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1. Introduction

Owing to their electrical and mechanical attractive characteristics, conformal microstrip an‐
tennas and their arrays are suitable for installation in a wide variety of structures such as
aircrafts, missiles, satellites, ships, vehicles, base stations, etc. Specifically, these radiators
can become integrated with the structures where they are mounted on and, consequently,
do not cause extra drag and are less visible to the human eye; moreover they are low-
weight, easy to fabricate and can be integrated with microwave and millimetre-wave cir‐
cuits [1,2]. Nonetheless, there are few algorithms available in the literature to assist their
design. The purpose of this chapter is to present accurate design techniques for conformal
microstrip antennas and arrays composed of these radiators that can bring, among other
things, significant reductions in design time.

The development of efficient design techniques for conformal microstrip radiators, assist‐
ed by state-of-the-art  computational electromagnetic tools,  is  desirable in order to estab‐
lish clear procedures that bring about reductions in computational time, along with high
accuracy results. Nowadays, the commercial availability of high performance three-dimen‐
sional electromagnetic tools allows computer-aided analysis and optimization that replace
the design process  based on iterative experimental  modification of  the initial  prototype.
Software  such  as  CST®,  which  uses  the  Finite  Integration  Technique  (FIT),  and  HFSS®,
based on the Finite Element Method (FEM), are two examples of analysis tools available
in the market [3]. But, since they are only capable of performing the analysis of the struc‐
tures, the synthesis of an antenna needs to be guided by an algorithm whereby iterative
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process of simulations, result analysis and model’s parameters modification are conducted
until a set of goals is satisfied [4].

Generally, the design of a probe-fed microstrip antenna starts from an initial geometry de‐
termined by means of an approximate method such as the Transmission-line Model [5-7]
or the Cavity Model [8]. Despite their numerical efficiency, i.e., they are not time-consum‐
ing and do not require a powerful  computer to run on,  these methods are not accurate
enough for the design of probe-fed conformal microstrip antennas, leading to the need of
antenna model  optimization through the  use  of  full-wave electromagnetic  solvers  in  an
iterative process. However, the full-wave simulations demand high computational efforts.
Therefore, it  is advantageous to have a design technique that employs full-wave electro‐
magnetic solvers for accuracy purposes, but requires a small number of simulations to ac‐
complish the design. Unfortunately, the approximated methods mentioned before provide
no  means  for  using  the  full-wave  solution  data  in  a  feedback  scheme,  what  precludes
their integration in an iterative design process, hence restricting them just to the initial de‐
sign step. In this chapter, in order to overcome this drawback and to reduce the number
of full-wave simulations required to synthesize a probe-fed conformal microstrip antenna
with quasi-rectangular patch, a circuital model able to predict the antenna impedance lo‐
cus calculated in the full-wave electromagnetic solver is developed with the aim of replac‐
ing the full-wave simulations for the probe positioning. This is accomplished by the use of
a transmission-line model with a set of parameters derived to fit  its impedance locus to
the one obtained in the full-wave simulation [4]. Since this transmission line model adapts
its input impedance to fit the one from the full-wave simulation, at each algorithm itera‐
tion, it is an adaptive model per nature, so it was named ATLM – Adaptive Transmission
Line Model. In Section 2, the ATLM is described in detail and some design examples are
given to demonstrate its applicability.

Similar  to  what  occurs  with conformal  microstrip antennas,  the literature  does  not  pro‐
vide  a  great  number  of  techniques  to  guide  the  design  of  conformal  microstrip  arrays.
Among these design techniques, there are, for example, the Dolph-Chebyshev design and
the Genetic  Algorithms [9].  However,  the results  provided by the Dolph-Chebyshev de‐
sign are not accurate for beam steering [10], once it does not take the radiation patterns of
the array elements into account in its calculations, i.e., for this pattern synthesis technique,
the array is composed of only isotropic radiators; hence it implies errors in the main beam
position and sidelobes levels when the real patterns of the array elements are considered.
On the other hand, the Genetic Algorithms can handle well the radiation patterns of the
array elements and guarantee that the sidelobes assume a level better than a given specifi‐
cation R [9]. Nonetheless, to control the array directivity [11], it is important that all these
sidelobes have the same level R, but to obtain this type of result Genetic Algorithms fre‐
quently  requires  a  high number  of  iterations  which increases  the  design time.  Thus,  in
Section 3, an elegant procedure is employed, based on the solution of linearly constrained
least squares problems [12],  to the design of conformal microstrip arrays. Not only does
this algorithm take the radiation pattern of each array element into account, but it also as‐
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sures that a determined number of sidelobes levels have the same value, so to get opti‐
mized array directivity. And, to obtain more accurate results, the radiation patterns of the
array elements,  which feed the developed procedure,  are evaluated from the array full-
wave simulation data.  In this  work,  the CST®  Version 2012 was used to get  these data.
The proposed design technique was coded in the Mathematica®  package [13] to create a
computer program capable of  assisting the design of  conformal microstrip arrays.  Some
examples are given in this section to illustrate the use and effectiveness of this computer
program.

Another concern for designing conformal microstrip arrays is how to implement a feed net‐
work that can impose appropriate excitations (amplitude and phase) on the array elements
to synthesize a desired radiation pattern. Some microstrip arrays used in tracking systems,
for example, employ the Butler Matrix [11] as a feed network. Nevertheless, this solution can
just accomplish a limited set of look directions and cannot control the sidelobes levels.
Hence, in this work, in order not to limit the number of radiation patterns that can be syn‐
thesized, an active circuit, composed of phase shifters and variable gain amplifiers, is adopt‐
ed to feed the array elements. Expressions for calculating the phase shifts and the gains of
these components are addressed in Section 4, as well as some design examples are provided
to demonstrate their applicability.

2. Algorithm for conformal microstrip antennas design

The main property of the proposed ATLM is to allow the prediction of the impedance lo‐
cus determined in the antenna full-wave analysis when one of its geometric parameters is
modified,  for  instance,  the  probe  position,  thereby  replacing  full-wave  simulations  in
probe position optimization.  It  results  in  a  dramatic  computational  time saving,  since  a
circuital simulation is usually at least 1000 times faster than a full-wave one. In this sec‐
tion, the ATLM is described in detail and some design examples are provided to highlight
its advantages.

2.1. Algorithm description

In order to describe the algorithm for the design of conformal microstrip antennas, for the
sake of simplicity, let us first consider a probe-fed planar microstrip antenna with a gular
patch of length Lpa and width Wpa , mounted on a dielectric substrate of thickness hs , relative
permittivity εr , and loss tangent tanδ, such as the one shown in Figure 1(a). The antenna
feed probe is positioned dp apart from the patch centre. For the following analysis, it is
adopted that the antenna resonant frequency fr is controlled by the length Lpa and once the
probe is located along the x-axis, it excites the TM10 mode, whose main fringing field is also
represented in Figure 1(a). Despite this geometry being of planar type, the same model pa‐
rameters are used to describe the conformal quasi-rectangular microstrip antennas illustrat‐
ed in Figure 1(b), 1(c) and 1(d), and consequently the algorithm is valid as well.

Design Techniques for Conformal Microstrip Antennas and Their Arrays
http://dx.doi.org/10.5772/53019

5



 

  

(a) Planar microstrip antenna (b) Cylindrical microstrip antenna

(d) Conical microstrip antenna
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(c) Spherical microstrip antenna 

Figure 1. Microstrip antennas studied in this chapter

It is convenient to write both the probe position dp and patch width Wpa as functions of the
patch length Lpa , to establish a standard set of control variables. Hence, the probe position is
written as

, 0 0.5 ,p p pa pd R L R= < £ (1)

and the patch width as follows

, 1.pa paW RL R= ³ (2)
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Therefore, the standard set of control variables is composed of Lpa ,R(patch width to patch
length ratio) and Rp (probe position to patch length ratio). The variables Lpa and Rp will be
used in the algorithm to control its convergence and the variable R will be defined by speci‐
fication, based on the desired geometry (rectangular, square). Usually, Wpa is made 30%
higher than Lpa , i.e., R=1.3 [14].

In this work, it is considered that the resonant frequency fr occurs when the magnitude of
the antenna reflection coefficient reaches its minimum value. Under this assumption,

1 2( ) min ( ) , for [ , ],a r af
f f f f fG = G Î (3)

in which Γa (f) is the reflection coefficient determined in the antenna full-wave analysis, f1

and f2 are the minimum and maximum frequencies that define the simulation domain [f1 ,f2].
For electrically thin radiators it is usually enough to choose f1 =0.95f0 and f2 =1.05f0, where f0 is
the desired operating frequency, and whether the microstrip antenna is electrically thick,
then f1 =0.80f0 and f2 =1.20f0, in order to locate fr between f1 and f2 in the first algorithm itera‐
tion.

Since the antennas design will be conducted in an iterative manner, the optimization process
of the model needs to be evaluated against optimization goals in order to set a stop criterion.
Therefore, let the frequency error be defined as

0
1rfe

f
= - (4)

and its maximum value specified as emax. It leads to the first optimization goal, that is,

.maxe e£ (5)

The second optimization goal is expressed by means of

( ) ,a r minfG < G (6)

where Γmin is a positive real number defined by specification. So, the maximum reflection co‐
efficient magnitude observed at the resonant frequency needs to be lower than Γmin .

Now that the main parameters of the design algorithm have been derived, let us focus on
the Adaptive Transmission Line Model, depicted in Figure 2. As can be seen, this circuital
model is composed of two microstrip lines, μS1 and μS2, whose widths are equal to Wpa , an
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ideal transmission line TLp – with characteristic impedance Zpand electrical length ∠El (in
degrees) given by

1

0360 ,l s
r

c
E h

f e

-
æ ö
ç ÷Ð =
ç ÷
è ø

(7)

where c0 is the speed of the light in free-space –, a capacitor C, and two load terminations Ls .
The ideal transmission line together with the capacitor C were included in the model to ac‐
count for the impedance frequency shift due to the feed probe. In order to fit the input impe‐
dance of this model to the one determined in the antenna full-wave analysis, the reflection
coefficients at the terminals of the loads Ls are written as

0 1( )
0 1( ) ( ) ,j b b f

f f a a f e- +G = + (8)

in which Γf (f) is the reflection coefficient of the equivalent slot of impedance Zf, and a0 , a1 ,
b0 , b1 as well as Zp and C are the set of parameters that determine the frequency response of
the circuital model. It is worth mentioning that this ATLM is valid only if its variables Lpa

and Wpa are kept identical to the ones used in the full-wave analysis.

Ls
1
2pa pL Ræ ö-ç ÷

è ø

1S

1
2pa pL Ræ ö+ç ÷

è ø

2S

pTL
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Ls

Figure 2. Adaptive transmission line model – ATLM

Once the full-wave simulation Γa (f) is known, the antenna input impedance Za (f) can be
easily evaluated. The same is valid for the circuital model analysis in which the reflection
coefficient is Γc (f) and input impedance is Zc (f). It is important to point out that Γa (f) data
can be exported from the full-wave simulator to the circuit simulator in Touchstone format,
so Za (f) can be utilized by the circuit simulator. The ATLM parameters set is calculated in
order to have Γc (f)=Γa (f) over the simulation domain [f1 ,f2]. The process of finding the values
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of this parameters set is called ATLM synthesis and it is done with aid of a Gradient optimi‐
zation tool, usually available in circuit simulators such as Agilent ADS® [15], as follows.

Consider the generalized load reflection coefficient [16] that is written as

*

,
-

G =
+

L g
L

L g

Z Z
Z Z

(9)

in which ZL is the load impedance and Zg is the generator impedance, with the superscript *
denoting the complex conjugate operator. Since for the ATLM the input voltage vin comes
from a generator, it follows that ZL=Zc (f). By using a Gradient optimization tool with the
goal ΓL=0 yields

*( ) ,=c gZ f Z (10)

after the optimization process.

As we want to ensure that Γc (f)=Γa (f), i.e., Zc (f)=Za (f), yields

*( ),=g aZ Z f (11)

which is the generator impedance utilized during the ATLM synthesis. On the other hand,
for the circuital simulation afterwards, Zg=Z0, where Z0 is the characteristic impedance of the
antenna feed network.

Besides, to find a meaningful solution from a physical standpoint, the following two con‐
straints are ensured during the ATLM synthesis

Re{ } 0and Im{ } 0.> <f fZ Z (12)

The complete probe-fed microstrip antenna design algorithm is depicted through the flow‐
chart in Figure 3, which can be summarized as follows: perform a full-wave antenna simula‐
tion for a given patch length and probe position at a certain frequency range (simulation
domain), which results in accurate impedance locus data; synthesize the ATLM based on the
most updated full-wave simulation data available; optimize the probe position in order to
match the antenna to its feed network through circuital simulation and evaluate the reso‐
nant frequency; perform patch length scaling; update the full-wave model with the new val‐
ues of patch length and probe position; and repeat the whole process in an iterative manner
until the goals are satisfied.
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Generally, it is difficult to get the input impedance of the circuital model perfectly matched
to the one obtained from full-wave simulation over the entire simulation domain [f1 ,f2] (i.e.,
Zc (f)≡Za (f)), so it is convenient to set the following goal in the Gradient optimizer,

2 1 2 1
0 0

2 1 2 1
0 0

30dB, ( ),( )
4 4

.
20dB, ( ),( )

4 4

ì - -é ù- Î - +ï ê úï ë ûG £ í
- -é ùï- Ï - +ê úï ë ûî

L

f f f ff f f

f f f ff f f
(13)

The previous goal contributes to reduce the number of iterations required by the Gradient
optimization tool to determine the set of parameters. It was found that, in general, the re‐
quired time for the synthesis of the ATLM is at most 5% of the time spent for one full-wave
simulation.

 

(1b) Synthesize ATLM to fit Γa ( f ) using 
Rp n and Lpa i ; 
(2b) Increment n ; 
(3b) Optimize Rp n such as 

1 2min ( ) ,for [ , ]c minf
f f f fG < G Î ; 

(4b) Evaluate fr from Γc ( f ) . 

( ) ?a r minfG < G  

Start 
design 

(1d) Evaluate e. 

e < emax ? 

(1c) 1
0

r
pa i pa i

fL L
f+ = ; 

(2c) Update model using Rp n and 
Lpa i+1 ; 
(3c) Execute FWS and determine 
Γa ( f ) ; 
(4c) Evaluate fr from Γa ( f ) ; 
(5c) Increment i . 
 

NO 

(1a) Set indexes i = 1, n = 1; 

(2a) 0

02pai
r

cL
f

=
e

; 

(3a) Rp n = 0.25; 
(4a) Build model with Rp n and Lpa i ; 
(5a) Execute FWS and determine Γa ( f ) ; 
(6a) Evaluate fr from Γa ( f ) . 
 

 

Design finished 

YES 

YES 

NO 

Figure 3. Probe-fed microstrip antenna design algorithm; FWS – Full-Wave Simulation
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Regarding the probe position optimization, algorithm step 3b, it can be performed manually
by means of a tuning process, a usual feature found in circuit simulators. Thus, Rp is tuned
in order to minimize the magnitude of the input reflection coefficient of the circuital model.
If desired, the optimization process can be performed employing an optimization tool, e.g.,
Gradient, Random, also available in circuit simulators. Usually, each circuital analysis takes
no longer than 1 second using a simulator such ADS®. But, if one desires to create its own
code for the ATLM circuital analysis and probe position optimization, a simple rithm can be
implemented to seek the Rpthat minimizes |Γc (f)|, and the computational time will be great‐
ly reduced as well.

2.2. Applications

To illustrate the use of the technique proposed before, let us first consider the design of a
cylindrical microstrip antenna (Figure 1(b)) with a quasi-rectangular metallic patch mounted
on a cylindrical dielectric substrate with a thickness hs=0.762mm, relative permittivity εr= 2.5
and loss tangent tan δ = 0.0022, which covers a copper cylinder (ground layer) with a 60.0-
mm radius and 300.0-mm height. The patch centre is equidistant from the top and bottom of
the copper cylinder. This radiator was designed to operate at f0 = 3.5 GHz and the algorithm
parameters were chosen as emax=0.1×10-2, Γmin=3.16×10-2 (return loss of 30dB), and Wpa=1.3Lpa.
Once it is an electrically thin antenna, the simulation domain was given by f1 =0.95f0 and f2

=1.05f0 .

Following the algorithm (Figure 3), a model was built (step 4a) in the CST® software with
Lpa1 =27.11mm and Rp1 =0.25, and a first full-wave simulation was performed (step 5a). From
the analysis of the obtained reflection coefficient Γa(f), the determined resonant frequency
was fr=3.384GHz (step 6a) and the reflection coefficient magnitude was -17dB, thus higher
than the desired maximum of -30 dB (Figure 4(b)).

Hence, at the first decision point of the algorithm, the reflection coefficient magnitude at res‐
onance is not lower than Γmin, so one must go to the step 1b. Then ATLM was synthesized for
Lpa1 =27.11mm and Rp1 =0.25 and its parameters set was derived with the aid of the Gradient
optimization tool of ADS®. After 55 iterations of the Gradient tool, the following parameters
set was found: Zp=94Ω, C=0.87pF, a0 =-0.58, a1 =3.83×10-10s, b0 =-6.54, and b1 = 2.21×10-9 s. The
full-wave impedance locus and the one obtained from circuital simulation of the synthe‐
sized ATLM are shown in Figure 4(a), and it can be seen that the locus determined though
circuital simulation fits very well the full-wave one.

With the circuital model available, the probe position was optimized through manual tuning
of the variable Rp, and since for step 3b it is desired that the reflection coefficient magnitude
at the resonance be below Γmin , Rp was tuned such as the ATLM impedance locus crossed the
Smith Chart centre (Figure 4(a)), leading to Rp2 =0.21. The resonant frequency obtained from
the circuital simulation with this probe position (step 4b) was fr=3.392GHz. Following the al‐
gorithm, the next step was the scaling of patch length (step 1c) leading to Lpa2 =26.28mm. Af‐
ter updating the full-wave model with these parameters, a full-wave simulation was
executed (step 3c) resulting fr=3.480GHz with a reflection coefficient magnitude of -54dB
(Figure 4(b)). Since |Γa|<Γmin , the next step was step 1d where it was found that e=0.57×10-2,
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higher than emax , thus the algorithm went to step 1c, where a second patch length scaling
was done leading to Lpa3 =26.13mm. A last full-wave simulation with Rp2 =0.21 and Lpa3

=26.13mm was performed resulting in e=0.03×10-2 and return loss of 54dB at resonance, thus
satisfying all specifications. This design required only three full-wave simulations in order
to guarantee all specifications, what demonstrates the efficiency of the proposed design
technique.

Now let us design a probe-fed spherical microstrip antenna, such as the one illustrated in
Figure 1(c). A copper sphere (ground layer) of 120.0-mm radius is covered with a dielectric
substrate of constant thickness hs=0.762mm, relative permittivity εr=2.5 and loss tangent
tanδ=0.0022. A quasi-rectangular patch with length Lpa and width Wpa is printed on the sur‐
face of the dielectric substrate. The design specifications were the same used previously and
the steps of the algorithm followed a path similar to the one in the design of the cylindrical
radiator. Once again, the algorithm took only three full-wave simulations to perform the de‐
sign, as observed in Figure 5(a). The ATLM parameter set found was Zp=91Ω, C=0.63 pF, a0 =
6.69×10-3, a1 = 2.32×10-10 s, b0 = -4.10, b1 = 1.54×10-9 s, and the resulting patch parameters were
Rp2 =0.20 and Lpa3 =26.06mm, which led to a final frequency error e=0.03×10-2 and 35-dB return
loss at resonance.

As a last example, let us consider the design of a conical microstrip antenna with a quasi-
rectangular metallic patch, as shown in Figure 1(d). It is composed of a conical dielectric
substrate of constant thickness hs=0.762mm that covers a 280.0-mm-high cone made of cop‐
per (ground layer) with a 40.0° aperture. The dielectric substrate has the same electromag‐
netic characteristics as the ones employed in the previous examples and the patch centre is
located at the midpoint of its generatrix. This radiator was designed to operate at f0 = 3.5
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Figure 4. Iterations of the algorithm for the probe-fed cylindrical microstrip antenna design: (a) impedance loci of the
full-wave and circuital simulations, (b) reflection coefficient magnitude for the full-wave simulations
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GHz and the algorithm parameters were chosen as emax=0.1×10-2, Γmin=3.16×10-2 (return loss of
30dB), and Wpa=1.3Lpa. By applying the developed algorithm, the ATLM parameters set
found was Zp=104Ω, C=0.33pF, a0 =-0.26, a1 =3.01×10-10s, b0 =-4.01, b1 =1.53×10-9s, and the deter‐
mined patch parameters were Rp2 =0.23 and Lpa3 =26.18mm, which yielded a final frequency
error e = 0.01×10-2 and 34-dB return loss at resonance, once again supporting the proposed
design technique. Figure 5(b) presents the reflection coefficient magnitudes of the three full-
wave simulations required to accomplish the conical microstrip antenna design.
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Figure 5. Reflection coefficient magnitudes for each full-wave simulation required for the designs: (a) probe-fed
spherical microstrip antenna, (b) probe-fed conical microstrip antenna

3. Radiation pattern synthesis of conformal microstrip arrays

The previous section addressed a computationally efficient algorithm for assisting the de‐
sign of probe-fed conformal microstrip antennas with quasi-rectangular patches. In order to
demonstrate its applicability, three conformal microstrip antennas were synthesized: a cylin‐
drical, a spherical and a conical one. According to what was observed, the algorithm con‐
verges very fast, what expedites the antennas’ design time.

Another concern in the design of conformal radiators is how to determine the current excita‐
tions of a conformal microstrip array to synthesize a desired radiation pattern, in which both
the main beam position and the sidelobes levels can be controlled. This section is dedicated
to the presentation of a technique employed for the design of conformal microstrip arrays. It
is based on the iterative solution of linearly constrained least squares problems [12], so it has
closed-form solutions and exhibits fast convergence, and, more important, it takes the radia‐
tion pattern of each array element into account in its code, what improves its accuracy.
These radiation patterns are determined from the output data obtained through the confor‐
mal microstrip array analysis in a full-wave electromagnetic simulator, such as CST® and
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HFSS®. Once those data are available, polynomial interpolation is utilized to write simple
closed-form expressions that represent adequately the far electric field radiated by each ar‐
ray element, which makes the technique numerically efficient.

The developed design technique was implemented in the Mathematica® platform giving rise
to a computer program – called CMAD (Conformal Microstrip Array Design) – capable of
performing the design of conformal microstrip arrays. The Mathematica® package, an inte‐
grated scientific computer software, was chosen mainly due to its vast collection of built-in
functions that permit implementing the respective algorithm in a short number of lines, in
addition to its many graphical resources. At the end of the section, to illustrate the CMAD
ability to synthesize the radiation pattern of conformal microstrip arrays, the synthesis of
the radiation pattern of three conformal microstrip array topologies is considered. First, a
microstrip antenna array conformed onto a cylindrical surface is analysed. Afterwards, a
spherical microstrip array is studied. Finally, the synthesis of the radiation pattern of a coni‐
cal microstrip array is presented.

3.1. Algorithm description

The far electric field radiated by a conformal microstrip array composed of N elements and
embedded in free space, assuming time-harmonic variations of the form e j ω t, can be written as

E =ℂ e
- j k0r

r I t ⋅v(θ, ϕ), (14)

where the constant ℂ is dependent on both the free-space electromagnetic characteristics, μ0

and ε0 , and the angular frequency ω, k0 =ω{μ0 ε0}1/2 is the free-space propagation constant,

1 ,t
NI I Ié ùë ûL= (15)

with In,1 ≤ n ≤ N, representing the current excitation of the n-th array element and the super‐
script t indicates the transpose operator,

1( , )
( , ) ,

( , )N

é ùq f
ê úq f ê ú
ê úq fë û

M
g

v =
g

(16)

in which gn(θ,ϕ), 1 ≤ n ≤ N, denotes the complex pattern of the n-th array element evaluated
in the global coordinate system. Boldface letters represent vectors throughout this chapter.

Based on (14), the radiation pattern of a conformal microstrip array can be promptly calcu‐
lated using the relation
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2 † †| ( , )| [ ( , ) ( , )] ,tI w w× q f = × q f × q f ×v v v (17)

where the complex weight w is equal to I*, the superscript * represents the complex conju‐
gate operator and † indicates the Hermitian transpose (complex conjugate transpose opera‐
tor). Therefore, the radiation pattern evaluation requires the knowledge of both complex
weight w and vectorv(θ,ϕ).

Once the array elements are chosen and their positions are predefined, to determine the vec‐
tor v (θ, ϕ) tor v(θ,ϕ) it is necessary to calculate the complex patterns gn(θ,ϕ), 1≤n≤N, of the
array elements. For conformal microstrip arrays there are some well-known techniques to
accomplish this [1], for example, the commonly used electric surface current method [17-19].
However, when this technique is employed to analyse cylindrical or conical microstrip ar‐
rays, for instance, it cannot deal with the truncation of the ground layer and the diffraction
at the edges of the conducting surfaces that affect the radiation pattern. Moreover, the ex‐
pressions derived from this method for calculating the radiated far electric field frequently
involve Bessel and Legendre functions. Nevertheless, as extensively reported in the litera‐
ture [20], the evaluation of these functions is not fast and requires good numerical routines.
Hence, to overcome these drawbacks and to get more accurate results, in this chapter, the
complex patterns gn(θ,ϕ) are determined from the data obtained through the conformal mi‐
crostrip array analysis in the CST® package. It is important to point out that other commer‐
cial 3D electromagnetic simulators, such as HFSS®, can also be used to assist the evaluation
of the complex patterns gn(θ,ϕ), since they are able to take into account truncation of the
ground layer and diffraction at the edges of the conducting surfaces.

From the array full-wave simulation data, polynomial interpolation is applied to generate
simple closed-form expressions that represent adequately the far electric field (amplitude
and phase) radiated by each array element. In this work, the degree of the interpolation pol‐
ynomials is established from the analysis of the RMSE (root-mean-square error), which pro‐
vides a measure of similarity between the interpolated data and the ones given by CST®. For
the following examples the interpolation polynomials’ degrees are defined aiming at a
RMSE less than 0.02.

Considering the previous scenario, to synthesize a radiation pattern in a given plane, it just
requires the determination of the current excitations In present in the complex weight w. Fig‐
ure 6 illustrates a typical specification of a radiation pattern containing information about
the main beam direction α, the intervals intervals [θa,θb] and [θc,θd] where the sidelobes are
located as well as the maximum level R that can be assumed for them.

Based on (17) and following [12], a constrained least squares problem is established in order
to locate the main beam at the α direction,

†min
w

w A w× × (18)

subject to the constraints
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† 1,s w× =v (19)

†Re{ } 0 ,d w× =v (20)

in which vs=v(α,ϕ'), vd=∂v(θ,ϕ)/∂θ|(θ , ϕ) = (α , ϕ') , ϕ' is the ϕ coordinate of the plane where the
pattern is being synthesized, and

†

1

1 ( , ') ( , ') ,
2

L
A

=
= q f × q få l l

l
v v (21)

with the angles θℓ, ℓ=1,2,…,L, uniformly sampled in the sidelobes intervals [θa,θb] and
[θc,θd]. In the next examples the adopted step size between consecutive θℓ is equal to 0.1°
(for each of the sidelobes intervals).

In order to find a closed-form solution to the problem defined by (18) to (20), we determine
its real counterpart [21], that is,

min t
w

w A w× ×
%

%% % (22)

subject to the following linear constraints

,tC w f× = %% % (23)

where

1,0

R

Relative
field strength

qa qb qc qd
q



1,0

R

Relative
field strength

qa qb qc qd
q



Figure 6. Typical specification of a radiation pattern in a given plane
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Re{ } Im{ } ,tw w wé ù= ë û% (24)

Re{ } Im{ }
,

Im{ } Re{ }
A A

A
A A

é ù-
= ê ú
ë û

% (25)

ˆ ,s s dC é ù= ë û
% % %v v v (26)

1 0 0 ,tf é ù= ë û
% (27)

with

Re{ } Im{ } ,t
s s sé ù= ë û%v v v (28)

ˆ Im{ } Re{ } ,t
s s sé ù= -ë ûv v v (29)

Re{ } Im{ } .t
d d dé ù= ë û%v v v (30)

The closed-form solution to the problem (22) and (23) is

( ) 11 1 ,tw A C C A C f
-- -= × × × × × %% % %% %% (31)

from which the complex weight w is promptly evaluated.

After solving the problem (18)-(20) the main beam is located at the α-direction. Neverthe‐
less, it cannot be assured that the sidelobes levels are below the threshold R. In order to get
it, the complex weight w is updated by residual complex weights Δw, as follows:

.w w w¬ + D (32)

A constrained least squares problem, similar to (18)-(20), that ensures the sidelobes levels, is
set up for the purpose of calculating the residual complex weights Δw, that is,

†min
w

w A w
D

D × × D (33)
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subject to the constraints

† 0 ,s w× D =v (34)

†Re{ } 0 ,d w× D =v (35)

† , 1,2, ... , ,i iw f i m× D = =v (36)

in which vi=v(θi,ϕ'), with θi denoting the θ coordinate of the i-th sidelobe, m is the number
of sidelobes whose levels are being modified (the maximum m is equal to N–2), and the
complex function fi can be evaluated through

( | |) ,
| |

i
i i

i

c
f R c

c
= - (37)

where

† .i ic w= × v (38)

It is important to point out that the constraints (34) and (35) retain the main beam located at
the α-direction, and the ones in (36) are responsible for conducting the sidelobes levels to
the threshold R. A closed-form solution to the problem (33)-(36) is also determined from its
real counterpart, analogous to the solution to the problem (18)-(20). The problem (33)-(36) is
iteratively solved until the sidelobes levels reach the desired value R. Notice that at each
iteration the maximum number of sidelobes whose levels are controlled is equal to N – 2,
i.e., if the array radiation pattern has more than N – 2 sidelobes, we choose the N – 2 side‐
lobes with the highest levels to apply the constraints (36).

The radiation pattern synthesis technique described before was implemented in the Mathe‐
matica® platform with the aim of developing a CAD – called CMAD – capable of performing
the design of conformal microstrip arrays. The inputs required to start the design procedure
in the CMAD program are the Text Files (.txt extension) containing the points that describe
the complex patterns of each array element – obtained from the conformal microstrip array
simulation in CST® package –, the look direction α, the maximum sidelobes level R, and the
starting and ending points of the intervals [θa,θb] and [θc,θd] where they are located. As a
result, the CMAD returns the current excitations and the synthesized pattern. It is worth
mentioning that the use of interpolation polynomials to describe the complex patterns expe‐
dites the evaluation of both vector v(θ,ϕ) and its derivative; consequently, the CMAD’s run
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time is diminished. In the following three sections, examples of radiation pattern synthesis
are provided to demonstrate the capability of the developed CMAD program.

3.2. Cylindrical microstrip array

To illustrate the described pattern synthesis technique, let us first consider the design of a
five-element cylindrical microstrip array, such as the one shown in Figure 7(a). For this ar‐
ray, the cylindrical ground layer is made out of copper cylinder with a 60.0-mm radius and
a 300.0-mm height. The employed dielectric substrate has a relative permittivity εr = 2.5, a
loss tangent tan δ = 0.0022 and its thickness is hs = 0.762 mm. The array patches are identical
to the one designed in Section 2.2 to operate at 3.5 GHz. The five elements are fed by 50-ohm
coaxial probes positioned 5.49 mm apart from the patches’ centres and the interelement
spacing was chosen to be λ0 / 2 = 42.857 mm (λ0 is the free-space wavelength at 3.5 GHz).
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Figure 7. (a)Five-element cylindrical microstrip array, (b) Eθ radiation pattern: xz-plane, α = 60°, R = -20 dB, and f = 3.5 GHz

It is important to point out that the elements close to the ends of the ground cylinder have
significantly different radiation patterns than those close to the centre of this cylinder; how‐
ever, the technique developed in this chapter can handle well this aspect, different from the
common practice that assumes the elements’ radiation patterns are identical [22]. To clarify
this difference among the patterns, Figure 8 shows the radiation patterns of the elements
number 1 and 5. In Figure 8(a) they were evaluated in CST® and in Figure 8(b) they were
determined from the interpolation polynomials. As observed, there is an excellent agree‐
ment between the radiation patterns described by the interpolation polynomials and the
ones provided by CST®, even in the back region, where the radiation pattern exhibits low
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level and oscillatory behaviour. It validates the use of polynomial interpolation functions to
represent the far electric field radiated by the conformal array elements.

For this cylindrical array, let us consider that the radiation pattern in the xz-plane must have
the main beam located at α = 60° and the maximum sidelobe level allowed is R = -20 dB. By
using the CMAD program, we get both the array normalized current excitations, depicted in
Table 1, and the synthesized radiation pattern, shown in Figure 7(b). In order to validate
these results, we provide the normalized current excitations (Table 1) for the array simula‐
tion in CST®. The radiation pattern evaluated in CST® is also represented in Figure 7(b). Ac‐
cording to what is observed, there is an excellent agreement between the radiation pattern
given by the CMAD and the one calculated in CST®, thus validating the developed techni‐
que to design cylindrical microstrip arrays.
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Figure 8. Eθ radiation patterns – elements number 1 and 5: xz-plane and f = 3.5 GHz. (a) CST® and (b) interpolation
polynomials

Element Number
Normalized Current

Excitation

1 1.0∠0.0°

2 0.800∠-82.394°

3 0.360∠6.211°

4 0.781∠-90.315°

5 0.617∠172.593°

Table 1. Cylindrical microstrip array: normalized current excitations
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3.3. Spherical microstrip array

Another conformal microstrip array topology used to demonstrate the CMAD’s ability to
synthesize radiation patterns is the five-element spherical microstrip array, which operates
at 3.5 GHz, illustrated in Figure 9(a). For this array, the selected ground layer is a copper
sphere with a radius of 120.0 mm. A typical microwave substrate (εr = 2.5, tan δ = 0.0022 and
hs = 0.762 mm) covers all the ground sphere and the array patches are the same as the ones
designed in Section 2.2. The angular interelement spacing in the θ-direction was chosen to
be 20.334°, which corresponds to an arc length of λ0 / 2 onto the external microwave sub‐
strate surface.
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Figure 9. (a) Five-element spherical microstrip array, (b) Eθ radiation pattern: xz-plane, α = 55°, R = -20 dB, and f = 3.5 GHz

In this case, the synthesized radiation pattern in the xz-plane must have its main beam locat‐
ed at α = 55.0° direction and the maximum sidelobe level cannot exceed -20 dB. After enter‐
ing these requirements in the CMAD program, it outputs the normalized current excitations
(Table 2) and the synthesized radiation pattern (Figure 9(b)). To verify these results, the nor‐
malized current excitations were loaded into the spherical microstrip array simulation con‐
ducted in the CST® software. The radiation pattern obtained is also shown in Figure 9(b) for
comparisons purposes. As seen, the radiation pattern given by the CMAD program and the
one determined in CST® show a very good agreement, thus supporting the proposed radia‐
tion pattern synthesis technique. It is important to point out that the interelement spacing
could be varied if the array directivity needs to be altered.
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Element Number
Normalized Current

Excitation

1 0.680∠264.460°

2 0.252∠-6.059°

3 0.160∠156.639°

4 1.0∠0.0°

5 0.728∠-36.758°

Table 2. Spherical microstrip array: normalized current excitations

3.4. Conical microstrip array

Finally, let us consider the radiation pattern synthesis of the four-element conical microstrip
array presented in Figure 10(a). For this array, the ground layer is a 280.0-mm-high cone
made of copper with a 40.0° aperture. This cone is covered with a dielectric substrate of con‐
stant thickness hs = 0.762 mm, relative permittivity εr = 2.5 and loss tangent tan δ = 0.0022.
The array elements are identical to the one designed in Section 2.2, so they have a length of
26.18 mm in the generatrix direction, an average width of 34.03 mm in the ϕ-direction, and
the 50-ohm coaxial probes are located 6.02 mm apart from the patches’ centres toward the
ground cone basis. The interelement spacing in the generatrix direction is of 42.857 mm (=
λ0 / 2) as well as the centre of the element #1 is 110.0 mm apart from the cone apex in this
same direction.

The radiation pattern specifications for this synthesis are: main beam direction α = 70° and
maximum sidelobe level R = -20 dB, both in the xz-plane. By using the CMAD program, we
derive the normalized current excitations, shown in Table 3, and the synthesized radiation
pattern in the frequency 3.5 GHz, illustrated in Figure 10(b). Also in Figure 10(b) the array
radiation pattern calculated in CST®, considering the normalized current excitations of Table
3, is presented. As observed, the radiation pattern obtained with CMAD matches the one de‐
termined in CST®, once again supporting the proposed design approach.

4. Active feed circuit design

As can be seen, the radiation pattern synthesis technique presented in the previous section is
suitable for applications that require electronic radiation pattern control, for example. How‐
ever, it only provides the array current excitations, i.e., to complete the array design it is still
necessary to synthesize its feed network. A simple active circuit topology dedicated to feed
those arrays can be composed of branches having a variable gain amplifier cascaded to a
phase shifter, both controlled by a microcontroller, and a 1 : N power divider, as depicted in
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Figure 11. The phase shifters play a role in controlling the phases of the current excitations,
as well as the variable gain amplifiers that are responsible for settling their amplitudes. In
this section, expressions for calculating the phase shifts ϕn and the gains Gn, in terms of the
array current excitations and their electrical characteristics, including the self and mutual
impedances, are derived. It is worth mentioning that the evaluated expressions take into ac‐
count the mismatches between the array elements’ driving impedances and the characteris‐
tic impedance Z0 of the lines, what improves their accuracy.

At the end of this section, to illustrate the synthesis of the proposed active feed network
(Figure 11), the design of the active beamformers of the three conformal microstrip arrays
(cylindrical, spherical and conical) that appear along the chapter is described. Furthermore,
to validate the phase shifts and gains calculated, the designed feed networks are analysed in
the ADS® package.
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Figure 10. (a) Four-element conical microstrip array, (b) Eθ radiation pattern: xz-plane, α = 70°, R = -20 dB, and f = 3.5 GHz

Element Number
Normalized Current

Excitation

1 0.574∠-7.835°

2 0.875∠0.149°

3 1.0∠0,0°

4 0.625∠-6.561°

Table 3. Conical microstrip array: normalized current excitations
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Figure 11. Active feed network

4.1. Design equations

For the analysis conducted here the phase shifters are considered perfectly matched to the
input and output lines and produce zero attenuation. Based on these assumptions the scat‐
tering matrix (S pf ) n of the n-th phase shifter, 1≤n≤N, assumes the form

0
( ) ,

0

n

n

j

pf n j

e
S

e

f

f

æ ö
ç ÷=
ç ÷
è ø

(39)

with ϕn (0≤ϕn<2π) representing the phase shift produced by the n-th phase shifter. Notice
that the matching requirement can be met to within a reasonable degree of approximation
for commercial IC (Integrated Circuit) phase shifters, however those devices frequently ex‐
hibit moderate insertion loss. So, to take the insertion loss into account in our analysis mod‐
el, the gains Gn are either decreased or increased (to compensate the insertion losses).

The variable gain amplifiers are also considered perfectly matched to the input and output
lines and they are unilateral devices, i.e., s12n=0. Hence, the scattering matrix (S a ) n of the n-th
variable gain amplifier is given by

21

0 0
( ) ,

0a n
n

S
s
æ ö

= ç ÷ç ÷
è ø

(40)

in which s21n denotes the gain (linear magnitude) of the n-th variable gain amplifier. It is
worth mentioning that lots of commercial IC variable gain amplifiers have input and output
return loss better than 10 dB and exhibit high directivity, therefore, the preceding assump‐
tions are reasonable. More precise results using the scattering parameters of commercial var‐
iable gain amplifiers and phase shifters are presented in [23].
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Let us examine the operation of the n-th circuit branch. The input power Pn at the terminals
of the n-th array element can be calculated by

21 Re{ }| | ,
2n n nP Z Iin= (41)

where Zinn is the driving impedance at the terminals of the n-th array element and can be
evaluated using

1

N

n n
n

I
Z Zin

I
k

k
k=

=å (42)

in which Znκ is the n-th array element self-impedance, if n=κ, and the mutual impedance be‐
tween the n-th and κ-th array elements, if n ≠ κ. In this chapter the self and mutual impedan‐
ces will be determined from the array simulation data. However, those impedances could
also be obtained from the measurements conducted in the array prototype, what certainly
would lead to a more accurate feed network design.

Alternatively, the input power at the terminals of the n-th array element can be expressed in
terms of the incident power P0n and the reflection coefficient Γinn at the terminals as

2
0 (1 | | ) ,n n nP P in= - G (43)

with

0

0
.n

n
n

Z Zin
in

Z Zin
-

G =
+ (44)

Combining (41) and (43) results in an expression to evaluate the incident power at the termi‐
nals of the n-th array element

2

0 2
Re{ }| |

,
2(1 | | )

n n
n

n

Z IinP
in

=
- G

(45)

which is equal to the n-th variable gain output power, disregarding the losses in the lines.

Based on (45), an equation to determine the gain of the n-th variable gain amplifier is de‐
rived:
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(46)

Notice that to evaluate (46) it is necessary to choose one of the circuit branches as a refer‐
ence, i.e., the gain of the m-th variable gain amplifier is set equal to 1.0.

It is important to highlight that this formulation has relevant importance for arrays whose
mutual coupling among elements is strong [23], since it takes this effect into account. For ar‐
rays whose mutual coupling among elements is weak and the array elements self-impedan‐
ces are close to Z0 , (46) is approximated by

2

2
| |

.
| |

n
n

m

I
G

I
@ (47)

Now, to determine the phase shifts ϕn, let us consider the current In at the terminals of the n-
th array element, that is,

0 (1 ) ,nj
n n nI I e inf= - G (48)

in which I0n e jϕn is the incident current wave at the terminals of the n-th array element.

Once the currents In are provided by the algorithm described in the last section, to calculate
ϕn the phases of the left and right sides of (48) are enforced to be equal. Then,

arg{1 } arg{1 } ,n nm n min inf = d - - G + - G (49)

with

arg{ } arg{ }.nm n mI Id = - (50)

Also for the determination of the phase shift ϕn, the m-th circuit branch was taken as a refer‐
ence, i.e., its phase shifter does not introduce any phase shift (ϕm=0°) in the signal.

For arrays whose mutual coupling among elements is weak and the array elements self-im‐
pedances are close to Z0 , the phase shift ϕn (49) reduces to

.n nmf @ d (51)
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The expressions for evaluating the gains Gn (46) and phase shifts ϕn (49) were incorporated
into the developed computer program CMAD to generate a new module devoted to design
active feed networks, such as the one illustrated in Figure 11. The inputs required to start
the circuit design are the array current excitations and the Touchstone File (.sNp extension)
containing the array scattering parameters – obtained from the conformal microstrip array
simulation in a full-wave electromagnetic simulator, for example. In the next section, to
demonstrate the capability of this new CMAD feature, the feed networks of the three confor‐
mal microstrip arrays previously synthesized will be designed.

4.2. Examples

The normalized current excitations found in Tables 1 to 3 and the scattering parameters of
the three conformal microstrip arrays synthesized in this chapter (evaluated in CST®) were
provided to the CMAD. As results, it returned the gains and phase shifts of the active feed
networks that implement the radiation patterns shown in Figures 7(b), 9(b) and 10(b). These
values are listed in Table 4.

To verify the validity of the results found in Table 4, the designed active feed networks were
analysed in the ADS® package. As an example, Figure 12 shows the simulated feed network
for the conical microstrip array. In this circuit, the array is represented through a 4-port mi‐
crowave network, whose scattering parameters are the same as the ones used by the CMAD,
it is fed by a 30-dBm power source with a 50-ohm impedance, and there are four current
probes to measure the currents at the terminals of the 4-port microwave network, which cor‐
respond to the array current excitations. Table 5 summarizes the current probes readings for
the three analysed feed networks. The comparison between the currents given in Table 5
and the ones presented in Tables 1 to 3 shows that these currents are in agreement, thereby
validating the design equations derived before.

Branch

Number

Cylindrical Array Spherical Array Conical Array

Gain (dB) Phase Shift (deg) Gain (dB) Phase Shift (deg) Gain (dB) Phase Shift (deg)

1 7.4 351.1 11.1 114.6 0.0 0.0

2 5.7 267.6 3.8 205.0 4.2 7.0

3 0.0 0.0 0.0 0.0 5.4 4.1

4 4.9 260.6 14.0 210.3 1.5 356.6

5 2.4 164.0 10.9 173.0 – –

Table 4. Gains and phase shifts of the designed active feed networks
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Branch

Number
Cylindrical Array Spherical Array Conical Array

1 0.160∠-10.37° 0.249∠113.2° 0.106∠-9.417°

2 0.128∠-92.76° 0.092∠-157.3° 0.161∠-1.432°

3 0.058∠-4.156° 0.059∠5.375° 0.184∠-1.581°

4 0.125∠-100.7° 0.366∠-151.3° 0.115∠-8.141°

5 0.099∠162.2° 0.267∠172.0° –

Table 5. Current probes readings (in ampere)

5. Conclusion

In summary, a computationally efficient algorithm capable of assisting the design of probe-
fed conformal microstrip antennas with quasi-rectangular patches was discussed. Some ex‐
amples were provided to illustrate its use and advantages. As seen, it can result in
significant reductions in design time, since the required number of full-wave electromagnet‐
ic simulations, which are computationally intensive – especially for conformal radiators –, is
diminished. For instance, the proposed designs could be performed with only three full-
wave simulations. Also in this chapter, an accurate design technique to synthesize radiation
patterns of conformal microstrip arrays was introduced. The adopted technique takes the ra‐
diation pattern of each array element into account in its code through the use of interpola‐
tion polynomials, different from the common practice that assumes the elements’ radiation
patterns are identical. Hence, the developed technique can provide more accurate results.
Besides, it is able to control the sidelobes levels, so that optimized array directivity can be
achieved. This design technique was coded in the Mathematica® platform giving rise to a
computer program, called CMAD, that evaluates the array current excitations responsible
for synthesizing a given radiation pattern. To show the potential of the CMAD program, the
design of cylindrical, spherical and conical microstrip arrays were exemplified. Finally, an
active feed network suitable for applications that require electronic radiation pattern con‐
trol, like tracking systems, was addressed. The expressions derived for the synthesis of this
circuit take into account the mutual coupling among the array elements; therefore they are
also suited for array configurations in which the mutual coupling among the elements is
strong. These design equations were incorporated into the CMAD code adding to it one
more project tool. In order to validate this new CMAD feature, the feed networks of the
three conformal microstrip arrays described along the chapter were designed. The obtained
results were validated through the feed networks’ simulations in the ADS® software.
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Figure 12. Simulated feed network for the conical microstrip array
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