopaminergic deafferentiation reduces proliferation in the SVZ, and one
study reports that this decrease in overall SVZ cell proliferation is nonetheless accompanied by
an increase in numbers of cells expressing Pax6 in the dorsal SVZ. Pax6 is a transcription factor
responsible for enabling a dopaminergic differentiation program in postnatally generated
periglomerular neurons. Therefore, dopaminergic activity may not only affect proliferation but
may also impact cell fate choice in the SVZ [74]. Drugs that potentiate dopamingergic signal‐
ing may represent one strategy to maintain neurongenesis postnatally. Dopaminergic regula‐
tion of postnatal neurogenesis is only beginning to be uncovered, and its role in neurogenesis
has not been conclusively established as yet.
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2.4. GABA

GABA, a major inhibitory neurotransmitter in the mature CNS, has a well-established role in
the development of neuronal circuits in both the embryo and adult [8;75-77]. Its ambient release
in the form of spillover from synaptic and extra-synaptic sources has led researchers to its role
in regulating the functional integration of new neurons into both immature and mature
networks. Owing to the initial abundance of the Cl- importer NKCC1 and the low expression
of the Cl- exporter KCC2, internal Cl- concentrations are higher in immature neurons than
mature neurons [76]. The resultant high equilibrium potential for Cl- in neuroblasts causes
GABA, acting through GABAA receptors, to depolarize immature cells in the first few weeks
after fate determination. The depolarizing effect of GABA on young neurons and progenitors
has been shown to regulate key stages of neurogenesis such as proliferation, migration and
morphogenesis, in both the embryonic and adult neurogenic zones [78-80].

Adult neurogenesis in the SVZ recapitulates the embryonic role for GABA [8;81;82]. In the
SVZ, both astrocytic stem cells and their neuroblast progeny express GABAA receptors [5;83].
Electrophysiological evidence indicates that neuroblasts release GABA in a non-synaptic and
non-vesicular fashion, and that this tonically activates GABAA receptors on SVZ astrocytic
stem cells [84;85]. The SVZ astrocytes also express GABA transporters that may further
regulate levels of ambient GABA within the niche. Pharmacological inhibition of GABAA

receptors in SVZ slice-culture preparations increases mitotic activity within the SVZ [85;86].
Blocking GABA transporters or enhancing GABA release from neuroblasts on the other hand,
slows the speed of their own migration, in a paracrine/autocrine fashion in the SVZ and RMS
[87]. Furthermore, knocking down Na-K-2Cl cotransporter NKCC1 and thereby reducing
GABA(A)-induced depolarization in the SVZ reduced proliferation, migration as well dendrite
development [79;80]. These data together suggest that GABA has a role as a negative regulator
of early stages of neurogenesis in the SVZ, where it reduces neuroblasts and SVZ astrocyte
proliferation and decreases the speed of neuroblast migration. This is analogous to the role of
GABAA activation in the developing cortex, where it also serves to limit proliferation of
ventricular zone progenitors and migration of postmitotic neuroblasts [88-90].

GABA’s role in regulating early phases of neurogenesis such as proliferation and migration
has been examined more extensively in the SVZ where it has been shown to act as a negative
regulator of early neurogenesis. Whether these effects are corroborated in the SGZ is as yet
unknown. An attractive hypothesis explaining GABA’s disparate roles in development,
postnatal neurogenesis, and at the synapse is that neurotransmitter-based signaling may serve
as a bridge that brings an activity-dependence to cell-autonomous and locally present
instructive signals that drive neurogenesis and network plasticity. In this way, neuronal and
metabolic activity may loop back onto the SVZ and SGZ.

2.5. Glutamate

During embryonic neurogenesis, glutamate signaling has been shown to influence prolifera‐
tion, fate commitment, and migration of newborn neurons [88;89;91-93]. During postnatal
neurogenesis, in the SVZ neuroblasts have been shown to express functional NMDA receptors
as well as functional mGluR5 and GLUk5-containing kainate receptors, using both electro‐

Postnatal Neurogenesis in the Subventricular Zone: A Manipulable Source for CNS Plasticity and Repair
http://dx.doi.org/10.5772/55679

143



physiology and calcium imaging [94;95]. Evidence from our lab suggests glutamate released
spontaneously from SVZ-RMS astrocytes generates phasic NMDA receptor activity in
neuroblasts migrating towards the OB [96]. Both mGluR5 and GLUk5 activation have also been
shown to mediate increases in intracellular Ca2+ transients in SVZ neuroblasts [95;97]. A mosaic
of GABAA, NMDA, mGluR5, and GLUk5 (now known as GluK2) receptor-expressing cells
reside in the SVZ, where most cells express GABAA receptors in caudal SVZ and moving
rostrally, a greater proportion of cells begin to express a combination of receptors. Ultimately,
nearly half of all cells in the rostral RMS express all four types of receptors, indicating the
continuing maturation of newborn cells along the SVZ-OB neurogenic axis. Mice lacking
mGluR5, or in which mGluR5 was pharmacologically blocked, displayed a marked decrease
in the number of proliferating cells in the SVZ [98]. This indicates a role for glutamate -acting
tonically through metabotropic receptors- in positively regulating SVZ progenitor prolifera‐
tion and antagonizing tonic GABAA-ergic receptor-induced anti-mitotic activity; perhaps
acting as a positive regulator of early neurogenic processes. Blocking GLUk5 in the RMS on the
other hand, increased the speed of neuroblast migration, suggesting that tonic GLUk5-mediated
glutamatergic transmission decreases neuroblast clearance from the SVZ and acts in concert
with GABA’s effect on migration in the SVZ [97]. mGluR5 activity however, does not influence
migration speed. It could be that GLUk5-mediated signaling activated different Ca2+-dependent
intracellular cascades than mGluR5 signaling. It remains to be seen whether AMPA/kainate
or NMDA receptor activity can have a positive effect on migration in the SVZ/RMS. These data
together suggest that although glutamate receptor heterogeneity and the multiple intracellular
pathways they may activate introduce ambiguity into what role glutamate may play in early
neurogenesis in the SVZ, metabotropic glutamate receptor signaling enhances proliferation,
while AMPA/kainate receptor signaling acts together with GABA to decrease migration of
neuroblasts. More work is needed to fully flesh out the roles that the three different glutamate
receptor families (NMDA, mGluR and AMPA/kainate) have in the SVZ. Work also is needed
to elucidate how glutamate receptor heterogeneity parses among the different SVZ sublineages
(Emx-1, Gsh2, Nkx2.1).

The diversity of glutamate receptors, the myriad intracellular pathways that they may activate
and the many mechanisms by which levels of ambient glutamate are regulated suggests that
glutamate, despite being nearly ubiquitously present, can have very specific and differential
effects on SVZ cells. The data so far suggests glutamate may regulate the early phases of
neurogenesis in manner that reflects this complexity. However, further work will involve
clarifying some of the associated ambiguity surrounding glutamate availability, the receptor
complement, the different intracellular pathways, and their effects on neurogenesis.

3. Morphogenesis, synaptogenesis and circuit integration in the OB

3.1. Intracellular factors

Later stages of neurogenesis include the survival, synaptic integration and dendritic elabora‐
tion of neuronal precursors within their target sites. CREB (cAMP response element binding)
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is a long-studied transcription factor known for underlying the later stages of synaptic
plasticity and memory formation, as well as for linking neuronal activity to survival. In the
postnatal SVZ-OB, CREB has been shown to be important in the survival and dendritic
arborization of SVZ neuroblasts [99]. CREB phosphorylation is transient and parallels
maturation, increasing during migration towards the OB and decreasing once radial migration
and synaptic integration are completed. CREB-deficient mice show deficits in neuroblast
survival in the OB, and CREB inhibition in vitro severely attenuates neurite outgrowth,
suggesting that CREB positively modulates survival and dendritic elaboration in the OB and
plays an important role in the later phases of SVZ neurogenesis. Data from our lab and others
suggests that a CREB-regulated microRNA, miR-132, is involved in mediating some of the
effects seen by impairing CREB activity in the SVZ. miR-132 expression is upregulated along
the migratory route of the SVZ neuroblasts, peaking in the OB, and miR-132 overexpression
enhances morphological complexity, spine density and survival of newborn neurons in vivo
[100]. These data suggest that CREB and a CREB-regulated miRNA may form the basis of a
structural plasticity program seen in SVZ postnatal neurogenesis. Intrinsic mechanisms
regulating later stages of neurogenesis are some of the least elaborated aspects of postnatal
neurogenesis. Additionally, with the emergence of inducible and conditional manipulation
techniques, it has become possible to discretely assay the roles of many factors within the
context of postnatal neurogenesis. Work is also emerging that utilizes the stop-flox-mediated
overexpression of factors in a conditional and inducible manner. MiR-132 and other recently
identified miRs that promote synapse maintenance because of their ease of delivery represent
therapeutic strategies for the stable maintenance of newly generated neurons in disease states.

3.2. Extracellular factors

Later stages of postnatal neurogenesis have also been shown to be responsive to neurotrophic
factor signaling. A single nucleotide polymorphism in the human brain derived neurotrophic
factor (BDNF)-encoding gene (Val66Met) has been shown to correlate with mood disorders
and memory deficits, and knock-in mice possessing the human SNP showed reduced activity-
dependent BDNF secretion ultimately resulting in reduced survival of SVZ neuroblasts and
impaired spontaneous olfactory discrimination [101]. In this study, activity-dependent BDNF
signaling in the SVZ was shown to exert its effects on survival and olfactory function through
TrkB receptors on neuroblasts. BDNF signaling and Trk receptor activity have been widely
shown to have neurotrophic and synapse-potentiating effects in neurons and may represent
a general strategy to promote the survival and maintenance of newly generated neurons.

Later stages of neurogenesis are poorly studied in the SVZ. Knowledge of molecules regulat‐
ing the survival, synaptic integration and morphogenesis of newborn cells is more limited in
comparison to the literature covering the DG. However, BDNF-signaling is an example of
emerging data within the field that unites hypotheses between the two neurogenic niches. It is
also interesting to note the sustained differences between the two niche microenvironments.
NT-3-signaling is exclusive to the DG and may promote excitatory versus inhibitory neurogen‐
ic potential. It has also been suggested that the convergence of dopaminergic and serotonergic
fibers defines the SVZ, while convergence of noradrenergic and serotonergic projections may
define the SGZ [68].
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3.3. GABA

GABA-mediated depolarization of immature neurons has been shown to be critical for synapse
formation in the developing cortex [102]. Postnatally, following migration into the OB SVZ
neuroblasts begin the process of integrating into the local circuitry by radially migrating out
of the RMS core, elaborating a complex dendritic structure and establishing appropriate
synapses [5;103]. A role for GABAA signaling in the initiation, elongation and stabilization of
dendritic structures in immature neurons has been established in the OB. Specifically, it was
discovered that ambient GABA-induced depolarization and Ca2+-influx was necessary for the
stabilization of emerging dendritic protrusions and enhanced the number and length of
preexisting dendrites, in SVZ culture as well as OB slice preparations [104]. This effect was
specific to the immature neuron population because six days following plating, KCC2 levels
had increased sufficiently to block the depolarizing effects of GABA and the modulatory effects
of GABA-depolarization on dendrite development. Furthermore, GABA activity promoted
initiation and elongation of immature neuroblast dendrites in culture by stabilizing tubulin in
its polymerized form. Knockdown of NKCC1 and prevention of GABA-mediated depolari‐
zation in immature neurons also resulted in dendritic morphological deficits. However, this
effect was transient and dendritiric morphology recovered in adults [80].

This regulation by GABA in both the OB and DG helps shape neurogenesis as an activity-
dependent process where GABA is involved in regulating later stages of postnatal neurogen‐
esis orchestrating synapse formation and dendritic outgrowth. However, although GABA’s
role in the synaptic integration of postnatally generated neurons is becoming clearer, more
work is needed to fully flesh out the internal mechanisms by which GABA activity leads to
modulation of actions as disparate as proliferation, migration, synaptic integration, and
dendritogenesis.

3.4. Glutamate

Glutamate has been shown to be important for neuroblast survival, dendritic development, and
synaptogenesis in the developing CNS [105]. In the postnatal SVZ, spontaneous glutamate
release from astrocytes onto neuroblasts results in phasic NMDAR activation that increases in
frequency and amplitude upon migration towards the bulb. Genetic ablation of the NR1 subunit
in migrating neuroblasts results in 60% of these NR1-deficient newborn neurons entering
apoptosis, suggesting that NMDAR-dependent glutamatergic signaling is an important factor
in regulating neuroblast survival and numbers of new neurons in the OB [106]. Once in the bulb,
newly generated neurons begin to integrate synaptically into the local circuitry, generate action
potentials and first establish GABAergic inputs followed by glutamatergic inputs ~4 weeks after
birth [103]. Recently, newborn granule cells in the OB were shown to express a transient form of
LTP in response to focal glutamatergic stimulation in the granule cell layer. This type of LTP was
not present in mature granule cells and was observed in cells between 2 and 8 weeks old, implying
that new neurons have a capacity for synaptic plasticity that is different from their mature
counterparts [107]. Perhaps this sort of synaptic enhancement can help explain the positive effects
olfactory learning has on SVZ neuroblast survival, as well as the negative effects anti-mitotic
activity in the SVZ has on olfactory discrimination.
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4. Responsiveness and involvement of postnatal neurogenesis in distinct
neuropathologies

4.1. Alzheimer’s disease

Alzheimer's disease (AD) is a late-onset neurological disease with a heritable component
characterized by deposition of β-amyloid peptides (Aβ), formation of neurofibrillary tangles,
reactive astrocytosis, activation of microglial cells and cholinergic deficits [108]. The effect of
AD is a progressive neurodegeneration throughout the neocortex and hippocampus, and
severe dementia [109]. SVZ neurogenesis is reduced in mouse models of AD and has also been
shown to be diminished in postmortem tissue from human AD patients. Mice harboring
familial mutations in amyloid precursor protein (APP) and presinilin 1 (PS1) show decreased
proliferation in the SVZ [110;111]. Infusion of Aβ peptide into the lateral ventricles also
decreases proliferation in the postnatal SVZ [112]. SVZ-derived neural progenitor cells from
PS1 mutants and the APPSwe/PS1ΔE9 double-mutants showed decreased cycling in vitro [112;
113]. In postmortem tissue, AD patients showed decreased numbers of proliferative (Ki67+)
cells in the SVZ [114]. Anosmia or hyposmia, the inability or reduced ability to perceive smell,
are predictive indicators of Alzheimer’s progression in the clinic. However, it remains to be
conclusively established whether altered SVZ neurogenesis is the cause of this disrupted
olfaction in AD patients.

4.2. Parkinson’s disease

Parkinson’s disease (PD) develops due to the specific loss of dopaminergic neurons in the
substantia nigra (SN) and results in impaired regulation of movement, mood, and motivation
[69]. In mouse models of PD SVZ proliferation is reduced. This is thought to be due to the loss
of dopaminergic inputs to the SVZ from the SN via the nigrostriatal pathway, as chemical
ablation of these fibers results in decreased proliferation in the SVZ and decreased numbers
of mature granule neurons in the OB [69;74]. This effect on proliferation was partially rescued
with the application of the dopamine precursor levodopa. Furthermore, in postmortem tissue
from human AD patients SVZ proliferation was reduced, as were numbers of immature
neurons in the granule cell layer of the OB [69]. However, increases in numbers of periglo‐
merular dopaminergic neurons have also been reported in mouse models of PD using chemical
ablation, and in PD postmortem human tissue [74;115]. Because dopaminergic activity of
periglomerular cells generally inhibits the transmission of olfactory information, it is thought
that the decreased numbers of granule cells and the increased numbers of periglomerular cells
together contribute to the hyposmia and disturbed olfaction seen in PD patients.

4.3. Huntington’s disease

Huntington’s disease (HD) is caused by expansions in CAG repeat elements in the gene
encoding huntingin. This leads to aggregation of mutant huntingtin and neurodegeneration
in the striatum [116]. In mouse models of HD there is little striatal neurodegeneration and
consequently SVZ neurogenesis remains unchanged. However, in rat models of striatal
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degeneration SVZ proliferation is increased [117;118]. Some cells from the SVZ are seen to
ectopically migrate into the damaged striatum and begin expressing markers of newborn
neurons, although any functional recovery was not reported [118]. In HD patients an increase
in proliferation in the SVZ is observed that corresponds with the number of CAG repeats, and
SVZ cells are seen to migrate into the damaged striatum where they express both proliferative
as well as mature neuronal markers. It remains to be seen whether the expression of both
proliferative and mature markers in SVZ-derived cells within the HD-damaged striatum is
symptomatic of HD or in fact, can contribute to functional recovery [119-121]. However, the
potential for endogenous repair for HD can still be seen as promising, as newborn neurons
would take a long time to develop huntingtin inclusions and in the meantime participate in
the maintenance of striatal circuitry.

4.4. Ischemic stroke

A stroke results from either a hemorrhage or blocked cerebral arteries, leading to diminished
local blood flow (ischemia) in a brain region and loss of neurons. In stroked tissue, the core
infarcted area is distinguishable from the surrounding penumbral area by the exaggerated
necrosis and little potential for regeneration. In the penumbral region on the other hand,
neuronal regeneration has been demonstrated as it is perfused by collateral arteries and not
wholly dependent on the occluded artery for oxygen. As ischemic stroke is one of the most
frequent causes of mortality in industrialized countries, a lot of research has been undertaken
to probe the capacity for regeneration in this condition. In rodent and primate models of stroke
where the medial cerebral artery is occluded (MCAO), SVZ proliferation and the numbers of
neurons in the OB are increased [122-124]. In addition, ectopic neurogenesis is also observed
in the penumbral areas, such as the striatum [125]. Some groups have also reported ectopic
neurogenesis in cortical regions following stroke (Gu 2000, sun 2003) but this has been denied
by others [125]. In the stroked striatum, SVZ-derived cells differentiate into medium spiny
GABAergic neurons which represent 90% of striatal neurons and are lost there, although once
in the striatum many of the newborn neurons undergo cell death [125]. However, this finding
is greatly encouraging for the continued study of an effective neuronal replacement strategy
as a means to treat stroke damage in the CNS. As proof of this idea, ablating neurogenesis in
mouse models of stroke greatly exacerbated cell death and postischemic sensorimotor deficits,
suggesting that neurogenesis can account for some amelioration of stroke-induced damage
[126]. In human stroke patients, increased proliferation has been observed in the ipsilateral
SVZ and traces of ectopic neurogenesis were seen in the cortex [127-129]. The functional
recovery that this observed increase in neurogenesis following stroke is able to accomplish
remains to be validated, but it does suggest that some measure of recovery is endogenously
possible and may be drawn out with continued research and more-tailored therapeutic
intervention.

4.5. Epilepsy

Epilepsy has also been shown to alter SVZ neurogenesis. In rats, pilocarpine-induced seizures
increased SVZ proliferation as well as expanded the extent of the RMS. Ectopic migration and
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increased immature neurons were also observed [130]. In humans, increases proliferation and
ectopic migration have also been observed in organotypic slice preparations [131]. These effects
on neurogenesis seem to be symptomatic of epilepsy, whether they can be harnessed as a way
to treat the damage caused by repeated seizure activity remains to be seen.

4.6. Precancerous lesions and cortical heterotopias

It has long been suggested that the SVZ is the source of origin for malignant gliomas. The
prognosis for these cancers is very poor and for glioblastoma, the most common variant in
adults, the median survival rate is only 9-12 months [132-134]. A few years ago, in a mouse
model of malignant astrocytoma that included a p53 deletion and a conditional disruption of
the neurofibromatosis type 1 (NF1) gene, researchers conclusively established that the
originating tumorigenic mutation arises within the SVZ atrocyte-like stem cell [135]. Recently
it was further shown that although the mutation arises in the neural stem cell, the cancer begins
at a subsequent stage, when these stem cells have committed to the oligodendrocytic lineage
[136]. Studies of the molecular characteristics of low-grade human astrocytomas suggested
that most often in these conditions p53 is deleted and Ras signaling is elevated. Since NF1 is a
negative regulator of Ras, its deletion would result in increased Ras activity and in conjunction
with the p53 deletion more accurately model human astrocytomas. In mice, this genetic
strategy produced astrocytomas with complete penetrance, suggesting that NF1 and p53
deletion are sufficient to induce cancer. When tumor development was closely followed in
these mice, it was discovered to arise from the SVZ in nearly every instance before dispersing
to other brain regions. These results demonstrate that therapeutic intervention utilizing SVZ
neurogenesis must guarantee against the elevated risk of tumorigenesis, and that continued
research is necessary to manipulate the proliferation, fate choice, migration and differentiation
of SVZ progenitors. Perhaps one day a therapy can be conceived to induce cell death in
progenitors that have become transformed into precancerous cell types.

It has also been recently demonstrated that SVZ dysfunction can contribute to the pathophysiol‐
ogy of neuropsychiatric conditions like tuberous sclerosis complex (TSC). TSC is caused by loss
of either one of two tumor suppressor genes, TSC1 and TSC2, which encode hamartin and tuberin,
respectively.  Mutations in these genes lead to hyperactivity of  the mammalian target  of
rapamycin (mTOR) signaling pathway. Neurological symptoms of TSC include seizures, autism,
psychiatric  problems  and  the  presence  or  subendymal  nodules,  heterotopias  and  giant,
ectopically localized cells with both neuronal and glial characteristics. A recent study mod‐
eled TSC in mice by conditionally ablating Tsc1 specifically in the postnatal SVZ. This pro‐
duced ectopic migration and differentiation of neuronal precursors, resulting in hetertopias and
micronodules containing neurons with a hypertrophic dendritic tree in aberrant locations.
Furthermore, Tsc1-mutant cells were shown to be rerouted to forebrain structures where they
differentiated into neurons and glia. This remarkable rerouting of SVZ cells to the cortex is
thought to be occurring at a very low rate under normal circumstances, but becomes elevated
when mTOR activity is pathogenically increased [137]. It is hypothesized that these ectopic cells
in the cortex contribute to network malfunction in higher-order cognitive function. This research
also opens up the exciting idea of actively rerouting cells to the cortex, or other desired brain
regions, for directed endogenous circuit repair.
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5. Conclusion

New neurons continue to be produced throughout life in two regions of the mammalian CNS
and a plethora of research has accumulated demonstrating how this amazing propensity for
plasticity is orchestrated and regulated. Postnatal SVZ neurogenesis has been shown to make
important contributions to coordinated network activity in the OB as well as serving as a sensor
for different neurological disease states. But most importantly, it continues to provide
tantalizing potentials for a source of endogenous repair within the CNS.
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