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1. Introduction

Brain reserve refers to the ability of the brain to tolerate pathological changes such as those
seen in AD before manifesting clinical signs and symptoms [1-3]. Neurotrophic factors (NTFs),
most notably Brain Derived Neurotrophic Factor (BDNF) and its receptor Tyrosine kinase B
(TrkB), regulate synaptic plasticity and functional efficiency in adulthood [4-6] and thus may
influence brain reserve. BDNF/TrkB signaling affects memory formation and retention [7,8],
determines neurite length [9,10], and governs regeneration upon neuronal injury [11,12] by
modifying neuronal cytoskeleton. Abnormalities in the neuronal cytoskeleton are well
documented in AD. However, how these abnormalities affect AD progression remains unclear.
In Drosophila, neurodegeneration stems directly from mutations in alpha and beta subunits of
the actin capping protein (CP), demonstrating that a mutation in a gene encoding an actin
cytoskeleton regulator can lead to demise of neurons [13]. Further, a causative role for actin
cytoskeleton abnormalities in neurotoxicity has been documented in a Drosophila tauopathy
model [14].

Important evidence that cytoskeletal abnormalities are critically involved in the pathogenesis
of neurodegeneration stems from the studies demonstrating the effect of apolipoprotein E
isoform ¢4 (ApoE ¢4), the well-documented genetic risk factor for the most common form of
AD, late-onset AD [15], on neuronal cytoskeleton. In the United States, the ApoE ¢4 allele
occurs in 60% of AD patients. ApoE ¢4 inhibits neurite outgrowth in cultured neuronal cells
[16] and correlates with the simplification of dendritic branching patterns in the brains of AD
patients [17]. ApoE ¢4 dose inversely correlates with dendritic spine density in dentate gyrus
neurons of both AD and aged normal controls [18]. Overexpression and neuron-specific
proteolytic cleavage of ApoE &4 result in tau hyperphosphorylation in neurons of transgenic
mice, suggesting a role of ApoE &4 in cytoskeletal destabilization and the development of AD-
related neuronal deficits [19,20]. Humanized ApoE &4 knock-in homozygous transgenic mice
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exhibit cognitive deficits before the onset of age-dependent neuropathology including AD-
associated neurofibrillary tangles and neuritic plaques [21,22].

While the relationships between BDNF gene polymorphisms and AD are not yet fully
understood [23-25], there is compelling evidence that epigenetic regulation connects BDNF/
TrkB signaling with learning and memory. Exercise restored TrkB in ApoE ¢4 mice to the level
observed in €3 mice and increased synaptophysin (a marker of synaptic function) in €4 mice;
hippocampal BDNF levels were similarly increased in both €3 and €4 mice after exercise [26].
Exposure to an enriched environment for three to four weeks also caused dramatic increase in
BDNF mRNA in mouse hippocampus [27]. Understanding the regulation of BDNF/TrkB
signaling in AD pathogenesis, particularly in individuals carrying ApoE &4, could be of great
clinical and public health importance because BDNF is inducible and may be one of the key
molecules mediating the beneficial effect of certain lifestyle measures (environmental enrich-
ment, increased aerobic physical activity, lower caloric intake) [28-30] on the risk of developing
dementia.

2. Neuronal cytoskeleton regulator actin capping protein £2 (Capzb2) and
BDNEF/TrkB signaling

As hyperphosphorylated tau gives rise to neurofibrillary tangles in AD, dystrophic neurites,
marked by reduced length and poor branching, become apparent. In parallel, perisomatic
proliferation of dendrites and sprouting of distal dystrophic neurites take place[31]. These
morphological changes in neurons during AD progression indicate major cytoskeletal
reorganization raising the possibility that microtubules and microfilaments may represent a
target for pathobiological mechanisms underlying AD. The presence of growth cone-like
structures on distal ends of dystrophic neurites suggests that regenerative response accom-
panies cytoskeleton degeneration in AD [31].

Changes in growth cone morphology, motility, and direction of growth are controlled by
interactions between F-actin and microtubules and their associated proteins [32]. The growth
cone morphology is characterized by lamellipodia, which are the veil-like extensions at the
periphery, and filopodia, which are narrow, spiky extensions coming from the periphery of
the growth cone. Interestingly, APP concentrates in lamellipodia where it is proposed to
play a role in growth cone motility and neurite outgrowth [33]. Upon acute neuronal injury,
the first critical steps that initiate regenerative response are microtubule polymerization and
F-actin cytoskeleton rearrangement leading to the formation of a motile growth cone [34].
Actin cytoskeleton regulator CP (F-actin capping protein, CapZ) is an o/f3 heterodimer that
binds the barbed end of F-actin thus blocking the access of actin monomers to the fast
growing end. Both mammalian and Drosophila CP subunits play a critical role in the
organization and dynamics of lamellipodia and filopodia in non-neuronal cells [35]. One of
the mammalian (-subunit isoforms, Capzb2, is predominantly expressed in the brain [36].
Capzb2 not only caps F-actin barbed end but also binds pIIl-tubulin directly, affecting the
rate and the extent of microtubule polymerization in the presence of tau [37]. Moreover,
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Capzb2 - pllI-tubulin interaction is indispensable for normal growth cone morphology and
neurite length (Figure 1) [37].
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Figure 1. [37]: Capzb2-EGFP (green) expression in mouse hippocampal neurons. In addition to soma and processes,
Capzb2 is expressed in growth cones (red- 3-tubulin, blue- nuclei).

Interestingly, the interaction between actin capping protein and $3-tubulin has been uncovered
in a mass spectrometry screen for the alterations in protein-target binding in vivo in response
to spatial learning [38], a process that requires BDNF [39].

In line with the previously documented increased cytoskeletal reorganization including
dendritic proliferation and sprouting in neurons of AD patients [40,41,31], we recently
demonstrated increased expression of Capzb2 (Figure 2) and TrkB in mid-stages (Braak and
Braak III-1V, BBIII-IV) AD pathology[42].
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Figure 2. [42]: Hippocampal pyramidal neurons from a control case contain less Capzb2 mRNA (higher ACT) than the
neurons from Braak and Braak IlI-IV AD cases (**p<0.01, Student’s t test).

BDNF binding to the TrkB receptor initiates intracellular cascades involving cell survival,
growth, and differentiation via mitogen-activated protein kinase (MAPK), phosphatidylino-
sitol 3-kinase (PI3K), and phospholipase C-g (PLCy) signaling pathways, as recently reviewed
[43]. PI3K and MAPK simultaneous triggering alters both actin and microtubule dynamics
needed for dendrite branching [43]. BDNF has been shown to promote growth of undifferen-
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tiated dendrites and axons in cultured hippocampal pyramidal neurons [44], a process that
requires Capzb2 [37]. Thus, the expression of Capzb2 may represent one of the likely down-
stream read-outs for BDNF-TrkB neuronal signaling. In a rat model of dementia there is
activity-dependent, synapse-specific regulation of CapZ redistribution possibly important in
both maintenance and remodeling of synaptic connections receiving spatial and temporal
patterns of inputs [45].

3. Increased expression of TrkB and Capzb2 accompanies preserved
cognitive status in early AD pathology

Recent study compared mRNA (Figure 3) and protein (Figure 4) expression of BDNF, TrkB
and Capzb2 in samples of neuropathologically normal and cognitively intact subjects (con-
trols), with samples of persons with AD-related pathological changes who were cognitively
intact prior to death (Clinical Dementia Rating zero, CDR0), and samples of persons with AD-
related pathological changes as well as early clinical dementia (CDR0.5 - 1) [46]. This approach
was possible due to the existence of a unique sample of Framingham Heart Study (FHS)
participants who have undergone repeated antemortem cognitive testing and brain imaging
[47,48]. All FHS participants in the FHS have undergone screening cognitive tests (an MMSE)
once in two years and have also had a more detailed cognitive assessment examining multiple
cognitive domains once in 1974-75, once in 1999-2004 and at least twice thereafter. The presence
or absence of dementia in all FHS participants is defined using DSM-IV criteria that require
impairment in memory and in at least one other area of cognitive function, as well as docu-
mented functional disability. AD is defined using NINCDS-ADRDA criteria for definite,
probable or possible AD[49]. All FHS participants are invited to become brain donors and the
nearly 700 persons who have accepted this invitation undergo a detailed neuropsychological
testing [50,51], at least once every 2 years beyond age 75 years. Persons who screen positive or
are otherwise referred (by self, family or treating physicians) undergo detailed neurological
and neuropsychological assessment, informant interview (with a physician administered
CDR) and a review of hospital records, nursing home notes, brain imaging and laboratory
tests. A structured family interview (including Blessed Dementia and Hachinski scales) [52,53]
is conducted with the next-of-kin based on which a retrospective CDR score is assigned after
the participant dies. The retrospective CDR is very similar to the retrospective collateral
dementia interview validated by Davis and colleagues (1991)[54]. A final clinical decision
regarding the presence or absence of dementia, diagnosis of dementia type and date of onset/
diagnosis is made by a clinical consensus panel including behavioral neurologists and
neuropsychologists who review all available records including records at the time of death.
All deaths are reviewed to assign a cause of death and to determine if dementia was present
or absent at the time of death. The neuropathological report is generated prior to a final clinico-
pathological conference during which the clinical diagnoses and pathological findings are
discussed.

Hippocampi from selected FHS cases were used to determine whether specifically vulnerable
population of CA1 neurons shows a compensatory response to the neuropathological changes
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of Alzheimer Disease (AD) and whether that response depends on an up-regulation of the
BDNF pathway. The expression of TrkB and Capzb2 in CA1 hippocampal neurons of indi-
viduals with preserved cognitive status (CDR 0) and initial neurofibrillary tangle formation
was increased in comparison to cognitively intact individuals without any neurofibrillary
tangles (Figure 3) [46]. In contrast, BDNF expression remained unchanged, raising the
possibility that the up-regulated TrkB expression in CDRO individuals is responsible for the
increase in BDNF/TrkB signaling tapping the brain reserve (Figure 3) [46]. In the group of
individuals with more advanced tangle formation and early to mild dementia (CDR 0.5-1), the
increase in TrkB expression and the unchanged expression of BDNF might have been insuffi-
cient to provide adequate brain reserve (Figure 3) [46].
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Figure 3. [46]: TrkB, BDNF, and Capzb2 mRNAs expression in control, CDR 0 (no dementia) and CDR 0.5-1 (mild de-
mentia) subjects. TrkB mRNA expression is significantly increased (lower ACT) in subjects with early AD pathology (BBI-
1) but no dementia (A). BDNF mRNA expression is similar in all groups examined (B). Capzb2 mRNA is significantly
increased (lower ACT) in cases with AD pathology (C). Fold-increases of mean mRNA expression of TrkB and Capzb2 in
cases with AD pathology in comparison to controls (D).
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Figure 4. [46]: Immunohistochemistry for TrkB (A-C), BDNF (D-F), and Capzb2 (G-) in representative individuals from
control, CDRO, and CDR1 groups reflects established trends in mRNA expression. Immunohistochemistry for tau high-
lights intensity of neurofibrillary changes in a CDRO subject (K) and in a CDR1 subject (L), while the control is free of

neuropathology (J).
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In light of the reported restoration of learning and memory functions in AD animal models
upon BDNF gene delivery [55], exogenous intervention to boost BDNF/TrkB signaling might
appear a compelling therapy in early AD. However, the experiments by Frank et al. (1996)
suggest that the exposure of developing and adult rodent hippocampal neurons to BDNF in
vitro and in vivo results in long-term functional desensitization to BDNF and down regulation
of TrkB mRNA [56]. It is possible that BDNF/TrkB signaling is differentially regulated in
healthy vs. diseased hippocampal neurons. Nevertheless, the reported increase in TrkB mRNA
expression in astrocytes occasionally associated with senile plaques in hippocampi of AD
brains raises concerns that the administration of neurotrophic factors could promote gliosis
and plaque formation [57]. Importantly, if the observed increase in TrkB expression in
cognitively intact FHS subjects with initial formation of neurofibrillary tangles constitutes
brain reserve, down regulation of TrkB might represent a potentially harmful side-effect of
exogenous BDNF delivery.

4. Conclusion

One in five persons currently 65 years old will develop clinical Alzheimer’s dementia in their
lifetime. However, postponing the onset of clinical disease by as little as five years could halve
individual risk and population burden of disease [58,59]. Since the timing of clinical dementia
onset is determined not only by the pace of pathological changes but also by brain reserve,
that postponement might be possible. The study of CAl hippocampal neurons in FHS
participant brain donors[46] adds to the emerging evidence that the BDNF/TrkB pathway may
be involved in the compensatory response to early AD pathology, i.e. it may underlie the
biology of cognitive reserve. Consequently, an epigenetic enhancement of BDNF/TrkB
signaling in persons with early cognitive changes associated with AD pathology (mild
cognitive impairment, MCI, due to AD pathology)[60] and in persons with no clinical symp-
toms but with biomarker evidence of AD pathology (so-called preMCI due to AD pathology)
[61] may be beneficial in delaying the onset of clinical dementia. The lifestyle modifications
that are thought to reduce the risk of developing clinical AD, such as intake of docosahexaenoic
acid (DHA) and increased exercise, appear to interact with BDNF-related synaptic plastici-
ty[62]. As reviewed by Sananbenesi and Fischer (2009)[63], deregulation of “plasticity genes”,
in particular synaptic plasticity genes, accompanies aging, a major risk for AD. Histone
deacetylase inhibitors (HDACs) and environmental enrichment have been shown to reinstate
learning behavior and improve memory in a CK-p25 mouse model of neurodegeneration[64],
whereas altered histone acetylation is associated with age-dependent memory impairment in
mice[65]. These findings make deciphering of epigenetic signatures in preserved vs. failing
human cognitive functions urgent and necessary for the development of rational interventions
in the progression of AD [66,67]. The prevention of clinical AD will likely require a multi-
dimensional approach and the modulation of the BDNF/TrkB pathway, calibrated to each
individual’s needs, might be one facet of this multi-dimensional approach.

157
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Summary

During the progression of Alzheimer’s disease (AD), hippocampal neurons show degenerative
as well as regenerative changes, possibly influenced by genes that may modify brain reserve,
the ability of the brain to tolerate pathological changes in AD before manifesting clinical signs
and symptoms. Recent data suggest that the expression of these genes in the hippocampal
neurons correlates with the cognitive function. Identifying molecules that may promote
regenerative potential and/or increase brain reserve provides novel targets for interventions
in late-onset AD.
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