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1. Introduction

There are few hematopoietic stem cells (HSCs) in the bone marrow of adult mammals; these
are required throughout life to replenish the short-lived mature blood cells of specific hema‐
topoietic lineages. HSCs have several biological functions including homeostasis control, re‐
generation, immune function and response to microorganisms and inflammation.

The regenerative potential of human HSCs is best illustrated by successful stem cell trans‐
plantation in patients with a variety of genetic disorders, acquired states of bone marrow
failure and cancer [1].

The first bone marrow transplantation took place in 1949 with studies that demonstrated the
protection provided to the spleen of mice given a dose of irradiation that would otherwise
be lethal. In 1960, studies in dogs provided important information about bone marrow
transplantation in exogamic species, results that are applicable to humans. It was demon‐
strated that dogs could bear 2-3 times the lethal dose of total body irradiation with an infu‐
sion of bone marrow cells collected and cryopreserved before irradiation [2,3].

At the same time that animal experiments were being carried out, a number of attempts
were made to treat humans with chemotherapy or irradiation associated with bone mar‐
row infusions [4].

The first  successful  allogeneic bone marrow graft  was achieved in a patient with leuke‐
mia, although the patient died due to the complications of chronic graft-versus-host dis‐
ease (GVHD) [5].
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Currently, bone marrow transplantation is the treatment of choice for many hematologic
diseases with the course of transplant being dependent on several factors, including the
stage of the disease at transplant, the conditioning regimen, source of cells, genetic factors,
and the development of GVHD. The goal to this chapter is to show some genetic factors that
have a strong influence on hematopoietic stem cell transplantation (HSCT) outcomes, such
as the genes of the human leukocyte antigen (HLA) system located in the major histocom‐
patibility complex (MHC), and other genetic factors, including non-HLA genes that seem to
influence transplant outcomes and that are being studied to optimize donor selection. Non-
HLA genes mainly include killer cell immunoglobulin-like receptor (KIR) genes, cytokine
genes and receptors, MHC class I-related chain (MIC) genes and human minor histocompat‐
ibility antigens (mHAgs).

2. HLA immunogenetics and its influence on hematopoietic stem cell
transplantation

Histocompatibility

The immune system is the result of germline selection and thymic education (self vs. non-
self) through contact with pathogenic life and is thus a characteristic that is unique to each
individual and specific to a given point in time; like all other physiological systems, the im‐
mune system is affected by disease, stress, trauma and environmental events [6].

An important cell lineage within this system is represented by T lymphocytes. The main
functions of T lymphocytes are defense against intracellular microorganisms and the activa‐
tion of other cells including macrophages and B lymphocytes.

T lymphocytes are capable of interacting with other cells because the antigen receptors on T
cells recognize antigens that are presented by other cells; presentation is achieved by speci‐
alized proteins that are encoded by genes in a MHC locus [7]. The MHC system has the
greatest diversity of all functional genetic systems at the population level [6]. The MHC gly‐
coprotein family, also referred to as HLAs, presents endogenous and exogenous antigens to
T lymphocytes for recognition and response.

This system was discovered in mice by Peter Gorer and George Snell.  These researchers
discovered  an  antigen  which  was  involved  in  tumour  rejection  and  subsequently  they
showed that  similar  antigens in other strains of  mice were probably alleles  of  the same
“tumour-resistant” gene [8].

Experiments show that transplants of tissue between animals from the same population (en‐
dogamic) were successful, while the consequence of transplants between animals from dif‐
ferent populations (exogamous) was the rejection of tissue. The result of these studies was
the discovery of MHC genes which are capable of recognizing foreign antigens and present‐
ing them to T lymphocytes.

Antibodies induced by transfusions or pregnancy and which react with leukocyte antigens
were first recognized in 1954. Studies showed that kidney transplant patients who suffered
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rejection have circulating antibodies reactive to antigens present in leukocytes; as these anti‐
gens are expressed on leukocytes they were named HLAs [9,7].

Many studies were conducted over the next few years to understand and characterize the
immunogenicity of these antigens.

Structure and function

The MHC, contained within 4.2 Mbp of DNA on the short arm of chromosome 6 at 6p21.3,
has more than 200 genes, most of which have functions related to immunity. It is divided
into three main regions [10].

The HLA-A, -B and -C classic genes and -E, -F and -G non-classic genes, as well as other
genes and pseudogenes are located in the HLA Class I region near to the telomere. The HLA
Class II region, near to the centromere, contains the HLA-DR, -DQ and -DP genes. The
HLA-DR sub-region, includes the DRA gene that encodes the alpha chain is non-polymor‐
phic and can bind with any beta chain to encode for DRB genes [11].

Located between class I and II regions, the class III region has C2, C4A, C4B and B factor,
that encode complement proteins and the tumour necrosis factor (TNF) [10,11].

HLA molecules are polymorphic membrane glycoproteins found on the surface of nearly
all cells. Multiple genetic loci within the MHC encode these proteins with each individu‐
al  simultaneously  expressing  several  polymorphic  forms from a  large  pool  of  alleles  in
the  population.  The  overall  structure  of  HLA  class  I  and  class  II  molecules  is  similar,
with most of the polymorphisms found in the peptide binding groove (PBG) where anti‐
gens are recognized [12].

Class I molecules are made up of one heavy chain (45kD) encoded within the MHC and a
light chain called β2- microglobulin (12kD) whose gene is on chromosome 15. Class II mole‐
cules consist of one α (34kD) and one β chain (30kD) both within the MHC [10]

The class I heavy chain has three domains with the membrane-distal α1 and α2 domains be‐
ing polymorphic. Within these domains, polymorphisms concentrate in three regions: posi‐
tions 62 to 83, 92 to 121, and 135 to 157. These areas are called hypervariable regions. The
two polymorphic domains are encoded by exons 2 and 3 of the class I gene. Diversity in
these domains is very important because these two domains form the antigen binding cleft
or PBG of MHC class I molecules [13,14].

The sides of the antigen binding cleft are formed by α1 and α2, while the floor of the cleft is
comprised of eight anti-parallel β sheets. The antigenic peptides of eight to ten amino acids
(typically nonamers) bind to the cleft with low specificity but high stability. The α3 domain
contains a conserved seven amino acid loop (positions 223 to 229) which serves as a binding
site for CD8 [12,15-17].

Class II molecules consist of two transmembrane glycoproteins, the α and β chains which
are restricted to cells of the immune system (e.g. B cells, dendritic cells - DCs), but can be
induced by other cell types during immune response. The PBG of class II molecules has
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open ends which allow the peptide to extend beyond the groove at both ends and therefore
to be longer (12-24 amino acids). The peptide is presented to CD4 T cells [10].

Generally both the α and β chains in class II molecules are polymorphic. In these chains, the
α1 and β1 domains are of the PBG and therefore the diversity is found mainly in these do‐
mains. These domains are encoded by exon 2 of their class II A or B genes and the hyper‐
variable regions tend to be found in the walls of the groove [16].

T-cell activation occurs following recognition of peptide/MHC complexes on an antigen-pre‐
senting cell (APC). T-cell activation can be viewed as a series of intertwined steps, ultimately
resulting in the ability to secrete cytokines, replicate and perform various effector functions.
During antigen presentation, CD4 and CD8 are intimately associated with the T-cell receptor
and bind to the MHC molecule. Besides this interaction between T cells and APCs, ligation
between counter-receptors on the T cell and accessory molecules on the APC is required as
additional signals for T-cell activation [18].

Haplotype, Linkage Disequilibrium and Expression of HLA genes

HLA genes are transmitted following Mendel’s  law of segregation,  so the allelic  variant
is codominantly expressed. The set of alleles present in the HLA loci located in a single
chromosome of  a  chromosome pair  is  called a  haplotype.  The probability  that  two sib‐
lings having the same HLA haplotype is 25%; in this situation, it is considered that they
are matching [11].

Moreover, a fact called linkage disequilibrium occurs in HLA genes. This means that certain
alleles occur together at a higher frequency than would normally be expected by chance (ga‐
metic association). Consequently, some combinations of alleles appear more or less com‐
monly in a population than would normally be expected from a random formation of
haplotypes from alleles based on their frequencies [10].

For example, if a determined population has genic frequencies of 14% and 9% for HLA-A*01
and HLA-B*08, respectively, the expected frequency of a haplotype with this combination
would be 1.26% (0.14 x 0.09). However, the true frequency may be 8.8% in this population,
that is, higher than expected, characterizing a positive linkage disequilibrium [11].

Examples can be seen in studies of linkage disequilibrium related to bone marrow donation.
A strong linkage disequilibrium has been reported for HLA-B*39:13 with the DRB1*04:02,
DRB1*08:07 and A*31:12 haplotypes in the Brazilian population [19].

Other  reports  for  unrelated  donors  involved  HLA-A*01  and  HLA-B*08,  HLA-A*03  and
HLA-B*35  and  HLA-A*02  and  HLA-B*12.  This  type  of  results  suggests  that  these  data
have clinical  application,  such as  in  the  selection of  unrelated donors  for  bone marrow
transplantation [20].

HLA compatibility of donors

The genetic origin of patients for whom bone marrow transplantation has been proposed, is
a key determinant in the possibility of identifying compatible unrelated and sibling donors
and consequently in the possibility of performing the procedure.

Innovations in Stem Cell Transplantation6



The strict HLA compatibility that is required for bone marrow transplantation increases the
difficulties in finding donors. A patient has one chance in four of having a compatible donor
among his brothers and sisters. This chance becomes one in a million, on average, in unrelat‐
ed donors [21].

Different methods are used to identify HLA antigens. In the past, HLA antigens for bone
marrow transplantation were identified by serological  methods based in mixed lympho‐
cyte  culture.  However  this  technique  is  not  as  sensitive  as  molecular  biology  methods
which can define HLA antigens at the allele level.

In molecular analysis,  HLA genes can be identified by polymerase chain reaction (PCR)
using  the  Specific  Sequence  Primers  (SSP),  Specific  Sequence  Oligonucleotides  (SSO)  or
sequencing techniques. These methods are the most commonly used due to its specificity
and  sensibility  that  can  define  HLA  genes  only  (low  resolution)  or  genes  and  alleles
(high resolution).

These results are very important in bone marrow transplantation in order to choose the
best  matched  donor.  The  probability  of  finding  a  well-matched  unrelated  donor  is  im‐
proved if high resolution typing is available for the patient prior to the search. Therefore
typing must ideally be done by DNA methods to avoid hidden mismatches, particularly
in  the  case  of  antigenically  silent  alleles,  and  should  include  the  HLA-A,  -B,  -C  and  -
DRB1 genes at least [10].

Matched or mismatched donors

There are many studies which try to show that better outcomes in bone marrow transplanta‐
tion are linked to full donor matches. In 2004 the National Marrow Donor Program (NMDP)
published the results on the outcomes of 1874 unrelated donor transplants. This study
showed a highly significant survival advantage for 8/8 matched pairs compared to those
with one or two mismatches [22].

Moreover, the study of the Center for International Blood and Marrow Transplant Research
(CIBMTR) examined clinical outcomes in recipients of both sibling and unrelated donors for
chronic myeloid leukemia (CML) in the first chronic phase. There were 1052 recipients of
unrelated transplants; 531 were matched for 8/8 alleles, 252 mismatched for 1 (7/8) allele and
269 mismatched for multiple alleles [22]. The overall survival (OS) at 5 years was 55% for 8/8
matched transplant recipients, 40% for those with a 7/8 matched graft and 21-34% for those
with various multiple mismatched combinations. The recipients of stem cell matched related
donors, predominantly siblings, have lower risk of infections, of the reactivation of cytome‐
galovirus and of mortality than the latter group. Additionally, T-cell immunity reconstitu‐
tion is delayed in mismatched sibling donors and the unrelated group [23, 24].

Graft rejection, GVHD and delayed immune recovery, the major obstacles to successful allo‐
geneic HSCT, are more severe with unrelated donors than in HLA-identical sibling trans‐
plants. Because identical donors are available to only about 30% of patients, the
identification of a suitable unrelated donor by better, more precise HLA matching of donor
and recipient is necessary [25].
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Studies have shown strong negative effects of HLA mismatching of the HLA-A, -B, -C, -
DRB1 or -DQB1 loci on OS. The presence of multiple mismatches was worse for survival
and for severe acute GVHD (grade III-IV). Other trials analyzed the incidence of chronic
GVHD in patients who survived more than 100 days after transplantation. It became evident
that a HLA-A/B mismatch induces a significantly higher incidence of chronic GVHD and
lower OS rate. The same was not confirmed for a HLA-DQ/DR mismatch that showed no
association with the occurrence of chronic GVHD [25;26].

High resolution HLA typing can help in the characterization of donors; there are differences
in the outcomes of bone marrow transplantation if the mismatching of donors was defined
by low or high resolution. Studies show that high resolution matching of HLA-A, -B, -C and
-DRB1 between volunteer HSC donors and recipients is associated with a better survival.
Additionally, single HLA-B and -C mismatches appear to be better tolerated than single
HLA-A or -DRB1 mismatches [27].

Other studies affirm that survival after unrelated HSCT for severe acquired aplastic anemia
has improved significantly over the last 15 years mainly due to better HLA matching at the
allelic level [28].

HLA and bone marrow transplantation

The outcome of transplantation using unrelated donors is highly influenced by HLA match‐
ing between the donor and recipient. Two particular individuals always differ in their ge‐
nome structure in respect to minor histocompatibility antigens, killer cell immunoglobulin-
like receptor (KIR) genes and several other groups of genes.

However, the most potent transplantation antigens are the HLAs encoded by genes located
in the MHC. HLA-C is a class I gene locus, yet its importance in transplantation has been
less validated than the HLA-A and B loci [10].

However, studies that analyzed structure and peptide-binding for HLA-C, show that diver‐
gence in peptide-binding specificity may be a contributor to the risk of mortality after trans‐
plantation perhaps due to the alloreactivity of donor T cells towards peptides presented by
patient HLA molecules but not by donor antigens presenting cells during T-cell develop‐
ment in the thymus [29].

There are two main reasons for the HLA antibodies to result in graft failure and GVHD. The
first is the rapid increase in the number of HLA-mismatched HSCT, including in cord blood
transplantation, haploidentical HSCT and unrelated HSCT. The second is the technical ad‐
vance in the methods of HLA Ab testing, which have attained a rapid, accurate and objec‐
tive identification and qualification of specific HLA antibodies [30].

HLA, sibling and unrelated hematopoietic stem cell transplantation

Matched or mismatched

The use of stem cells from HLA-matched unrelated volunteer donors is an accepted option
for patients without a matching sibling donor providing comparable outcomes to matched
sibling donor HSCT. Many studies have been performed to compare the results between sib‐
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ling and unrelated transplantation. Other studies show single results about sibling and un‐
related transplantation, the importance of HLA compatibility and what effect HLA
mismatches may have on GVHD, graft failure and relapse.

Research has shown that HLA class II  DRB1*15 (*15:01 and *15:02) are important in the
outcome to sibling matched transplants for patients who have aplastic anemia. In multi‐
variate analysis, the secondary graft failure rate at two years was lower in patients who
were HLA-DR15+[31].

Recent studies in a Chinese population show that the outcome of unrelated donor transplan‐
tation matched for HLA-A, HLA-B and HLA-DRB1 but unknown for HLA-C antigens was
associated with a significant risk of mortality and that this risk was higher with HLA-A, B or
DRB1 mismatches compared to an 8/8 match [32].

Other studies confirm that there is no association between HLA mismatching of unrelated
donors with the cumulative incidence of grade II-IV or grade III-IV acute GVHD. Similarly,
there was no association with chronic GVHD, but the incidence of graft failure was higher in
HLA-mismatched unrelated transplants [33]. Trials highlight the importance of defining
HLA by high resolution techniques to improve the outcomes in pediatric transplants using
unrelated donors. The patients that suffered graft failure were mismatched for HLA-C by a
high resolution technique [34].

However, studies show that in unrelated transplantations, the outcome is improved when
the patients are HLA-C and HLA-DPB1 mismatched in some combinations, thus resulting in
lower risk of relapse. Probably some combinations increase the graft-versus-leukemia (GvL)
effect [35].

One study analyzed the impact  of  HLA class  I  and II  high-resolution matching of  1874
unrelated donors and found that HLA-C mismatching was most strongly associated with
graft  failure,  HLA-A  mismatching  was  associated  with  significantly  increased  risk  of
grade III/IV acute and chronic GVHD and mismatches of HLA-A, B, C and DR were as‐
sociated with death [36].

HLA and Haploidentical HSCT

When no matched sibling or unrelated donor exists, the potential curative option is haplo-
HSCT, that is, transplant with a donor who shares only one haplotype with the recipient.
Haploidentical stem cell transplants are increasingly used in the treatment of malignancies,
and immune and hematologic diseases. As multiple mismatched related donors may be
available for transplantation, it is important to select a donor that is most likely to produce a
successful outcome [37].

There are studies that correlate the HLA-B mismatch effect in haplo-HSCT. Studies analyzed
the impact of HLA-A, -B, -DRB1, -DRB3, -DRB4 and -DRB5 and demonstrated that a HLA-B
mismatch not only has a significant effect on GVHD and transplant-related mortality but
was also associated with reduced OS and leukemia-free-survival [38].

There is an important point in haploidentical transplants that should be considered: the con‐
ditioning regimen. Many protocols have been performed to improve the outcomes of trans‐
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plantation and to minimize the effect of HLA incompatibility. For example, studies on
nonmyeloablative HLA-haploidentical bone marrow transplantation with high-dose post-
transplant cyclophosphamide. The results showed that HLA mismatch was not associated
with relapse or GVHD [39].

In bone marrow transplantation with mismatch of the HLA-DRB1 antigen in the GVHD di‐
rection and two or more HLA Class I (HLA-A, -B and -Cw) mismatches in either direction
were found to be associated with decreased incidences of relapse without an increased inci‐
dence in nonmyeloablative conditioning with post-transplant cyclophosphamide [40].

HLA and cord blood transplantation

The use of umbilical cord blood transplantation (UCBT) for patients with hematological ma‐
lignances or hereditary diseases is becoming increasingly more common. In October 2006,
the International NETCORD Foundation maintained an inventory of more than 124,000 um‐
bilical cord blood (UCB) units and documented more than 4900 unrelated UCBT [41]. Sever‐
al studies have shown that the number of cells is the most important factor for engraftment,
while some degree of HLA mismatch is acceptable.

For example, studies show that unrelated UCBT is comparable to a 1-antigen mismatch at
the HLA-A, HLA-B or HLA-DR loci in respect to GVHD, relapse and OS [42]. For other
studies on UCBT, HLA-A and -B are defined by low-resolution and HLA-DRB1 by high-res‐
olution, with minimum compatibility of 4/6. It is important to apply the rules of equivalence
of serological groups for HLA-B*14, -B*15, -B*40, and -B*50 as determined by molecular
methods [43].

Clinical comparison studies of UCBT and HLA-A, -B and -DRB1 6/6 allele-matched bone
marrow transplantation or single mismatched for leukemia from unrelated donors in adult
recipients showed similar results. There was no significant increase of relapse rates among
UCB recipients when compared with DRB1 single-mismatched bone marrow recipients. The
OS for UCB recipients was similar too when compared with DRB1 single-mismatched bone
marrow recipients [44].

Korean pediatric studies also show that the results of UCBT are promising. One study com‐
pared the outcomes of acute leukemia children submitted to transplantation using UCB,
bone marrow and peripheral blood stem cells from HLA-matched or unrelated donors. The
results confirm that survival after UCBT was similar to survival after matched related donor
and unrelated donor transplantations. In conclusion, for patients lacking an HLA matched
donor, the use of UCB is a suitable alternative [45].

Additionally,  studies  show  that  recipients  of  UCB  transplants  from  HLA-identical  sib‐
lings have lower incidences of acute and chronic GVHD than recipients of bone marrow
transplants  from HLA-identical  siblings [46].  Hence,  studies  on the distribution of  HLA
alleles and haplotypes in different ethnic populations are also important to find a suita‐
ble unrelated cord blood donor for  a patient.  One study investigated the frequencies of
alleles and HLA-A, -B and -DRB1 haplotypes with high-resolution typing data in a total
of  710  Taiwanese  UCB  units  [47].  The  most  common  alleles  found  for  HLA-A  were
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A*11:01,  A*24:02,  A*33:03  and  A*02:01;  for  HLA-B  they  were  B*40:01,  B*46:01,  B*58:01
and  B*13:01  and  for  DRB1  they  were  DRB1*09:01,  DRB1*12:02,  DRB1*15:01  and
DRB1*03:01. Moreover, the five most frequently found haplotypes were A*11:01, B*35:05,
DRB1*11:02; A*24:07, B*35:05, DRB1*12:02; A*01:01, B*5701, DRB1*09:01; A*11:01, B*40:01,
DRB1*09:01  and A*11:01,  B*46:01,  DRB1*09:01.  These  haplotypes  are  common in  Taiwa‐
nese and Asian American populations [47].

Ethnic studies carried out in London showed that the most common alleles in 1500 UCB
units were HLA-A*34, A*36, A*80, HLA-B*75, B*61, B*53, B*78, B*81 and B*82. This kind of
study should help to increase the chances of obtaining acceptably HLA-matched donors for
patients from ethnic minorities [48].

3. Non-HLA immunogenetics and its influence on hematopoietic stem
cell transplantation

Natural killer cells and Killer immunoglobulin-like receptors

Human natural killer (NK) cells are components of the innate immune response that com‐
prise approximately 10-15% of all peripheral blood lymphocytes and play a major role in im‐
munity against viral infections and tumors [49-51]. Years of intensive research in mice and
humans have shown a special importance of NK cells in the hematological diseases and in
mediating favorable HSCT outcomes [52-57]. NK cells were first identified by their in vitro
capacity to kill tumor cells without the requirement of prior immune sensitization of the
host [58-59].

The function of NK cells is regulated by a diverse array of cell-surface receptors includ‐
ing KIR,  NKG2D and DNAM-1.  The KIR receptors,  in  the setting of  HSCT,  seem to be
the most important NK cell receptor family. These receptors can either inhibit or activate
NK cells with the difference between inhibitory and activating KIRs lying mainly in their
intracytoplasmic tail.  Inhibitory KIRs have long cytoplasmic tails  (KIR-L)  and activating
KIRs  have  short  cytoplasmic  tails  (KIR-S)  with  KIRs  having  two  or  three  Ig-domains
(KIR2D or KIR3D) [60-61].

In humans, the gene family encoding the KIR is located in the leukocyte receptor complex
(LRC) on chromosome 19q13.4. To date, 15 genes have been well characterized, of which 9
are NK cell inhibitors (KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL4, KIR2DL5A, KIR2DL5B,
KIR3DL1, KIR3DL2 and KIR3DL3), 6 are activating (KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4,
KIR2DS5 and KIR3DS1), and 2 are pseudogenes (KIR2DP1 and KIR3DP1) [60-61]. An excep‐
tion is KIR2DL4 that although it has long tail it has an amino acid in the transmembrane re‐
gion that allows an association with an accessory protein, FceRI-g, which confers an
activating signal [62].

Individuals differ in the number and type of inherited KIR genes and the KIR haplotypes are
divided into two groups, A and B. The A or AA haplotype has a fixed number of genes, all
of which are inhibitory except for one activating gene (KIR2DS4). Haplotypes with addition‐
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al activating KIR genes (KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS5, KIR3DS1) or with KIR2DL5
are either AB or BB and are grouped together as KIR Bx haplotypes. Often, the KIR2DS4
gene is present in a deleted form and is not believed to be expressed at the cell surface. The
“framework genes”, KIR3DL2, KIR3DP1, KIR2DL4, and KIR3DL3, are common to both
groups of haplotypes [60-61, 63].

The KIRs interact with some HLA class I antigens on target cells. HLA-Bw4 and distinct al‐
lotypes of HLA-C (C1 and C2 groups) are the main ligands for most KIRs [64]. HLA-C al‐
leles are classified as C1 or C2 KIR ligand groups, depending on two amino acid positions
encoded in exon 2. HLA-C1 allotypes have serine at position 77 and asparagine at position
80 and are ligands for the KIR2DL2 and KIR2DL3 inhibitory receptors. HLA-C2 allotypes
have asparagine and lysine at positions 77 and 80, respectively and are ligands for the
KIR2DL1 inhibitory receptor and thought to be the ligand for the KIR2DS1 activating recep‐
tor [65-66]. HLA-Bw4 allotypes are characterized by at least 5 different patterns of amino
acids at positions 77 and 80-83 and are ligands for KIR3DL1. Some HLA-A alleles, namely
23:01, 24:02 and 32:01, are also ligands for KIR3DL1 [67-71]. In addition, HLA-A3 and HLA-
A11 are ligands for KIR3DL2; and HLA-A11 and some C1 and C2 allotypes are ligands for
KIR2DS4 [64, 72-74].The KIR gene and respective ligands are listed in Table 1.

KIR FUNCTION LIGAND

KIR2DL1 Inhibitory HLA-C group 2

KIR2DL2 Inhibitory HLA-C group 1

KIR2DL3 Inhibitory HLA-C group 1

KIR2DL4 Inhibitory, activating HLA-G

KIR2DL5 Inhibitory Unknown

KIR3DL1 Inhibitory HLA-B Bw4 and some HLA-A Bw4*

KIR3DL2 Inhibitory HLA-A3 and HLA-A11

KIR2DS1 Activating HLA-C group 2

KIR2DS2 Activating Unknown

KIR2DS3 Activating Unknown

KIR2DS4 Activating HLA-A11 and subsets of HLA-C group 1 and group 2

KIR2DS5 Activating Unknown

KIR3DS1 Activating Unknown

* HLA-A*23:01, HLA-A*24:02 and HLA-A*32:01

Table 1. KIR receptors and their HLA ligands

The mechanism of recognition of a target cell by NK cells differs from others lymphocytes.
[59] The NK cells are able to recognize a reduction or absence of self HLA class I ligands, as
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a form of distinguishing normal cells from target cells: this is the “missing-self recognition”.
It is well established that cancer cells and some infected cells develop various mechanisms
to escape lysis by T cells [75-76]. An effective mechanism is to decrease or remove complete‐
ly the HLA expression. The downregulation of HLA class I expression leads to resistance to
lysis by T lymphocytes but, as a consequence, can lead to a susceptibility to lysis by NK cells
[77-80]. During development, NK cells become licensed or educated by interaction with self-
HLA molecules to maintain tolerance to normal tissues. NK cells that do not express inhibi‐
tory receptors for self are retained in an anergic or hypofunctional state and those which
express inhibitory KIRs for self-HLA ligands are functionally active and thus can sense the
lack of expression of self HLA molecules on target cells which triggers lysis of these cells.
This is thought to be the main mode of action of NK cells [81-86].

Natural killer cell alloreactivity in hematopoietic stem cell transplantation

The clinical significance of missing-self recognition is especially evident in allogeneic HSCT.
In HSCT the NK cell alloreactivity is determined by an analysis of the donor’s KIR gene pro‐
file and by differences in MHC class I genes between the donor and the recipient. This can
be better explained by the presence in the donor of NK cells expressing inhibitory KIRs that
are not engaged by any of the HLA class I alleles present on the receptor [87]. As a conse‐
quence, donor NK cells become uninhibited and may display alloreactivity against mis‐
matched allogeneic targets [81-86].

Furthermore, NK cells are relevant in the setting of HSCT because they are the first lym‐
phoid cell subset to reconstitute after transplantation at a time when the adaptive immune
system is impaired. They have been detected in vivo in recipients within 1 to 3 months after
transplantation and up to 3 years after [88-91].

KIR model studies

Considering: 1) a strong correlation between the presence of KIR genes and their HLA li‐
gands and cytotoxicity and 2) the advent of methods of precise genetic characterization, it is
possible to determine the contributions of the various inhibitory and activating KIR genes in
HSCT [92]. There are several models to define NK alloreactivity by KIR incompatibility or
KIR mismatching, most of which are based on the analysis of KIR and HLA class I alleles. In
the ligand-ligand model, the KIR expression is assumed following HLA typing. In this mod‐
el, KIR ligands in recipients and donors are analyzed and at least one group of donor KIR
ligands must to be absent in the recipient’s KIR ligand repertoire. In the receptor-ligand
model, the KIR genes are typed for the donor and the HLA alleles are analyzed for recipi‐
ents and at least one of the inhibitory KIRs of the donor is not engaged in the recipient’s li‐
gand repertoire. Moreover some studies perform phenotypic analysis of inhibitory KIRs and
CD94/NKG2A in donor NK cells and also functional assays which can provide more infor‐
mation about the degree of alloreactivity of NK cells [87,93-94]. It is difficult to know which
model is the most adequate to select the KIR mismatch donor. Some authors suggest that an
increasing number of receptor-ligand mismatch pairs increase the potency of the anti-leuke‐
mia effect and also suggest that the receptor-ligand model could improve the accuracy of the
prediction of relapse rather than the ligand-ligand model in patients with lymphoid malig‐
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nancies [94]. However, it has not been well established and further studies are needed to
confirm this hypothesis.

In addition, a novel observation emerged that NK cells of maternal donors of HSCT provid‐
ed better protection from leukemia relapse than other related donors [95]. According to the
authors, the better outcome of mother-to-child transplantation may be the result of the con‐
tact of maternal immune cells with the semi-allogeneic placenta during pregnancy. It was
suggested that if further studies confirm the better outcomes of mother donors, it may be
incorporated as a donor selection criterion.

Another interesting aspect was shown in a recent study with patients that received unrelat‐
ed unmanipulated peripheral blood progenitor cells. The authors indicate that four-digit al‐
lele matching of HLA-C may have effects on the HSCT outcome dependent on the presence
of C1 and C2 KIR epitopes in the patients [96] suggesting the importance of analysis of
HLA-C at allele level for donor selection. While there are no common rules to select the best
donor according KIR compatibilities, all the findings must be analyzed.

KIR genes and haploidentical hematopoietic stem cell transplantation

Full-haplotype mismatched (haploidentical) HSCT is an option to treat patients lacking a
matched donor or a suitable UCB unit. In haploidentical HSCT (haplo-HSCT), the T cells
present  on  allogeneic  hematopoietic  grafts  are  important  to  promote  engraftment  and
mediate the GvL effect.  However,  they can also mediate GVHD [97-98].  These T-cell  re‐
sponses can be controlled by an appropriate intensity of immunosuppression by the con‐
ditioning  regimen.  The  T-cell  depletion  of  the  graft  help  prevent  GVHD  but,  as  a
consequence,  T-cell  depleted haplo-HSCT increases the risk of  graft  rejection and leuke‐
mic relapse.  In this  context,  the presence of  NK cell  alloreactivity in the GVH direction
seems to influence the prevention of leukemia relapse and has been investigated in sev‐
eral  preclinical  and  clinical  trials  [89,99-100].  It  has  been  observed  that  KIR-HLA  mis‐
matches  can  promote  clinical  benefits  in  haplo-HSCT  especially  in  patients  with  acute
myeloid leukemia (AML). In the first studies published by Ruggeri et al. [89,99] and the
more recent updates in 2007 [100] appropriate KIR-Ligand incompatibilities were associ‐
ated with a reduction in the risk of relapse of leukemia and graft rejection, and also pro‐
tection  against  GVHD  in  patients  with  AML.  These  results  were  supported  by  animal
models, in which the presence of NK alloreactivity was suggestive of a low incidence of
acute GVHD due to the killing of host APCs, which are critical for inducing donor T-cell
activation [101].  Similarly,  experimental  data  suggest  that  the  engraftment  rate  was  im‐
proved as a result of the lysis of residual host T lymphocytes by alloreactive donor NK
cells  [89,99,101-102]  and also  that  this  contributed  to  the  eradication  of  leukemia  blasts
that escaped from the conditioning regimen. These studies showed very good results and
led to a novel concept of mismatch to search for a transplant donor.  Since then, several
investigations based on KIR mismatching have been carried out with different outcomes.

In a study of patients that received haplo-HSCT with T-cell depletion [94] KIR incompatibili‐
ty (KIR-mismatch) was related to lower relapse rates in children with AML and also in chil‐
dren with acute lymphoid leukemia (ALL). Interesting, in the studies of Ruggeri et al.,
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patients with ALL were not susceptible to KIR-ligand mismatched haplo-HSCT. The differ‐
ent result in these two groups may be related to the fact that Ruggeri et al. studied only
adult patients. On the other hand, another recent study found no impact of KIR mismatch
on children with chemoresistant ALL that received T-cell depleted Haplo-HSCT [103]. In
general, NK cell alloreactivity seems to positively influence patients with myeloid malignan‐
cies and may benefit childhood ALL patients, but further studies are needed to confirm this.

A positive effect of NK cells on the outcome of haplo-HSCT in paedriatic patients was dem‐
onstrated in another study. The authors analyzed 21 children with different hematologic
malignances and found anti-leukemia activity of alloreactive NK cells in most transplanted
patients. They found that the NK cells derived from the donor were capable to selectively
killing C1/C1 target cells, including the patient’s leukemia blasts. Additionally, KIR2DL2/3+
NK cells that co-expressed KIR2DS1 killed C2/C2 leukemic blasts. These data suggest that
the presence of KIR2DS1 in alloreactive NK cells may mediate potent cytotoxicity [91]. In
agreement, in another study, the KIR2DS1 expression in alloreactive NK cells conferred an
advantage in the ability of NK cells to kill C2/C2 or C1/C2 myelomonocytic DCs and T-cell
blasts [104]. Another recent study examined 86 patients with advanced hematologic malig‐
nancies who received nonmyeloablative, HLA-haploidentical HSCT with high-dose, post-
transplantation cyclophosphamide. The inhibitory KIR gene mismatches between donor and
recipient, or KIR haplotype AA transplant recipients of KIR genotype Bx donors, were asso‐
ciated with lower relapse and non-relapse mortality (NRM) and improved OS and event-
free survival [105].

Nevertheless, other studies failed in find any association with KIR incompatibilities in the
GVHD direction [106], or found worse outcomes of transplantation for donors with the po‐
tential to NK alloreactivity [107]. Using the ligand-ligand model in a study of 62 patients
with ALL, AML and CML, the KIR mismatch was associated to considerably lower OS and a
higher incidence of GVHD [107].

KIR genes and unrelated hematopoietic stem cell transplantation

The impact of KIR-ligand mismatching in HSCT using unrelated donors has been associated
with controversial results. Beneficial outcomes have been shown in some studies. Unrelated
HSCT KIR-ligand incompatibility was associated with a reduced incidence of grade III-IV
acute GVHD and a better OS and disease free survival (DFS) in an analysis of 130 patients with
different  hematological  malignances.  The  conditioning  regimen included  anti-thymocyte
globulin (ATG) for T-cell depletion and the association with DFS remained significant even
when patients with myeloid diseases were analyzed separately [108]. KIR-HLA incompatibili‐
ties were also associated with low rates of leukemic relapse in a study of 374 patients with mye‐
loid malignances submitted to T-cell replete unrelated HSCT [109]. In this study, in spite of this
beneficial result, the rates of graft failure were higher and there were no significant differences
in DFS or transplant-related mortality. A large study described an advantage of donor NK al‐
loreactivity; the authors analyzed 1770 patients of several centers and found that the absence of
HLA-C2 or HLA-Bw4 ligands but not mismatches were associated with a decreased risk of re‐
lapse in recipients receiving unmanipulated grafts from unrelated donors [110].
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Although most studies focus on the effect of the lack of inhibitory KIRs by their HLA class I
pair, some studies have shown interesting results about the role of activating KIRs and KIR
genotypes in unrelated HSCT. Certain B haplotype KIR groups have also been found to favora‐
bly affect the outcome after T-cell depleted HLA-identical sibling transplants [111]. In 2009 a
study showed that donor group B haplotypes significantly improve graft survival in AML pa‐
tients submitted to T-replete unrelated HSCT [112]. The same group in a recent report recon‐
firmed the influence of the B haplotype on transplantation outcome. They published a large
study of 1409 unrelated transplants for AML and ALL and analyzed centromeric and telomeric
gene-content motifs in both group A and B KIR haplotypes. They suggest that centromeric and
telomeric motifs present in B haplotypes could promote protection against leukemic relapse, as
well as, improve survival. Moreover, they found a reduced relapse in those patients whose do‐
nors had 2 or more B gene-content motifs [113]. In addition, in a prospective study, the pres‐
ence of the B KIR genotype in donors was also related to fewer bacterial infections at six months
post transplant in recipients of unrelated HSCT [114]. In fact it has been observed that some ac‐
tivating genes present in Haplotype B may have an influence on unrelated HSCT. The presence
of KIR3DS1 in the donor has been associated with reduced grade II-IV acute GVHD and a low‐
er transplantation-related mortality rate [115-116]. Donor KIR2DS1 in isolation or in associa‐
tion to KIR2DS2 appears to provide protection against relapse in unrelated HSCT [116-117]. On
the other hand, in an analysis of patients and their respective HLA-identical sibling or unrelat‐
ed donors, KIR2DS1 in the donor and the absence of this gene in the receptor was associated
with increased risk of acute GVHD, KIR2DS3 was associated to chronic GVHD and KIR2DS5
was associated to relapse [118]. Another study also demonstrated deleterious effects of activat‐
ing KIRs; an increased number of donor activating KIR genes was suggested to be a significant
factor in the probability of relapse. The KIR-ligand mismatch pairs were a risk factor for trans‐
plant-related mortality [119]. The effect of activating KIRs was mainly found in AML and mye‐
lodysplastic syndrome (MDS) patients. The conditioning regimen included using ATG for in
vivo T-cell depletion.

As discussed above, there are several studies describing improved outcomes based on KIR-
ligand mismatching, however, most studies have reported no advantage [120-123] or worse
outcomes for KIR-ligand mismatch donors in unrelated HSCT. Deleterious results included
lower OS in patients with myeloid malignances submitted to KIR-ligand mismatch HSCT
[120] increased infection rates [124]; increased probability of leukemic relapse [125] in‐
creased rates of rejection and association with acute Grade III and IV GVHD [126].

KIR genes and sibling hematopoietic stem cell transplantation

On applying KIR genotyping, some studies investigated the effect of KIR in sibling HSCT. A
study of 220 donor-recipient pairs in HLA-matched sibling HSCTs found that patients with
myeloid disease who were homozygous for the C2 group had worse OS than patients who
were either homozygous or heterozygous for a C1 group. This effect was seen only in patients
who received a graft from a donor carrying the KIR2DS2 gene and only for patients with mye‐
loid disease (no effect was seen in patients with lymphoid disease) [127]. In another study the
KIR-ligand mismatch was associated to better DFS and OS and lower incidence of relapse in pa‐
tients with AML and MDS that received T-cell depleted HLA-identical sibling transplants.
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AML and MDS patients who lacked two HLA ligands for donor-inhibitory KIR had the highest
DFS and OS. Interesting, these results were found only for AML and MDS patients and not for
CML or ALL patients [128]. Benefits were also described for AML and MDS patients in another
study; the authors found a reduced risk for relapse in patients undergoing HLA-identical sib‐
ling HSCT who both received a high (above-median) NK cell number and lacked at least one
HLA-B or HLA-C ligand of the donor’s inhibitory KIRs. Transplants with more than two differ‐
ent activating donor KIRs were associated with an increased risk for non-relapse mortality
[129]. In another study, KIR-genotyping of 246 T-cell depleted HSCTs with HLA-identical sib‐
ling donors was performed; the 2DL5A, 2DS1, and 3DS1 KIR genes were associated with signif‐
icantly less relapse in patients with AML but not in patients with other myelogenous or
lymphoid malignancies. All these findings suggest that NK cells have implications in donor se‐
lection for myeloid diseases especially for AML patients [130].

Some studies have investigated KIR genes in respect to post-transplant infections in sibling
HSCT. In one study, additional activating KIR genes in the donor compared to the recipi‐
ent's genotype were associated with lower transplant related mortality, better survival, and
a reduced incidence of cytomegalovirus (CMV) reactivation [131]. In another study of T-cell
replete HSCT from matched sibling donors, the presence of donor KIR haplotype B was as‐
sociated with a 65% reduction in CMV reactivation [132]. Moreover, in another the presence
of specific activating KIR haplotypes in the donor was associated with protection from CMV
reactivation in patients submitted to sibling and unrelated HSCT [133]. Other researchers
analyzed patients according to the combination of group A and B KIR haplotypes in the
transplant donor and recipient and found a higher OS when the donor lacked and the recipi‐
ent had group B KIR haplotypes. Moreover, the poorest OS rate and increased relapse and
acute GVHD were recorded when the donor had and the recipient lacked group B KIR hap‐
lotypes and both were homozygous for the C1 KIR ligand. The presence of the Bw4 ligand
was also associated with increased acute GVHD. In contrast, the presence of both KIR3DL1
and its cognate Bw4 ligand was associated with decreased non-relapse mortality. An analy‐
sis of KIR genes individually revealed KIR2DS3 as a protective factor for chronic GVHD
[134]. In another study, 60 AML patients submitted to T-cell replete HLA-matched related
donor allogeneic bone marrow transplants were analyzed. Heterozygous C1/C2 patients
had significantly worse survival than those homozygous for C1 or C2 and the C1/C2 group
had a higher relapse rate. Multivariate analysis found C1/C2 status to be an independent
predictor for mortality. Since C1/C2 heterozygotes have a greater opportunity to engage in‐
hibitory KIRs than C1 or C2 homozygotes, they may more effectively inhibit KIR-positive
NK cell and T cell populations involved in GvL responses [135].

KIR genes and autologous stem cell transplantation

Few research groups have demonstrated the influence of KIR genes in autologous stem cell
transplantation (ASCT). The interest in the role of KIR genes in the setting of ASCT is mainly
related to preventing relapse, the main cause of treatment failure. Some studies have shown
that rapid and early NK cell recovery following ASCT is associated with a better progres‐
sion-free survival (PFS) in some diseases. An analysis of 182 patients with myeloma multi‐
ple submitted to ASCT showed a worse outcome in patients who were KIR3DS1+. The
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KIR3DS1 genotype was associated with a shorter PFS with the effect being more notable in
patients who received a transplant while in complete or partial remission after induction
chemotherapy and those who lacked HLA-Bw4 [136].

Similarly, in a study of 169 neuroblastoma patients treated by ASCT, a survival advantage
was shown in patients lacking HLA class I ligands for autologous inhibitory KIRs. Those
who lacked the HLA-C1 ligand for KIR2DL2/ KIR2DL3 had the highest 3-year survival rate
[137]. Another study analyzed the influence of KIR mismatch in ASCT by the receptor-li‐
gand mismatch model. The study, involving 16 patients who were submitted to ASCT for
non-Hodgkin’s lymphoma and solid tumours, found a reduced relapse rate for patients
with an inhibitory KIR-HLA mismatch [138]. On the other hand, another study of 67 pa‐
tients with solid tumors or lymphomas who were treated with ASCT did not find any effect
of KIR-ligand interactions on the outcomes of ASCT [139].

KIR genes and unrelated umbilical cord blood transplantation

Unrelated UCBT has proved to be a viable treatment option. An advantage of using UCB is the
relatively low risk of acute GVHD due to a lower number of mature donor T cells and thus an
increased possibility of using HLA-mismatched units. Moreover, UCBT, as in haplo-HSCT, is
characterized by a rapid post-transplant recovery of NK cells. An analysis of 218 patients with
AML or ALL showed that patients who received a single UCBT unit from a KIR ligand incom‐
patible donor showed a lower incidence of relapse, and increased DFS and OS [140]. Addition‐
ally, as was seen in the Ruggery studies, the benefits were significantly more marked in
patients with AML. However, another study failed to observe any benefit of KIR-ligand mis‐
match in 155 recipients of UCB after myeloablative conditioning. In fact, in 102 patients who re‐
ceived UCB after nonmyeloablative conditioning, KIR-Ligand mismatch was associated with
an increased rate of acute GVHD and higher treatment-related mortality [141].

Altogether these data show that simple assessments of the KIR genotype might help in the
selection of donors for HSCT. KIR mismatches seem to be effective in haplo-HSCT and
mainly in patients with myeloid diseases. The contradictory results reported about the influ‐
ence of KIR mismatches in the diverse types of HSCT can certainly be explained by differen‐
ces in the transplant protocols employed. Differences like number of patients analyzed, type
of disease studied, stage of the disease, patient age, conditioning regimen, stem cell source,
GVHD prophylaxis and variability in the definition of KIR mismatch can influence trans‐
plant outcomes. Factors like T-cell depletion and no post-transplant immune suppression
seem to be important in maximizing NK cell alloreactivity [142].

Cytokines genes and receptors in HSCT

There are many other genetic factors that influence to outcome of transplant,  independ‐
ent  of  whether  the transplant  is  autologous,  allogeneic,  matched or  mismatched,  sibling
or unrelated donor, or haploidentical and of whether the cell source is bone marrow, pe‐
ripheral blood or UCB.

The goal of the majority to studies is to know what kind of influence these genetic factors
and HLA compatibility have and what effect they have on the course of the transplant: acute
and chronic GVHD, relapse, OS and mortality.
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One important factor is the polymorphisms within the regulatory sequences of cytokine
genes. Proinflammatory cytokines, receptors and related inhibitors have been implicated in
a large number of immune diseases. The main role of cytokine genes is related to the immu‐
nopathogenesis of GVHD [143].

Studies on cytokine genes in the transplant setting involve receptors of the TNF, IL-10, the
IL-1 gene family, IL-2, IL-6, interferon TNF-γ, TGF-β1 and TGF-β1 [28, 144-145].

Tissue injury, including of the mucosa and liver, occurs during the conditioning regimen.
This process causes the secretion of the TNF-α, IL-6 and IL-1 pro-inflammatory cytokines
that increase HLA antigens, thus increasing the antigens recognized by donor T-cell recep‐
tors in allogeneic transplantation. Moreover, during the activation to donor cells, T cells pro‐
duce IL-2 and INF-γ (Th1) that trigger GVHD and are balanced for Th2 cytokines such as
IL-4 and IL-10 [146-147].

Studies on allogeneic HSCT, investigated 16 patients with chronic GVHD by a systematic
clinical examination of the oral cavity, and by biopsies of the buccal mucosa and labial sali‐
vary glands. The findings demonstrated that the mRNA expression of IL-2, INF-γ, IL-4 and
IL-5 in the buccal mucosa of chronic GVHD patients was greater than in control individuals.
A similar result was detected for the labial salivary glands with the addition of IL-10 [148].

Studies show that IL-2 and INF-γ were detected more frequently in patients with acute
GVHD. Additionally, IL-12 and IL-18 were increased while IL-10 was decreased in the same
group, and IL-4 did not present a significant difference between the control and patient
groups [144]. Other studies show high IL-10 gene expression in the recipient that may be re‐
lated to a reduced incidence of grades II to IV acute GVHD and a reduced graft-versus-tu‐
mor effect after HSCT with nonmyeloablative conditioning [145].

On the other hand, studies affirm that IL-4 producing cells inhibit the development of acute
GVHD and the increased percentage of IL-4 secreting cells may be responsible for the unex‐
pected low incidence of acute GVHD after peripheral blood HSCT, despite the presence of
large numbers of mature T cells in the donor infusion [148].

Many studies show that polymorphisms of cytokine genes influence to outcome of trans‐
plants, such as with the development of GVHD. One example is that the IL17+197ª allele was
associated with increased risk of grade III and IV acute and chronic GVHD. Other studies
demonstrate clinically important relationships between genetic polymorphisms in TNF-α
and the severity of acute GVHD [147,149]. There are many other associations of polymor‐
phisms of cytokine genes that course to acute and chronic GVHD.

Major histocompatibility complex class I-related chain genes and HSCT

The MHC class I-related chain (MIC) genes have been the subject of interest in the setting of
HSCT. This family of genes, located in the MHC classical class I region, was first described
in 1994 [150-151]. These genes are very polymorphic, but not as much as the classical HLA
class I genes. Humans have seven MIC genes, named MICA to MICG but only two MIC
genes are functional, the MHC class I-related chain A (MICA) and B (MICB) genes. The MIC
proteins are similar to the HLA class I gene products however they are not associated with
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β-2-microglobulin and also do not bind peptides to present to T cells [150,152]. MIC proteins
appear to be induced by stress [153] and are expressed on the cell surface of fibroblasts and
endothelium cells [154]. They are ligands for NKG2D [155], a receptor present on NK cells
and some T cells, and because of this they can co-stimulate NK cells and T cells and can
therefore determine the outcome of certain effector functions that are related to GVHD. In
fact, MIC genes have been show to be attractive targets in diverse cancers, autoimmune dis‐
eases and in organ rejection after transplantation.

Several studies have demonstrated that the MICA may be a target molecule in allograft re‐
jection because MICA can elicit antibody production after solid organ transplantation
[156-163]. Some studies have reported diverse outcomes in HSCT related to MIC genes. It
was suggested that MIC genes play a role in GVHD in HLA-matched HSCT because a high‐
er rate of grade II-IV acute GVHD was found as was more gastrointestinal GVHD in MICA
mismatched patients [164]. In addition, matches of MICA and MICB loci were shown to in‐
crease patient survival in a study of 44 patients who received unrelated HSCT [165].

Some polymorphisms in MICA genes have also been associated to outcomes in transplants.
A change at position 129 of the α2-heavy chain domain of MICA can denote the strength of
interaction with the NKG2D receptor. The presence of methionine at position 129 of the MI‐
CA gene characterizes a strong binder, and the presence of valine characterizes a weak bind‐
er [166]. Hence, the MICA-129 valine genotype and soluble MICA serum level were
considered risk factors for chronic GVHD in a study of 211 HLA-identical sibling pairs of
HSCT while before transplantation, the presence of anti-MICA antibodies that can neutralize
soluble MICA confers protection [167]. Altogether, these data suggest that MIC genes, in
particular the MICA genes, could be used as biomarkers for chronic GVHD and should be
studied further.

Minor histocompatibility antigens and HSCT

The human minor histocompatibility antigens (mHAgs) are another group of immunogenic
peptides, distinct from the MHC system, which seem to have a role in HSCT outcomes.
They are derived from intracellular polymorphic proteins and are presented by HLA class I
and II restricted T cells [168-170]. Accumulated evidence suggests that they can elicit alloge‐
neic T-cell mediated immune response in HLA-matched allogeneic HSCT and because of
this have been investigated in order to understand their possible role in the control of
GVHD and GvL.

Diverse minor histocompatibility antigens of various genetic and cellular origins have been
described. More than 40 different genes that encode mHAgs recognized by either CD8+ or
CD4+ T cells have been identified [171-174]. Most of the mHAgs are result of non-synony‐
mous single nucleotide polymorphisms in autosomal genes while others are encoded by the
sex chromosomes. At least 6 genes in the Y chromosome encode male-specific MHAgs (so-
called HY antigens). Additionally, mHAgs may also be caused by gene deletions and genet‐
ic variations in non-coding regions affecting gene transcription [175-178].

The best-characterized minor histocompatibility antigen is encoded by the Y chromosome
(HA-1). The mHAgs related to gender seems to be involved in HSCT outcomes because their
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absence in women can lead to a response to male antigens; female-to-male transplants seem
to be more susceptible to GVHD [168-170, 179-180,181-185]. Antibody responses to HY pro‐
teins are also associated with both chronic GVHD and the maintenance of remission [186],
but whether these antibody responses contribute meaningfully to GVHD, or simply serve as
markers for it, remains unclear. In spite of female-to-male immune responses being more
common, the opposite can also happen [187-188].

Some mHAgs are expressed only in the hematopoietic system while others are also ex‐
pressed in normal tissues. mHAgs whose expression is limited to hematopoietic tissue may
be recognized by specific donor T cells and may selectively contribute to a GvL effect and
those with broad tissue expression may mediate GVHD [189].

Several studies have associated the presence of mHAg-specific T cells post-transplantation
with graft rejection [179, 190], GVHD [191-194], and the GVL effect [195-197]. Mismatches
between patient and donor for HA-1, HA-2, HA-4 and HA-5 are associated with an in‐
creased incidence in GVHD [191].

The  role  and  the  mechanisms  of  alloreactions  related  to  mHAgs  are  not  fully  under‐
stood, but these data suggest that they may be relevant in determining post-transplanta‐
tion outcomes.

4. Conclusion

Genetic differences between donor and recipient are crucial factors capable of influencing
transplantation outcomes. Much has been learned about the HLA and non-HLA genes, their
expression, their polymorphisms and their role in mediating GvL and GVHD responses. A
better understanding of these genes may permit more refined donor selection criteria and
consequently a more accurate assessment of transplant-related complications.
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