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1. Introduction

It is one of the primary interests in recent nano- and micro-photonics to achieve a strong
confinement of light in a small region, because it finds a variety of applications in optical
physics and engineering where it is exploited in low-threshold lasers [1], nonlinear optical
devices [2], and cavity quantum electrodynamics devices [3]. Extensive efforts have there‐
fore been devoted to developing a cavity that can confine light efficiently—a high-quality
optical resonator. The quality of resonators is described here by the photon lifetime τ which
is the time that elapses before a photon trapped in the resonator escapes from it, or by the
quality factor defined by Q =ωτ where ω is the angular frequency of light [4].

In order to achieve high-quality optical resonators, the two directions seem to have been ex‐
plored so far: one is the use of the extended waves and another is the use of the localized
waves. The photonic crystals (PCs) may be the first candidate high-quality resonators, the Q
factors for which have been found to be increased by the slowed-down light (the extended
waves, or the Bloch waves in this case) near the photonic band edge [5-7]. The typical exam‐
ple for the exploitation of the localized waves can be found in the defect mode that is local‐
ized around a disorder in the PC [8-13], which provides more pronounced light-confinement
than the band edge modes in the PCs. Although the defect itself generally occupies a very
small region, this confinement requires the presence of a large periodic medium around it in
order for the defect mode to be sufficiently isolated from its environment. Light can also be
localized in the central part of a three-dimensional (3D) fractal structure (Menger sponge)
made up of cubes that need not have high Q factors [14]. A single microstructure with a va‐
riety of forms [15-19] also creates high-Q modes called whispering gallery modes (WGMs)
that occur when the light waves circulate within the microstructure because they undergo
total internal reflection at its boundaries. This could be regarded as intermediate between
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the two directions mentioned before, since the waves for WGMs are propagating extended
waves but confined within the microstructure.

In the context mentioned above, we describe in Sec. 3 an entirely different type of resonator:
a closed chain array made up of dielectric microstructures arranged periodically in the back‐
ground material (e.g., the air). We call it a photonic atoll (PA) resonator because it resembles
an atoll in the ocean. This PA resonator is thought to have a prominent function to confine
light very strongly for the following reasons: (1) the multiple scattering of light by the peri‐
odic quasi-one-dimensional (q1D) array causes a slowing down of extended light-waves and
(2) the closed optical path forces a photon once trapped in the array to keep circulating in
the loop, both of which would undoubtedly increase the photon lifetime. Factor (1) is the
same as the factor responsible for the lifetime enhancement at the band edge of the PCs (see
the preceding paragraph) while factor (2) reminds us of the analogy to the ring accelerator
for elementary particles. Because of the features mentioned above, this PA structure could
also be called a distributed feedback ring-resonator. The above concept was previously [20]
applied to the PA resonator of the two-dimensional (2D) circular array consisting of the fifty
rods. This resonator was actually found to create an extremely high radiative Q factor of the
order of 1015 and the resultant very long lifetime of the order of one second for visible light
at the modes near the photonic band edges created in this q1D closed PC. The idea of PA
was conceived during the investigation of circulating modes in a two-dimensional PC [6, 21]
and a microdisk [22], so we believe that the investigation of it and its structure effects will
also help us understand the behavior of light in those structures.

Since we have confirmed that the PA structure has a potential to achieve very long lifetimes,
our next step of research is to investigate what kind of PA shapes would provide the most
efficient optical resonator (Sec. 4). This is because the PA has the degree of freedom that per‐
mits it to have an arbitrary loop form: note that the first work (Sec. 3) has focused on a circu‐
lar PA. In the process of investigations to pursue the optimum PA structure that maximizes
the Q value, we observed the remarkable metamorphoses of eigen modes whose degeneracy
has been lifted in the modified PAs. This kind of phenomena has so far not been observed in
the PA, but it could be considered in the context of the phenomena such as the Stark effect
[23] and the Zeeman effect [23] for the electronic energy and the Sagnac effect [22, 24] for the
optical energy. This is because the mode splittings in all of these phenomena are caused by
some perturbations applied to the system: the Stark effect is caused by the modification of
the electronic potential by the electric field, the Zeeman effect by the magnetic field, the Sa‐
gnac effect by the mechanical rotation, and our case by the modification of the optical poten‐
tial by the rearrangement of rods.

Finally, we describe in Sec. 5 the laser actions in the PA resonators with extremely high Q
values as an example of their application to a practical optical device. The threshold ampli‐
tude gain for laser oscillation is calculated together with the lifetimes. We find that these
values are well correlated, in particular that the threshold gain is inversely proportional to
the lifetime obtained for the same PA resonators. Although other possible losses of light re‐
main to be considered before this structure is put to practical use, the results obtained here
suggest that it would be an excellent structure for confining light. In particular, the fact that
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it does not require a large size to achieve a strong light confinement will prove a great ad‐
vantage over other ways of light confinement when it is incorporated into optical integrated
circuits.

2. Theory

2.1. Multiple scattering of light

The analytic multiple-scattering theory is used here to evaluate the light confinement effects.
Since the general theory is described in the reports [6, 7], here we briefly outline the frame‐
work of the calculation. We consider a 2D array consisting of a finite number N  of cylindri‐
cal rods (made of material A) with radius d  placed at arbitrary points in the background
material (material B, usually air). Here we focus on the polarization for which the electric
field is parallel to the rod axis (E-polarization). By considering the scattering of the incident
plane-wave with the unit amplitude by these rods, we obtain the electric field of the total
scattered wave E s(r):
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where r  is the generic coordinate, (rn, θn) is the polar coordinates of the center of the nth
rod, and K =ω / c is the wave number of light in the air. Here, the second equality in Eq. (1)
implies the inner product of vectors b=(bnl) and φ(r)= (H l

(1)(K rn)e ilθn) where H l
(1)(x) is the

Hankel function [25] of the first kind. Vector b is calculated from the relation Tb=q, where q
is a vector, the size of which is proportional to the amplitude of the incident wave, and T  is
a matrix:
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where δ is Kronecker's delta, Rnn ′ is the distance between the centers of the nth and n ′th

rods, and ϕn ′n is the angle that indicates the direction of the n ′th rod center as viewed from
the nth rod center. Here, sl  is a parameter related to the boundary conditions at the rod sur‐
face: see the previous report [6] for its details.

2.2. Modes and lifetimes

To determine the photon lifetime in the photonic atoll, we assume real dielectric constants
(i.e., no optical gain) and a complex photon frequency ω =ω ′− iω ″. Since the frequency de‐
pendence of the amplitude of the resonance scattered-wave follows the Breit-Wigner formu‐
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la [23], the first-order pole of the scattered-wave amplitude gives the complex frequency
ωm =ω ′

m− iω ″
m of the resonance mode. Hereafter, we use the subscript m to indicate the spe‐

cific mode obtained. Since the electric-field amplitude has to diverge at ω =ωm irrespective of
position r  in φ(r), this divergence must occur in vector b. This implies that the condition
det(T )=0 determines the complex frequency ωm. The photon lifetime of the relevant mode is

given by τm =1 / 2ω ″
m and the Q factor is given by ω ′

mτm.

Here, we refer to the physical meaning of the above method for determining the photon life‐
times. The imaginary part ω ″

m of the complex frequency thus determined must be positive
since the lifetime is positive. The positive ω ″

m means that k ″
m is positive due to the relation

ωm = ckm in the air, i.e., ω ′
m− iω ″

m =c(k ′
m− ik ″

m), where km =k ′
m− ik ″

m is the complex wave
number and c is the light velocity (the positive value). Since the 2D scattered wave behaves
like exp(ikmr) / r =exp(ik ′

mr)⋅exp(k ″
mr) / r  at large r , we find that it diverges at the limit of

r →∞ because k ″
m >0. This may appear to be unusual, because it is as if light be amplified

despite the absence of optical gain in the present physical system. Note, however, that this is
true. This actually occurs because the resonance state decays exactly at this resonance fre‐
quency to magnify the light intensity outside the PC (not due to gain). In this consideration,
the temporal variation of the field should be taken into account at the same time: the light
field decreases with the factor |exp(− iωmt)| =exp(−ω ″

mt) since ω ″
m >0. The overall behav‐

ior of the light field is described by the product of the two factors: the increasing spatial part
and the decreasing temporal part. The total light field is thus known to remain unchanged at
the simultaneous limits of r →∞ and t →∞. We find that the light field energy is conserved
during the whole decaying process of the resonance states. This is in marked contrast to the
case where the PC has optical gain and therefore the light field energy in the total system is
amplified.

2.3. Threshold amplitude-gain for laser oscillation

In the calculation of lasing thresholds [6] in the photonic atoll, we assume that every rod has
the same optical amplitude gain Ka

" that is the negative imaginary part of the complex wave‐

number (Ka≡Ka
'− iKa

") of light propagating in material A. We introduce the complex dielec‐
tric function in order to describe the light amplification in the rod:

( ) "
0 02 ,a a a ai c Ke w e e w= - (3)

where the photon frequency ω is a real value. Here, εa0 is the dielectric constant of material
A in the absence of gain. Taking this complex dielectric function into account in the calcula‐
tion of the scattered waves, the expansion coefficients b in Eq. (1) can be uniquely deter‐
mined as b=T −1q when the inverse matrix T −1 exists. When there is no incident light wave,
we know that q =0, hence b=0, and so we obtain no scattered wave: E s(r)=0. Note, however,
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that there is an exception: if the inverse matrix of T  (i.e., T −1) does not exist, we can observe
a finite intensity of light even for no light-wave incidence. This is nothing other than a laser
oscillation, if it exists. The condition for the nonexistence of T −1, i.e., det(T )=0 can therefore
be regarded as the laser oscillation condition. Since matrix T  is a complex function of both
the photon frequency ω and the amplitude gain Ka

", we can obtain the mode frequency ωm

as well as the threshold amplitude gain Kam
"  for laser oscillation by searching for the pair of

variables (ω, Ka
") at which the determinant for T  vanishes. The mode frequency values ωm

thus determined must coincide with those obtained in Sec. 2.2. The easily-oscillating modes
have relatively low Kam

"  values, while those which do not oscillate have higher Kam
"  values.

Therefore, we call the modes the unlasing modes, which do not laser-oscillate even under
very high Ka

" values that exceed 1.0 (in the units of 2π / L , where L  is the period of the rod
array: see the first paragraph in Sec. 5 for this normalization).

3. Modes and lifetimes in photonic atolls

The schematic photonic-atoll structure is shown by the inset in Fig. 1. It consists of periodi‐
cally arranged 50 GaAs rods (with the dielectric constant εa =13.18) in the background mate‐
rial air (εb =1.0). The typical atoll shape is a perfect circle with the filling factor f =d / L  (d :
rod radius, L : array period) of 0.45. The expansion up to | l | ≤ lmax =12 was used in Eq. (1)
on the basis of the detailed study of its convergence. By numerically solving the equation
det(T )=0, we obtain the root ωm with a sufficient accuracy even for very high Q. Because of
the scaling rule that holds in our calculation in a similar manner to in the PCs, the ω and τ
values normalized in the units of 2πc / L  and L / c respectively are determined by f  (nei‐
ther d  nor L ). Hence, the Q factor obtained is independent of the choice of L . Here, we sim‐
ply use ω instead of ω ′, the real part of the complex angular frequency, to represent the
mode frequency in the description of the results.

3.1. Mode distributions

Figure 1 shows the distribution of optical modes and Q factors for a circular photonic atoll
with the filling factor f =0.45. These modes seem to be grouped into several bundles sepa‐
rated by regions with no optical modes. As will be made clearer (see Figs. 2 and 3), the mode
bundles and hiatuses seen in Fig. 1 are respectively thought to be photonic bands and band
gaps created by the periodic loop array of microstructures, i.e., by the q1D PC.

Let us call these bands #1, #2… etc. from lower to higher frequencies. The #2 and #4 bands
are very narrow, but the others are so wide they can be regarded as real bands. These nar‐
row bands are not localized modes, however, because this structure does not contain disor‐
ders causing light localization. Actually, these modes have extended (unlocalized)
distributions of the light intensity [see Fig. 3(b)]. Although these Q factors have been calcu‐
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lated assuming no optical gain, another examination assuming optical gain in every rod re‐
vealed that these modes can be classified into two types depending on whether they did lase
(solid lines) or did not lase even by giving very high optical gains (dotted lines, see also
§2.3). As shown in Fig. 1, the Q factors (i.e., those obtained assuming no gain) for the lasing
modes are very high whereas those for unlasing modes are relatively low (10 to 100). What
causes this difference will be clarified later (see Sec. 3.3). In the first band #1, the Q factor for
lasing modes increases rapidly toward the band edge and reaches a maximum near it. Al‐
though the Q-factor variation for lasing modes in other bands is more complicated, the Q
factor there also tends to become higher at the band edges. At the top edge of band #3
(ωm =0.3097), the Q factor reaches the extremely high value of 0.8×1015. This high Q would
allow light to stay in the photonic atoll for about 1 second, a surprisingly long time for the
visible light, if we assume ideal circumstances that let us neglect other losses. Although one
may think that these high-Q modes have been created fortuitously, we have confirmed that
they are always observed at the same band edges in this kind of structure. These results in‐
dicate that the atoll structure has a potential to confine light very strongly: its geometry in‐
herently involves the high-Q effect.

The significance of the above results can be better understood by comparing them with the
results obtained with other resonators. The Q factors of modes at the band edge of a 2D PC
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Figure 1. Distribution of optical modes on the frequency axis for a closed circular array of 50 GaAsmicrorods (see the
inset). The heights of the columns indicate the values of the Q factors for the modes, ω is normalized in the units of
2πc / L , and the filling factor f = d / L  (d: rod radius, L: array period) is 0.45. Here, no optical gain is considered in the
calculation of the Q factors (see Sec. 2.2). Modes shown by solid and dotted lines respectively indicate those which
lase and unlase (see Sec. 2.3 for the definition of unlase). See also Fig. 3 for the modes denoted by arrows.
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with 53 rods are ∼100 [7]. The Q factors for modes in a photonic atoll, in contrast, are more
than 12 orders of magnitude larger (∼1015) despite the fact that both stem from the extend‐
ed modes in similar-sized resonators. The high-Q localization also occurs in a defect mode
in the PC with lateral Q factors of the order of 104 [8, 9], which are still lower than the
present Q. This localization occurs around a defect that is sufficiently separated from the
outer environment so that the coupling between them is cut off. This implies that the defect
has to be surrounded by a considerable volume of the periodic medium (PC). It is actually
reported that nearly 400 rods are needed to isolate the defect mode in a PC [8]. The presence
of so many rods despite the smallness of the defect would be disadvantageous with regard
to incorporating an optical cavity in the PC. The present photonic atoll permits us to obtain
much higher Q factors by using a small number of rods with little deterioration of them by
the presence of dielectric materials near it. This demonstrates the advantage of this resona‐
tor over the defect mode localized in a regular PC. These Q factors are also found to be high‐
er than those for the WGMs in a rod (∼1010) [17]. Although the present model does not
consider the vertical Q that comes to play a certain role in the slab, we find that the photonic
atoll greatly strengthens the confinement of light propagating in the 2D space.

3.2. Filling-factor effects

The finding of bands and band gaps has given impetus to the study of filling-factor ef‐
fects, as is often carried out in the ordinary PCs [26]. Figure 2 shows the variation of the
positions of bands (shaded areas) and band gaps (blank areas) as a function of the f val‐
ue.  Here,  we focused on bands  and band gaps  created by  lasing  modes  (solid  lines  in
Fig.  1),  because  they  are  verified  later  to  be  generated  along  the  rod  loop (see  Fig.  3).
The vertical  broken line corresponds to Fig.  1.  Let us scan the results from low to high
f  values.  Since f =0  implies  uniform air  (no rods),  the mode distribution is  continuous
(i.e.,  without bands and band gaps).  With increasing f ,  the closed periodic array struc‐
ture comes into existence and as a result the continuous free-space dispersion gradually
splits  into  several  bands:  this  occurs  at  f <0.1  (not  explicitly  shown in  Fig.  2).  We  see
that a large band gap is produced between bands #1 and #3. Further increase in f  splits
band #3 to create a new narrow band #2. This new band remains narrow until f  reaches
its  maximum  value.  A  similar  phenomenon  occurs  in  band  #5,  which  splits  to  form  a
narrow  band  #4  around  f =0.4.  The  first  band  gap  formed  between  bands  #1  and  #3
( f <0.35) appears to be maximized at a certain filling factor that is intermediate between
0 and 0.25,  because the band gap vanishing at  f =0  undoubtedly increases for  f >0  but
decreases for f >0.25.  The existence of an optimum filling factor for the large-gap gener‐
ation is similar to what is seen in the ordinary PCs [26]. The formation of narrow bands
for f >0.35 is not well understood, but some modes with nodes produced in the loop-ra‐
dial direction may be involved in their formation because of the increased rod radius for
higher  f  values.  These  results  substantiates  for  the  first  time  the  creation  of  photonic
bands  and band gaps  in  a  q1D looped array  structure  like  the  photonic-atoll  resonator
proposed here.
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Figure 2. Variation of the bands (shaded areas) and band gaps (blank areas) formed by lasing modes (solid lines in Fig.
1) as a function of rod filling factor f. f = 0 corresponds to only air (no rods), and f = 0.5 corresponds to the configura‐
tion in which neighboring rods touch one another.

3.3. Light intensity distributions

In order to clarify what occurs for these modes, we next investigate the field intensity distri‐
butions in the photonic atoll. Note again that no gain is assumed for this calculation. We
first select several lasing modes from band #1, because the modes in the first band with rela‐
tively long wavelengths are expected to provide a variety of clues to the understanding of
the fundamental processes of light localization. Figure 3(a) shows the light-intensity distri‐
butions for the four lower lasing modes in band #1 (indicated by arrows in Fig. 1). In the
colored figures, the intensity increases in the order blue, white, yellow, red, and black. The
numerals in the figure are the mode frequency values and from left to right in Fig. 3(a), they
respectively correspond to Q factors of 1.7, 9, 150, and 6.6×105. Although the light confine‐
ment is not very strong for these modes, we can clearly recognize the process in which light
comes to be localized along the loop as Q increases. We also find a noticeable variation of
the field distributions. First, the lowest-frequency mode (ωm =0.0216) appears to have two
loops and nodes of light waves along the array loop. This implies that the wavelength λ is
comparable to the circumference D of the circular loop. If we assume the light propagation
along the array loop with a wavenumber vector K = K e (e is the unit vector along it) and a
light velocity v =c / neff , this mode gives an effective refractive index neff  of about 0.93. This
value is close to the neff  of 1 for air, which is reasonable since most light is leaked into the air
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because of the small Q of this mode. The second mode (ωm =0.0421) appears to have six
loops and nodes giving λ∼D / 3, which leads to neff ∼1.4. Further increase in the mode fre‐
quency enables us to observe distinct light localizations toward the rod array. The modes
ωm =0.0678 and ωm =0.1086 respectively give wavelengths of λ∼D / 6 and ∼D / 12. The simi‐
lar estimation of neff  leads to respective neff  values of 1.8 and 2.2 for these modes. The gradu‐

al increase in the estimated neff  toward εa =3.6 for the rods reconfirms the increased light
confinement in the rod array loop. The light confinement along the rod chain may also be
construed by the coupling between a WGM mode in a rod and the one in its neighboring
rod via their Fano resonances with the outer region [27].
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Figure 3. Color) Light intensity distributions for (a) lasing modes in the first band #1, (b) lasing modes with very high
Q-factors, and (c) unlasing modes (see §2.3 for the definition of unlasing modes). Here, note that no optical gain is
assumed for the calculation of these intensity distributions. The numeral shown under each figure is the normalized‐
mode frequency: see Fig. 1, where different symbols of arrows are used to distinguish the modes in Figs. 3(a), (b) and
(c). The intensity increases in the following order: blue < white < yellow < red < black. Rod positions are indicated in
Figs. 3(a) and 3(c) by black circles but for clarity they are not indicated in Fig. 3(b).
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Several examples for the modes with very high Q-factors are shown in Fig. 3(b). These modes
are selected as those having the maximum Q factor values in each band from #1 to #4 (see the
arrows in Fig. 1). The strong light-confinement for these modes is confirmed by comparing the
intensity (i.e., unity) of the incident plane-wave and the maximum light intensity in the rod ar‐
ray: the first three modes (ωm =0.1666, 0.2056, and 0.3097) all have intensity of the order of 1011

and the last one (ωm =0.3366) the order of 105. Note that this intense light is obtained in the ar‐
ray with no optical gain (no gain is assumed here!). It is entirely due to the extremely long pho‐
ton lifetimes attained by the use of photonic-atoll resonators. Although light is focused on the
rod array, its intensity distributions are not easy to construe. Let us focus on the bright re‐
gions, which are the loops of light waves. While the contour of bright regions for the mode in
band #1  (ωm =0.1666)  is  simple,  the  contour  of  bright  regions  for  the  mode  in  band #2
(ωm =0.2056) contains two brightest points (not clearly seen for a small drawing). The mode in
band #3 (ωm =0.3097) has many bright regions (100, or twice the rod number of 50) though its
contour  is  simple.  The  most  extraordinary  results  are  found  in  the  mode  in  band  #4
(ωm =0.3366), for which the bright region consists of two small units separated in the radial di‐
rection of the loop and each small unit has two brightest points. The modes in higher-index
bands thus tend to become complicated. This evidently stems from the higher-order Bragg re‐
flections to create these bands, which occur in the q1D closed array.

Shown in Fig. 3(c) are for the modes that never lase even if they have very high gains (the
modes shown by dotted lines in Fig. 1). Light for these modes is clearly confined in the inner re‐
gion of the atoll but not along the rod array. We see an increase in the number of loops and no‐
des as the mode frequency increases, indicating that they are formed by light trapped in the
inner region and reflected at the rod array of the atoll. The observed Q  factors (10–100) are
small despite the expectations for the WGMs to produce strong light confinement. The above
results are reasonable, however, because both inner and outer regions are made from the air
and hence the thin array loop does not serve as a solidly made pool for light. We also under‐
stand that these modes do not lase because light stays in the region with no gain.

4. Shape effects of photonic atolls

In this section, we assume the PA that consists of 20 GaAs rods (with the dielectric constant
εa =13.18) in the air (εb =1.0). We consider a variety of elliptical PAs created by changing its
eccentricity e from 0 to 0.968. For all the PAs studied here, however, the filling factor
f =a / L  (d: rod radius, L : period) is fixed at 0.45 and the period of the rod chain is assumed
to be the same. Moreover, we modify the PA form keeping its circumference fixed in order
to facilitate the comparison between the PAs with different eccentricities. The angular fre‐
quency ω and the lifetime τ are expressed in the units of 2πc / L  and L / c, respectively.
Here, we again simply use ω instead of ω ′, the real part of the complex angular frequency,
to represent the mode frequency in the description of the results.

4.1. Splitting of degenerate modes

Prior to showing the detailed properties of the PAs, we first present the basic results for the
optical modes created in the PA. Figure 4 shows the angular frequency ω positions for the
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optical modes (denoted as n=0, 1, 2, …, 10 for low to high ω modes), where the height of the
columns indicates the lifetime τ of these modes. The thin lines are the results for the circular
PA (e =0) shown in the inset. In the limit of the infinite number of rods, these modes get ac‐
cumulated densely to form the first photonic band of the q1D closed photonic crystal [20]
and hence the shaded region in Fig. 4 can be regarded as the first photonic band gap. As
shown in Fig. 4, the lifetime becomes longer with the mode frequency that is increasing and
approaching the first band edge. Here, let us examine the specific numerical values. We take
mode 10 as an example with the dimensionless values ω =0.1691 and τ =6.30×106, and
L =0.1μm for the periodicity. These values give the actual frequency ω / 2π =510 THz (the
visible light with wavelength λ =0.59 μm) and the actual lifetime τ =2.1 ns. The above results
demonstrate the presence of the enhanced confinement of light near the band edge [6, 7].
The thick lines indicate the results for an extremely deformed PA (e =0.866), the form of
which is also shown in the inset. We see the lifetime remarkably decreased by the use of the
elliptical PA, which occurs more pronouncedly for higher modes. The examination of a vari‐
ety of elliptical PAs showed that any PA modifications caused the decrease in the lifetime.
We have to admit that these results for the deformed PAs are discouraging from the view‐
point of the achievement of longer lifetimes. Here, we observe some notable phenomena,
however: twin modes are isolated in the vicinity of the circular-PA modes with n=1, 2, …, 9.
Note that no twin modes are created for n=0 and 10.
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Figure 4. Optical modes distributed on the frequency axis, where the height of the columns indicates the lifetime of
these modes. The thin and thick lines are the results for the PAs as shown in the insets: a perfect circle (e = 0) and an
ellipse (e = 0.866), respectively, where e is the eccentricity of the elliptic PA. Here, several thin lines are hidden behind
thick lines since the latter are superimposed onto the former. In this paper, the angular frequency ωand the lifetime τ
are normalized in the units of 2πc / L  and L / c, respectively, where L  is the period of the PA chain.
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The similar studies have been carried out for elliptical PAs with a variety of eccentricities.
The results are summarized in Fig. 5, which shows the variation of the mode frequency as a
function of the eccentricity e (from 0 to 0.968). As clearly shown in Fig. 5, each of modes 1-9
is found to split into two with the increasing eccentricity. Those modes that are increasing
and decreasing, respectively, with the growing eccentricity are denoted by open and close
circles. While we succeeded in locating almost all split-modes very precisely, we failed in
isolating several higher modes (open circles) split for mode 1 at e>0.954. Here, we can read
in Fig. 5 what follows. First, the splitting width strongly depends upon the optical mode as
well as the PA form. In fact, modes 1, 2, and 9 already exhibit slight but clear splittings even
at relatively low e values (e<0.5), while modes 4, 5, and 6 do not split until it reaches a value
higher than 0.8. These results will be more clearly displayed later in Fig. 6. Second, we also
recognize a strong mode-dependence of the frequency deviation from the original one (e =0).
Let us denote the deviations by ΔωH ≡ωH −ω and ΔωL ≡ω −ωL  for the modes shifted in the
higher and lower directions, respectively. We can paraphrase the above facts as follows:
ΔωH >ΔωL  for modes 1, 2, 3, and 4, ΔωH ≃ΔωL  for modes 5 and 6, and ΔωH <ΔωL  for
modes 7, 8, and 9, when they are compared at a fixed eccentricity. These facts suggest the
presence of different mode-splitting mechanisms between the modes near the Γ point, the
modes in the middle of the band, and the modes near the band edge. Finally, let us briefly
refer to modes 0 and 10. These modes did not split for all the e values studied here. Howev‐
er, noteworthy here is that mode 0 slightly increases while mode 10 decreases to a certain
extent, according as the eccentricity grows. This fact again suggests the difference in the be‐
havior between the near-Γ-point modes and the near-band-edge modes.
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Figure 5. Frequency positions of all modes in the first band as a function of the eccentricity e for the elliptical PA. Here,
the upper and lower modes split by the PA modification are denoted by open and closed circles, respectively (except
for modes 0 and 10).
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Figure  6  shows the  mode  separation  Δω ≡ωH −ωL  as  a  function  of  the  frequency  posi‐
tion  of  the  mode,  which  is  evaluated  at  a  variety  of  the  PA  eccentricity  values.  The  e
value for each curve is given in the caption of Fig. 6. As mentioned before, modes 0 and
10 have no split modes. What is intriguing here is that the separation Δω  is not a mono‐
tonic function of the mode frequency:  it  becomes more prominent as they approach the
bottom or  the  top of  the  band and moreover  exhibits  a  minimum at  the  middle  of  the
band. When we look at Fig. 6 precisely, the above phenomena are found to occur more
pronouncedly for a slightly deformed PA: see, e.g.,  the results for e =0.243,  in which the
ratio of Δω  between mode 1 and mode 5 reaches as high as 1.7×105. On the other hand,
in  the  extremely  deformed  structures,  we  find  no  significant  mode  dependence  of  Δω
though  these  modes  have  larger  frequency  splittings.  This  kind  of  phenomena  has  not
been observed in  the  finite-sized optical  resonators  and even in  the  similar  mode-split‐
ting phenomena [22-24] referred to in Sec. 1 either.
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Figure 6. Relations between the split-modes separation Δω and the mode frequency position for several eccentricity
values. Here, the e value ranges from 0, 0.243, 0.436, 0.558, 0.661, 0.714, 0.777, 0.866, 0.916, 0.954, and 0.968, for the
curves displayed from bottom to top, respectively.

4.2. Light intensity distributions

The results mentioned in Sec. 4.1 have prompted us to investigate the light field distribu‐
tions for these modes. Hereafter, we focus on the PA with e =0.866 and modes 2, 5, and 9,
which have been selected as the optical modes located near the Γ point, in the middle of the
band, and near the band edge, respectively. We denote, in what follows, the higher and low‐
er modes split as nH and nL, respectively, for mode n.
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Figure 7 shows the light intensity distributions for (a) mode 2L with θi =0 ,  (b) mode 2L

with θi =90 , (c) mode 2H with θi =0 , and (d) mode 2H with θi =90 . Here, θi  is the inci‐
dent angle of the plane wave of light. The rod array of the PA is also displayed together
with  the  distributions  in  Fig.  7.  Here,  the  light  intensity  increases  in  the  order  blue,
white,  yellow,  red,  and  black.  Since  our  calculation  is  based  on  the  scattering-theoretic
method  [6],  the  incident  plane  wave  is  included  in  the  distributions  as  a  matter  of
course. As shown in Fig. 7, these modes have four nodes and loops along the rod chain
of  the  PA and show the  weak light  confinement  because  of  their  shorter  lifetimes  (see
Fig. 4). We find these modes to be excited by the irradiation of light from any directions
including 0 and 90  shown in Fig. 7, although the maximum intensity of light excited in
the  PA somewhat  differs  depending  on  the  directions  of  incidence.  Since  its  difference
reaches only a few times,  however,  we may conclude that  there is  no preference in the
irradiation direction for their excitation in this case. This fact presents a great contrast to
the band-edge modes as shown later (Fig. 8). Although modes 2H and 2L are thus excit‐
ed by light with any incidence directions, their light distributions depend entirely on the
irradiation  direction,  as  shown  in  Fig.  7.  In  addition,  the  oblique  incidence  with,  e.g.,
θi =45  creates  light  distributions  like  those  obtained by rotating Figs.  7  (a)  and 7(c)  by

45 .  In  other  words,  their  wave  functions  remain  uncertain  for  the  unirradiated  PAs.
This fact is  suggestive of the similarity to the electronic mode in an atom. Once the PA
is irradiated by a plane wave of light, however, their wave functions are uniquely deter‐
mined as follows:  the incident wave selects  their  wave functions in such a manner that
it  can excite the eigen modes based on the symmetry matching between them. The irra‐
diation direction thus works  as  the  quantization axis  in  the  quantum theory.  When we
look at Fig. 7 in more detail,  we find that most light is focused around the downstream
side of the PA chain for mode 2L. For mode 2H, on the other hand, we recognize light
staying around the upstream side of the PA chain though some light is still  around the
downstream side.  The  massive  flow of  the  incident  beam  generally  tends  to  cause  the
light distribution to be more highlighted at the downstream side [20], which could corre‐
spond  to  an  energetically  more  stable  state.  Taking  this  circumstance  into  account,  we
may come to a reasonable conclusion that modes 2L and 2H, respectively—energetically
stable and unstable states—concentrate around the downstream and upstream sides. This
is true for all incident angles and all other modes near the Γ  point. We thus have made
clear  the  difference  between the  light  fields  for  the  modes—located near  the  bottom of
the band—that are split by the modification of the PA structure.

Next, we display the results for the modes near the band edge as a matter of convenience for
explanation. Figure 8 shows the light intensity distributions for (a) mode 9L with θi =0 , (b)

mode 9L with θi =90 , (c) mode 9H with θi =0 , and (d) mode 9H with θi =90 . As can be seen
in Figs. 8(a) and 8(d), these modes have 18 nodes and loops along the rod chain of the PA
and exhibit somewhat strong light confinement because of their relatively long lifetimes (see
Fig. 4). The most striking feature for these modes is found in the pronounced θi-dependence
of their excitation. In fact, as clearly shown in Fig. 8, mode 9L is excited by the irradiation
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with the incident angle 0  whereas it is not by the 90  irradiation. In the similar manner,
mode 9H is excited by the irradiation with the incident angle 90  whereas it is not by the 0
irradiation. A very high value of several hundreds is reached for the ratio of the maximum
intensity of light confined around the rod array between the incident directions causing
(e.g., 90  for mode 9H) and not causing (e.g., 0  for mode 9H) its excitation. These results,
when viewed from another point, demonstrate that mode 9H is excited efficiently by the ir‐
radiation of light that excites mode 9L less efficiently, and vice versa. The same phenomena
are confirmed to occur for all other modes near the band edge for the irradiation from any
directions and even in the slightly modified PA (e =0.243). From these results, we speculate
that these modes are orthogonal to each other since optical mode can be excited only by the
light beam with the same symmetricity as the relevant mode. This fact provides a striking
contrast to the modes near Γ point (see Fig. 7), which are excited by the irradiation with any
incident directions.
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Figure 7. Light intensity distributions for (a) mode 2L with θi = 0∘, (b) mode 2L with θi = 90∘, (c) mode 2H with θi = 0∘,

and (d) mode 2H with θi = 90∘. Here, θi is the incident angle of the plane wave of light. The rod array of the PA is also
displayed together with the distributions. Here, the light intensity increases in the order blue, white, yellow, red, and
black.
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Figure 8. Light intensity distributions for (a) mode 9L with θi = 0∘, (b) mode 9L with θi = 90∘, (c) mode 9H with θi = 0∘,

and (d) mode 9H with θi = 90∘.

Finally, we briefly mention the behavior of the modes in the middle of the band. Figure 9
shows the light intensity distributions for (a) mode 5L with θi =0 , (b) mode 5L with θi =90 ,

(c) mode 5H with θi =0 , and (d) mode 5H with θi =90 . These modes have 10 nodes and
loops along the rod chain of the PA. In contrast to modes 2L and 2H mentioned before, these
modes have no pronounced concentration of the intensity distribution on the upstream or
downstream sides of the PA. Moreover, they exhibit no irradiation-direction dependence of
the excitation, which has been detected for modes 9L and 9H. These modes are thus known
to have the characteristics that are intermediate between the near-Γ-point modes and the
near band-edge modes.

4.3. Discussion

Let us discuss the creation of eigen modes and their splitting by the structural modification
of the PA resonator. For this purpose, we simplify the discussion by regarding the closed
q1D chain as a closed pure-1D system with the position variable x along the circumference.
The periodic boundary condition can be applied to this system exactly for its closed struc‐
ture, and the Bloch theorem for the L-periodicity of the PA. We thus obtain the optical
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modes specified by the wave number kn = g(n / 20) for the wave propagating along the chain
with 20 rods, where g =2π / L  is the fundamental vector in the reciprocal space. Here, n
ranges over –9,…, –1, 0, +1,…, +9, and +10, creating 20 modes. Note that n= –10 is excluded
since it is identical to n= +10 in the reciprocal space. The modes with n are thus known to be
degenerate with those with –n for n=1, 2,…, 9 and their wave functions are the complex con‐
jugate of each other, which propagate in the opposite directions with the wave numbers +kn

and −kn, respectively. Moreover, we understand that the lowest mode 0 and the band-edge
mode 10 are not degenerate: here, we note in passing that the band-edge mode is doubly
degenerate for the PA with the odd-numbered rods, e.g., 21 rods.

When we look at Figs. 4-6 together with the above considerations, it is not unusual for
modes 0 and 10 to remain single under any perturbations given to the structure because of
their nondegeneracy. As for the other modes (n=1, 2,…, 9), it is reasonable to consider that
their degeneracy is lifted by the modification of the PA structure. If we apply the group
theory to this phenomenon straightforwardly, it may be said that the degeneracy lifting is
caused by the reduction of the rotational symmetry in the whole PA structure. Although this
is an elementary but important interpretation for these degeneracy-lifting phenomena, we
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Figure 9. Light intensity distributions for (a) mode 5L with θi = 0∘, (b) mode 5L with θi = 90∘, (c) mode 5H with θi = 0∘,

and (d) mode 5H with θi = 90∘.
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here refer to another perspective. Under the assumption to regard the PA as a very long
closed 1D structure—it is actually possible as mentioned before, the waves propagating in
the opposite directions (+kn and −kn) ought to split their frequency only in the presence of
some one-way (asymmetric) perturbation along the chain. According to this perspective,
these modes should not split by any complicated deformation of the PA structure. This ten‐
dency will be magnified in the PA with a larger number of rods, because such a PA—when
we focus on its local part—is equivalent to an isolated string of 1D array: no mode-splittings
would occur particularly in the extremely large PA (with the infinite number of rods). The
PA with a smaller number of rods, on the other hand, will lift the mode degeneracy more
easily by the shape modification, since such a PA can no more be regarded as an isolated
string of 1D array for the smallness of the whole PA. Actually, we confirmed that the mode
splitting Δω is a rapidly decreasing function of the rod number N: we obtained 0.0097,
0.0060, and 0.0036 for N=10, 20, and 50, respectively, for, e.g., mode 1 at e =0.776. We thus
recognize that it is important to take into account the q1D feature of the closed PA structure
as well as to consider it from the group-theoretic standpoint. This presents a great contrast
to the similar phenomena for the modes in the 2D or 3D structures, for which the group-
theoretic considerations would suffice. Next, we would like to refer to the unusual Δω −n
relation in Fig. 4. It is interesting to note that this n-dependence of Δω is very different from
the Stark effect [23] of the Hydrogen atom for which the splitting width varies simply like
Δω∝n 2. For the modes of smaller n, light is loosely bound around the PA because of their
shorter lifetime, which ought to render its intensity distributions more sensitive to the PA
modification. The modes near the band edge, on the other hand, have the lifetime that is
barely retained very long in a fixed (symmetric) PA structure. This implies that their life is
vulnerable even to a slight perturbation to the structure and hence its abrupt reduction may
cause marked splittings of degenerate modes.

As mentioned on the light field distributions in Sec. 4.2, the structurally deformed PAs have
a variety of optical responses. In particular, the band-edge modes (e.g., modes 9H and 9L)
exhibit a strong anisotropy of excitation. Moreover, it should be emphasized that this aniso‐
tropy is very sensitive to the modification of the structure, i.e., it occurs even under a slight
modification of the structure. This implies that optical excitations can be controlled by the
mechanical deformation of the structure, which could have a potential to be exploited as
high-function devices such as opto-mechanical devices [28]. We therefore believe that the
present results will find a number of valuable applications as very high-Q resonators in the
state-of-the-art technologies for the optical information systems, which combine the me‐
chanical forces, the electronic phenomena, and the optical processes.

5. Laser oscillations

Because of the scaling rule that holds in our calculation in a similar manner to in the PCs, ω,
τ and Ka

" values normalized in the units of 2πc / L , L / c and 2π / L  respectively are deter‐

mined by f  (neither d nor L). We here use the ω, τ and Ka
" values thus normalized.
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Figure 10. Relation between the threshold amplitude gain K ″
am and the inverse photon-lifetime τm

−1 for lasing modes.
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am and τm are normalized in the units of 2π / L  and L / c, respectively. The closed circles show the results for the

band-edge modes near the top of the first band of the 2D PC resonator with 53 rods made of the same material as the
rods in the present atoll structure (GaAs). See also Sections 2.2 and 2.3.

We studied the characteristics of a photonic atoll as a laser oscillator by assuming that every
rod has the same optical amplitude gain Ka

". The method mentioned in Sec. 2.3 determines

the threshold amplitude gain Kam
"  for laser oscillation. In this calculation, we did not take

into account absorption and other possible losses in order to isolate the effects inherent to
the resonator’s geometry. Some modes did not laser-oscillate even when Ka

" was very high
(they were shown in Fig. 1 by dotted lines, see also Sec. 2.3). Here, we therefore consider
only lasing modes (solid lines in Fig. 1). Figure 10 shows the relation between the threshold
amplitude gain Kam

"  thus obtained and the inverse lifetime τm
−1 for lasing modes. These

points are seen to line up with a slope of 45  on a log-log plot. The inverse proportionality
between Kam

"  and τm values is reasonable since the increased photon lifetime makes light
stay in the resonator for a longer time and drives the laser to oscillate at lower optical gain.
Figure 10 may be the first numerical verification of this kind of relation for the photonic-
atoll resonator made of closed array of rods, though this kind of relation was also shown for
a simple 1D resonator comprising a uniform medium sandwiched between two clear-cut
mirrors [4]. The closed circles in this figure also show the results for the band-edge modes
near the top of the first band of a 2D PC made of 53 GaAs rods [6]. When we compare the
results from the two structures, the threshold gain values obtained for the PC are pessimisti‐
cally higher than those for the atoll. In other words, laser oscillations with extremely low
thresholds can be obtained by using our atoll structures. Noteworthy here is that the two
resonators lead to very different results despite the fact that they contain a similar number
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of rods and that extended modes are responsible for laser oscillations in both resonators.
These results again confirm the superiority of the present structure over other PC-based
structures.

6. Conclusion

We have theoretically demonstrated that very high Q factors and resultant very long photon
lifetimes can be achieved by using the closed periodic array of microstructures, which we
call a photonic-atoll (PA) resonator. Although other possible losses of light remain to be con‐
sidered before this structure is put to practical use, the results we obtained suggest that it
would be an excellent structure for confining light. In particular, the fact that it does not re‐
quire a large size to achieve a strong light confinement will prove a great advantage over
other ways of light confinement when it is incorporated into optical integrated circuits.
Through the investigation for the PAs with a variety of elliptical forms, we found that the
photon lifetime is maximized for the symmetric (or circular) form of the resonator. This
structure deformation was also shown to give rise to the degeneracy lifting for eigen modes:
even a slight deformation created pronounced splitting widths especially for the near-Γ-
point modes and the near-band-edge modes whereas it did not for the modes in the middle
of the band. Moreover, the band-edge modes split were found to exhibit a striking anisotro‐
py of excitations, while other modes did not show any pronounced anisotropy. These mode
splittings should be discussed taking into account the q1D-dimensionality of the structure as
well as considering it from the group-theoretic standpoint. We have thus clarified the meta‐
morphoses of the eigen modes split by the modification of the PA structures. Finally, we
demonstrated the PA-laser oscillations with very low thresholds, which are much lower
than those for the PC band edge lasers. These results would provide much information to
understand the relevant resonators more deeply, which we believe will also be possibly ex‐
ploited as a very high-Q resonator in the future optical information processing systems.
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