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1. Introduction

Acute myocarditis may not only develop into congestive heart failure, but it has also been
strongly  implicated  in  the  pathogenesis  of  dilated  cardiomyopathy.  The  mechanism  of
myocardial  cell  injury involved in acute myocarditis  is  of  great  clinical  significance,  but
remained to be clarified for a long period. Because patients with acute myocarditis often
show  significantly  increased  virus  titer  in  serum,  and  the  myocardial  histological  find‐
ings  of  acute  myocarditis  are  similar  to  those  of  experimental  viral  myocarditis,  it  is
believed that most of human acute myocarditis is induced by virus infection. Many studies
have been done on the experimental murine viral myocarditis caused by Coxsackievirus
(CVB3),  which  is  the  most  common  pathogen  of  human  acute  myocarditis.  Because
maximal inflammation develops after a significant decrease in virus titer, it is thought that
immunological  mechanisms  in  addition  to  the  direct  cytolytic  effects  of  viruses  play  a
critical role in myocardial injury in viral myocarditis [1]. Furthermore, myocardial necrosis
occurs  with  massive  cell  infiltration,  strongly  suggesting  that  cell-mediated (rather  than
humoral) cytotoxicity plays an important role.

Using a murine model of viral myocarditis caused by CVB3, we investigated two aspects of
cell-mediated immune mechanism involved in myocardial injury. First, we analyzed the
characteristics of the infiltrating immune effector cells and their mechanism of cytotoxicity,
especially a role of pore-forming protein (perforin), one of the most important cytolytic effector
molecules with which killer lymphocytes directly injure target cells. Second, we investigated
the mechanism of infiltrating T-cell activation, usage of T-cell receptor (TCR) repertoire,
expression of major histocompatibility complex (MHC) antigens, and co-stimulatory signals
for T-cell activation, which are mainly mediated by members of the immunoglobulin as well
as tumor necrosis factor (TNF) receptor/ligand superfamilies.
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2. Characteristics of the infiltrating cells

2.1. Phenotypic analysis

There were some studies reporting the phenotypes of the immune cells playing a critical role
in the development of murine viral myocarditis. These studies showed indirect evidence that
T-cells, cytotoxic T-lymphocytes (CTLs), or natural killer cells (NK cells) mediated the
inflammation characterized by mononuclear cell infiltration and cardiac myocyte necrosis
[1-4]. However, there had been no reports directly showing the phenotypes of the infiltrating
mononuclear cells and whether these infiltrating cells directly injure the cardiac myocytes. We
analyzed the phenotypes of the infiltrating cells in the heart of murine viral myocarditis by
immunohistochemistry with antibodies specific for NK cells, T-cells, T-helper cells (Th-cells),
CTLs, and macrophages, which are the major effector cell types in cell-mediated immunity.
There were almost no γδ T-cells expressing TCR γδ. Also, we found that most of the infiltrating
cells were NK cells in the early stage (on day 7 after virus infection) when maximal inflam‐
mation develops, and T-cells consisting of Th-cells and CTLs represented 10% of the infiltrating
cells. The proportion of T-cells increased to 30-40% in the later stage of acute myocarditis [5].
Next, we examined the ultrastructure of the infiltrating cells by electron microscopy, and found
them to be large granular lymphocytes [5]. Thus, the phenotypic and morphological analyses
revealed that most of the infiltrating cells are NK-like large granular lymphocytes in the early
stage when maximal inflammation develops.

2.2. Expression of a cytolytic factor perforin

NK cells and CTLs are thought to kill virus-infected cells or tumor cells by means of effector
molecules contained in their cytoplasmic granules, one of which and the most important is
called pore-forming protein or perforin. Perforin was shown to play a critical role in cytolysis
and can be a good marker for killer lymphocytes [6-8]. To investigate whether these infiltrating
cells express perforin in their cytoplasmic granules and directly injure cardiac myocytes, we
examined the expression of perforin by immunohistochemistry, in situ hybridization, and
immunoelectron microscopy. We found that about 15% of the infiltrating cells strongly
expressed perforin in their cytoplasmic granules, and most of the infiltrating cells expressed
perforin gene transcripts [5]. Electron microscopic analysis revealed that the infiltrating cells
released massive amount of perforin molecules directly onto the surface of cardiac myocytes.
There were also numerous circular lesions, consistent with pores formed by perforin on the
membrane of cardiac myocytes [9]. These data clearly showed that the infiltrating cells were
NK-like killer cells and directly destroy cardiac myocytes in acute myocarditis in vivo. We also
showed the expression of perforin in the infiltrating cells in the hearts of patients with acute
myocarditis and dilated cardiomyopathy [10]. These data strongly suggested that perforin-
expressing killer lymphocytes play a pivotal role in myocardial inflammation. Gebhard, et al.
[11] reported that perforin knockout mice infected with CVB3 develop only a mild myocarditis
as compared with extensive inflammation of perforin-positive mice, whereas virus titers were
indistinguishable between two groups. This supports the role of perforin in inflammation but
not in virus clearance, and offers perforin to be a possible therapeutic target. However, because
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the strain of mice used in the study is known to develop minimal myocarditis by CVB3, further
investigation using virus-sensitive strains of mice may be needed.

2.3. T–cell receptor (TCR) repertoire

Phenotypic analysis revealed that NK-like killer lymphocytes infiltrate the heart first, then
infiltration by T-cells subsequently increases in the later stage. To investigate the nature of T-
cell infiltration, we analyzed the expression of TCR Vβ genes in the heart of acute murine
myocarditis. Polymerase chain reaction (PCR)-amplified Vβ gene products were subjected to
Southern blot hybridization with a Cβ cDNA probe. We found that in contrast to spleen
lymphocytes, the expression of TCR Vβ genes in the heart was restricted [12]. The restricted
usage of TCR Vβ genes by infiltrating T-cells indicated that some specific antigens in the heart
with viral myocarditis were being targeted. We also demonstrated the restricted usage of TCR
Vα as well as Vβ genes by infiltrating cells in the hearts of patients with acute myocarditis and
dilated cardiomyopathy [10]. This strongly suggested that the infiltration by T-cells recogniz‐
ing some specific antigens in the heart continued, resulting in persistent myocardial cell
damage, which led to the development of dilated cardiomyopathy. Because no enterovirus
genomes were detected in the heart tissue by PCR in all patients, it seemed that a T-cell-
mediated autoimmune mechanism may be triggered by virus infection and go on to play a
pivotal role in the pathogenesis of persistent myocardial cell damage.

3. Interaction between the infiltrating cells and cardiac myocytes

3.1. Expression of major histocompatibility complex (MHC) antigens

T-cells expressing TCR αβ, consisting of CTLs and Th-cells, are known to recognize foreign
antigens, such as virus-derived proteins, by their TCRs, in association with syngeneic MHC
antigens  on  the  surface  of  antigen-presenting  cells  (APCs).  The  recognition  of  MHC
antigens by CTLs and Th-cells is restricted MHC classes, in general class I for CTLs and
class  II  for  Th-cells  [13,  14].  To  become  target  cells  for  the  infiltrating  T-cells,  virus-
infected cells need to express MHC antigens on their surfaces. To examine whether cardiac
myocytes, which were reported not to express these antigens under normal conditions [15,
16],  really  express  MHC  antigens  during  acute  viral  myocarditis,  we  analyzed  the
expression of MHC antigens in hearts with acute murine myocarditis induced by CVB3.
We found that CVB3-induced acute myocarditis resulted in enhanced expression of MHC
class  I  (H-2K)  antigen  on  cardiac  myocytes  adjacent  to  the  area  of  cell  infiltration,  but
undetectable or low levels  of  MHC class I  (H-2D) or Class II  (Ia)  antigen were seen on
cardiac myocytes, respectively [17]. The induction of MHC antigens was confirmed in vitro
in cultured cardiac myocytes by treatment with interferon (IFN)-γ by immunohistochemis‐
try  and Northern blot  analysis  [17].  Induction of  MHC class  I  antigen on cardiac  myo‐
cytes  with  acute  viral  myocarditis  strongly  supported  the  interaction  between  cardiac
myocytes and the infiltrating cells, especially CTLs, which may play a significant role in
the persistent myocardial damage involved in later phase of myocarditis.
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3.2. Expression of co–stimulatory molecules

It is necessary for T-cells to receive two signals from the APC for antigen-specific T-cell
activation to occur. The first signal is provided by TCR engagement with the antigen-MHC
complex. The second signal, that is co-stimulatory signal, is provided by co-stimulatory
molecules expressed on both APC and T-cell [18]; they are mainly members of the immuno‐
globulin as well as TNF receptor/ligand superfamilies. A scheme showing the interaction
between T-cell and APC is shown in Figure 1.

 

Figure 1. Interaction between T‐cell and antigen‐presenting cell (APC). Scheme shows pairs of receptor/ligand co‐stimulatory molecules expressed 

on both T‐cell and APC. 
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Figure 1. Interaction between T-cell and antigen-presenting cell (APC). Scheme shows pairs of receptor/ligand co-
stimulatory molecules expressed on both T-cell and APC.

A. Immunoglobulin superfamily

Intercellular adhesion molecule-1 (ICAM-1]: Cell-cell interactions in the immune responses
are known to be mediated by cell adhesion molecules expressed on both immune effector cells
and target cells. One of the most important cell adhesion molecules is intercellular adhesion
molecule-1 (ICAM-1], a ligand for lymphocyte function-associated antigen -1 (LFA-1), is
expressed on most lymphocytes and thought to be induced on various target cells at the site
of inflammation by cytokines [19]. ICAM-1 is known to provide a co-stimulatory signal for T-
cell activation and to play an important role in the recognition, adhesion, and destruction of
target cells by killer lymphocytes. Therefore, we analyzed the expression of ICAM-1 in hearts
with acute murine myocarditis induced by CVB3. We found that acute myocarditis resulted
in enhanced expression of ICAM-1 on cardiac myocytes, and most of the infiltrating cells
expressed LFA-1 [20]. Induction of ICAM-1was also confirmed in vitro in cultured cardiac
myocytes by treatment with IFN-γ/TNF-α by immunohistochemistry, flow cytometry, and
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Northern blot analysis [20]. Because both interferon-γ and TNF-α were shown to be expressed
by the infiltrating cells in the heart by in situ hybridization [20], the expression of ICAM-1 as
well as MHC class I antigen on cardiac myocytes was thought to be induced by the infiltrating
cells in vivo. Furthermore, we found that In vivo administration of an anti-ICAM-1 monoclonal
antibody (mAb) significantly reduced myocardial inflammation without enhancing virus
genomes in the heart [20]. We also found the expression of ICAM-1 and MHC class I antigen
on cardiac myocytes and infiltration by perforin-expressing killer cells without enterovirus
genomes in the heart of patients with acute myocarditis and dilated cardiomyopathy [10]. This
suggested that the infiltrating killer cells may recognize some autoantigen and continuous
expression of ICAM-1 as well as MHC class I antigen on cardiac myocytes may enable the
infiltrating killer cells to cause persistent myocardial damage in an autoimmune phase of
myocarditis, leading to dilated cardiomyopathy.

Vascular cell adhesion molecule-1 (VCAM-1): Another immunoglobulin family cell adhesion
and co-stimulatory molecule, VCAM-1was also reported to be induced on myocardial cells in
acute murine myocarditis. However, the role of VCAM-1 in the myocardial damage seemed
to be less important than ICAM-1 [21].

B7 family molecules (B7-1, B7-2): Among the immunoglobulin superfamily co-stimulatory
molecules, B7-1 and B7-2, which are the ligands for CD28 and cytotoxic T lymphocyte antigen
(CTLA)-4 expressed on T-cells, have been extensively characterized and appear to be most
critical [22-24]. To investigate the role of B7-1/B7-2 in the development of acute viral myocar‐
ditis, we analyzed the expression of B7-1/B7-2 in hearts with acute murine myocarditis induced
by CVB3. We found that acute myocarditis strongly induced the expression of both B7-1 and
B7-2 on cardiac myocytes, which normally do not express these antigens [25]. The induction
of both B7-1 and B7-2 was also confirmed in vitro in cultured cardiac myocytes by treatment
with interferon-γ. in vivo administration of an anti-B7-1 mAb markedly decreased myocardial
inflammation, whereas an anti-B7-2 mAb-treatment abrogated the protective effect of anti-B7-1
mAb [25], indicating that different roles for B7-1 and B7-2 antigens are involved in the
development of acute myocarditis. Using a murine model of chronic ongoing myocarditis, we
also found that in vivo administration of an anti-B7-1 mAb significantly prolonged the survival
of mice with myocarditis, whereas an anti-B7-2 mAb-treatment abrogated the survival-
prolonging effect of anti-B7-1 mAb [26]. We found the expression of B7-1 and B7-2 on cardiac
myocytes of patients with acute myocarditis and dilated cardiomyopathy [27], strongly
suggesting the critical roles of these co-stimulatory molecules as in murine myocarditis. In
contrast to the many co-stimulatory molecules, which deliver positive signals for T-cell
activation, CTLA-4, a second B7 receptor, delivers a negative signal for T-cell activation
competing with CD28. T-cell immunoglobulin mucin (Tim)-3 is highly expressed on Th1 cells,
and is known to negatively regulate Th1 responses and affects susceptibility to allergy and
autoimmune diseases. Frisanhco-Kiss et al. [28] reported that in vivo anti-Tim-3 blocking mAb-
treatment reduced CTLA-4 levels in Th-cells in the spleen, and significantly increased
myocardial inflammation of mice infected with CVB3. This indicates the negative regulatory
role of CTLA-4 through Tim-3 signaling in viral myocarditis. Furthermore, Love et al. [29]
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showed a negative regulatory role of CTLA-4 in CTLs, using a murine model of myocarditis
caused by adoptive transferred antigen-specific CTLs.

Programmed death-1 (PD-1)/PD-1 ligands (PD-L1, PD-L2): Among other known co-stimula‐
tory molecules, which mediate negative signals for T-cell activation, PD-1/PD-1 ligands,
belonging to the immunoglobulin superfamily, pathway seems to be the most important
[30-33]. To investigate roles of PD-1/PD-1 ligands pathway in the development of myocardial
damage in murine acute myocarditis, we examined the expression of PD-L1 and PD-L2 in
hearts with acute myocarditis induced by CVB3. We found that the expression of PD-L1 (but
not PD-L2) was markedly induced on cardiac myocytes with acute myocarditis. The induction
of PD-L1 (but not PD-L2) was also confirmed in vitro in cultured cardiac myocytes by treatment
with IFN -γ [34]. Furthermore, in vivo treatment with anti-PD-1 blocking mAb significantly
increased the myocardial inflammation, whereas anti-PD-1 stimulating mAb-treatment
significantly decreased the myocardial inflammation. In vivo treatment with anti- PD-L1
blocking mAb increased the inflammation (but statistically not significant), whereas anti-PD-
L2 blocking mAb-treatment had no effect [34]. This indicated that PD-1/PD-L1 pathway plays
a critical role in suppressing myocardial inflammation induced by CVB3 infection.

B. TNF receptor/ligand superfamilies

Fas and Fas ligand (FasL): Fas and its ligand FasL, which belong to the TNF receptor/ligand
superfamily, are well-characterized co-stimulatory molecules and known to play an essential
role in the induction of apoptosis [35-38]. They are also known to play an important role in the
cytotoxicity by T-cells and NK cells [39-41]. Because the percentage of cardiac myocytes
undergoing apoptosis was too low to explain the mechanism involved in massive myocardial
injury in acute murine myocarditis, we investigated the role of Fas/FasL pathway in the
activation of the infiltrating immune cells. We found that Fas was markedly induced on cardiac
myocytes with acute myocarditis. The induction of Fas expression on cardiac myocytes was
confirmed in vitro by treatment with IFN -γ. In vivo administration of an anti-FasL mAb
decreased myocardial inflammation as well as virus genomes in the heart. Myocardial
inflammation was also decreased in Fas-deficient lpr/lpr and FasL-deficient gld/gld mice
infected by CVB3 as compared with wild type [42]. This strongly suggested that Fas/FasL
pathway played a critical role in the development of myocardial necrosis through activation
of the infiltrating immune cells, rather than inducing apoptosis of cardiac myocytes.

CD40/CD40 ligand (CD40L): Another pathway of co-stimulatory molecules CD40, CD40L,
which belong to the TNF receptor/ligand superfamily, is known to induce expression of B7
antigens and cytokine production by APCs, and to initiate T-cell-dependent antibody re‐
sponses [43-45]. We found that CD40 was clearly induced on cardiac myocytes with acute
myocarditis, and that the expression of CD40 on cardiac myocytes was induced by treatment
with IFN-γ in vitro. We also found that the production of interleukin-6 by cultured cardiac
myocytes was markedly enhanced by treatment with an anti-CD40 mAb in vitro. In vivo
administration of an anti-CD40L mAb significantly decreased myocardial inflammation,
indicating a critical role of CD40/CD40L pathway in the development of acute murine
myocarditis [46].

Diagnosis and Treatment of Myocarditis70



CD30/CD30L, CD27/CD27L, OX40/OX40L, 4-1BB/4-1BBL: Other co-stimulatory molecules
belonging to the TNF receptor/ligand superfamily include CD30/CD30L, CD27/CD27L, OX40/
OX40L, and 4-1BB/4-1BBL [47, 48]. We again investigated the roles of these co-stimulatory
molecules in the development of acute murine myocarditis [49]. Acute myocarditis caused by
CVB3 clearly induced the expression of 4-1BBL and CD30L on cardiac myocytes in vivo,
whereas CD27L and OX40L were constitutively expressed on cardiac myocytes. Induction of
4-1BBL and CD30L on cardiac myocytes was confirmed by treatment with IFN-γ in vitro.
Anti-4-1BBL or -CD30L mAb along with IFN-γ significantly stimulated the production of
interleukin-6 by cultured cardiac myocytes in vitro. Furthermore, in vivo administration of
anti-4-1BBL mAb (but not other mAbs) significantly decreased myocardial inflammation,
indicating the critical role of 4-1BB/4-1BBL pathway in the development of acute viral myo‐
carditis. We found a persistent expression of CD40 and CD30L on cardiac myocytes in a murine
model of chronic ongoing myocarditis as well [50].

4. Therapeutic interventions

1. In vivo antibody therapy

It is known that immunosuppressant therapy with corticosteroids or cyclosporin [51] may
exacerbate acute viral myocarditis by enhancing virus titers. Godeny and Gauntt [3, 4] reported
that depleting NK cells by injection of anti-asialo GM1 antiserum exacerbated murine viral
myocarditis with increase in virus titers in the heart, indicating the protective role of NK cells
against viral myocarditis by limiting virus replication. Therefore, nonspecific immunothera‐
pies inhibiting virus-clearance seem to worsen the course of viral myocarditis, at least in the
acute phase when virus genomes have not disappeared yet. We showed that immunomodu‐
lation therapy specifically targeting co-stimulatory molecules, such as ICAM-1 and FasL by
in vivo administration of blocking mAbs, can decrease myocardial damage without inhibiting
(or even enhancing) virus-clearance [20, 42]. We also showed that immunomodulation therapy
targeting co-stimulatory molecules B7-1, CD40L, 4-1BBL, and PD-1 (with stimulating mAb)
can significantly attenuate myocardial inflammation [25, 46, 49, 34]. Although we did not
analyze the effects of these therapies on the virus-clearance in the heart, the protective effects
against myocardial injury strongly suggested that immunomodulation therapies targeting
these co-stimulatory molecules improve the course of myocarditis without inhibiting virus-
clearance. The relative effects of immunomodulation therapies targeting co-stimulatory
molecules is summarized in Figure 2. Recently, Fousteri et al. reported that in vivo adminis‐
tration of anti-OX40L mAb strongly reduced the inflammation of chronic phase of CVB3-
induced murine myocarditis, supporting the role of these co-stimulatory molecules in
progression to autoimmune phase [52].

2. IFNs

IFNs are among the most important antiviral agents, and are clinically used in hematolog‐
ical malignancy, autoimmune disorder, and viral infection such as hepatitis B and C. For
viral myocarditis, the effectiveness of IFN-α A/D in a murine model of viral myocarditis
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was reported [53, 54]. Yamamoto et al. [55] analyzed the effects of IFN-γ and IFN-α/β by
intranasal and intramuscular routes on murine viral myocarditis. The authors found that
both IFN-γ and IFN-α/β by either route significantly increased the survival rate and that
the effect of IFN-γ was significantly greater than that of IFN-α/β. The survival–prolong‐
ing  effect  of  IFN-γ  was  confirmed  even  when  started  after  virus  inoculation.  Further‐
more, intranasal administration of IFN-γ significantly suppressed the virus replication and
inflammation in  the  heart,  which in  turn dramatically  improved the  prognosis  of  acute
murine  viral  myocarditis.  The  intranasal  administration  of  IFN-γ  offers  a  very  useful
antiviral therapy for acute myocarditis in clinical use.

3. TNF-α

TNF- α is another major cytokine known to be involved in viral myocarditis. Wada et al. [56]
reported that survival rate of TNF- α-deficient mice with acute viral myocarditis was signifi‐
cantly lower than that of wild-type control mice, and in vivo administration of recombinant
TNF- α improved the survival of TNF- α-deficient mice in a dose dependent manner. Although
the authors speculated that TNF-α plays a protective role in acute viral myocarditis through
leukocyte recruitment, it is unclear whether administration of TNF- α improves the survival
of wild-type mice with acute viral myocarditis.

4. Angiotensin II receptor blockers (ARBs)

Angiotensin II has been shown to play an important role in the pathophysiology of various
organs, especially the cardiovascular system. The effects of ARB on hypertension, congestive
heart failure, and myocardial fibrosis have been well analyzed in human trials as well as animal
models. The focus of interest is now directed to its pleiotropic effects especially on the
inflammatory disorders. To investigate the effects of the ARB olmesartan on the cell-mediated
myocardial injury involved in acute myocarditis, we analyzed the effects of olmesartan on the
development of murine acute myocarditis caused by CVB3 [57]. We found that olmesartan
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myocarditis, supporting the role of these co‐stimulatory molecules in progression to autoimmune phase [52]. 

 

Figure 2. Summary of relative effects of immunomodulation therapies targeting co‐stimulatory molecules in murine acute myocarditis. 

2. IFNs 

IFNs are among the most important antiviral agents, and are clinically used  in hematological malignancy, autoimmune disorder, 

and viral  infection  such  as hepatitis B and C. For viral myocarditis,  the  effectiveness of  IFN‐A/D  in  a murine model of viral 

myocarditis was reported [53, 54]. Yamamoto et al. [55] analyzed the effects of IFN‐ and IFN‐/by intranasal and intramuscular 

routes on murine viral myocarditis. The  authors  found  that both  IFN‐  and  IFN‐/by  either  route  significantly  increased  the 
survival rate and that the effect of IFN‐was significantly greater than that of IFN‐/. The survival ‐prolonging effect of IFN‐ was 

confirmed even when started after virus inoculation. Furthermore, intranasal administration of IFN‐significantly suppressed the 
virus  replication  and  inflammation  in  the  heart,  which  in  turn  dramatically  improved  the  prognosis  of  acute  murine  viral 

myocarditis. The intranasal administration of IFN‐ offers a very useful antiviral therapy for acute myocarditis in clinical use. 

3. TNF‐ 

TNF‐  is another major cytokine known to be involved in viral myocarditis. Wada et al. [56] reported that survival rate of TNF‐ ‐
deficient mice with acute viral myocarditis was significantly lower than that of wild‐type control mice, and In vivo administration 

of  recombinant  TNF‐    improved  the  survival  of  TNF‐  ‐deficient mice  in  a  dose  dependent manner. Although  the  authors 

speculated  that  TNF‐  plays  a  protective  role  in  acute  viral myocarditis  through  leukocyte  recruitment,  it  is  unclear whether 

administration of TNF‐  improves the survival of wild‐type mice with acute viral myocarditis. 

4. Angiotensin II receptor blockers (ARBs) 

Angiotensin II has been shown to play an important role in the pathophysiology of various organs, especially the cardiovascular 

system. The effects of ARB on hypertension, congestive heart failure, and myocardial fibrosis have been well analyzed in human 

trials  as well  as  animal models.  The  focus  of  interest  is  now directed  to  its  pleiotropic  effects  especially  on  the  inflammatory 

disorders. To investigate the effects of the ARB olmesartan on the cell‐mediated myocardial injury involved in acute myocarditis, 

we  analyzed  the  effects  of  olmesartan  on  the development  of murine  acute myocarditis  caused  by CVB3  [57]. We  found  that 

olmesartan significantly decreased myocardial inflammation as compared with control. Olmesartan also significantly decreased the 

expression  of  IFN‐,  FasL,  inducible  nitric  oxide  synthase  (iNOS),  perforin  as  well  as  CVB3  genomes  in  myocardial  tissue, 

indicating  that  olmesartan  suppressed  activation  of  the  infiltrating  killer  lymphocytes without  inhibiting  virus‐clearance.  This 

raises  a  possibility  that  olmesartan will  reduce myocardial  injury  and  improve  prognosis  of  patients with  acute myocarditis. 

Although we  did  not  examine whether  other  ARBs  have  also  protective  effects  against myocardial  inflammation,  there  is  a 

possibility that the prognosis of acute myocarditis patients receiving ARBs may be better than those not treated with ARBs. 
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Figure 2. Summary of relative effects of immunomodulation therapies targeting co-stimulatory molecules in murine
acute myocarditis.
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significantly decreased myocardial inflammation as compared with control. Olmesartan also
significantly decreased the expression of IFN-γ, FasL, inducible nitric oxide synthase (iNOS),
perforin as well as CVB3 genomes in myocardial tissue, indicating that olmesartan suppressed
activation of the infiltrating killer lymphocytes without inhibiting virus-clearance. This raises
a possibility that olmesartan will reduce myocardial injury and improve prognosis of patients
with acute myocarditis. Although we did not examine whether other ARBs have also protec‐
tive effects against myocardial inflammation, there is a possibility that the prognosis of acute
myocarditis patients receiving ARBs may be better than those not treated with ARBs.

5. Beta-adrenergic receptor blockers (β-blockers)

β-blockers, as well as angiotensin-converting enzyme inhibitors (ACEIs) and ARBs, have now
been established as the therapy of heart failure. Especially, carvedilol, a non-selective β1, β2
(and less potent α1)-blocker, is known for its anti-oxidant properties [58]. In murine model of
viral myocarditis, carvedilol was shown to attenuate the inflammation and improve left
ventricular function through modulating the production of inflammatory cytokines and
matrix metalloproteinases [59-61]. Because selective β1-blocker, metoprolol was much less
effective, the cardioprotective effects of carvedilol may be due to pleiotropic effects as well as
β-blocking effects, would be potentially useful in the treatment of patients with acute myo‐
carditis.

6. Anti-virus therapy

Werk et al. [62] reported the effects of two anti-viral strategies, siRNA to degrade cytoplasmic
CVB3 RNA, and a soluble variant of the coxsackievirus-adenovirus receptor fused to a human
immunoglobulin (sCAR-Fc) to inhibit cellular uptake of CVB3. The authors demonstrated that
combination therapy resulted in a strong synergistic inhibition of an ongoing virus infection.
Because the study was done using a cell culture system, further study using an in vivo infection
model is needed. Moreover, it is unknown whether the combination therapy is effective on
patients with acute myocarditis who come to the hospital well after virus infection occurs.

Until now, not a few antiviral compounds have been developed and evaluated in clinical
studies. WIN 63843 (pleconaril) is an orally bioavailable antiviral compound, which inhibits
the binding of picornaviruses to the cell surface receptors and internalization of the viruses
into the cell. In murine viral myocarditis caused by CVB3, pleconaril dramatically reduced the
virus titer in the heart and increased the survival rate [63]. For other mechanism of antiviral
activity, nitric oxide-releasing compounds such as glyceryl trinitrate (GTN) and isosorbide
dinitrate (ISDN) were shown to inhibit proteinases 2A and 3C of CVB3, resulting in inhibition
of viral replication and protecting the host cells from the cytopathic effects. Furthermore, GTN
and ISDN significantly reduced the myocardial inflammation in murine model of viral
myocarditis caused by CVB3 [64]. These antiviral therapeutics seem to be effective in the very
early phase of viral myocarditis when viral replication actively occurs. However, in general,
patients with acute myocarditis go to hospital after signs of inflammation have appeared when
immune response to the virus-infected cells but not cytopathic effects of viruses mainly
mediate myocardial injury. Therefore, the effectiveness of these antiviral therapeutics should
be evaluated in clinical studies. On the other hand, Fousteri et al. reported that nasal admin‐
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istration of cardiac myosin-derived oligopeptides (CM-peptides) significantly reduced
myocardial inflammation and mortality by enhancing regulatory T cells and IL-10 production
in murine myocarditis caused by CVB3 [52]. However, the authors started the administration
of CM-peptides before CVB3-infection. Because it is impossible to start the treatment at such
timing clinically, efficiency of the therapy should be evaluated when started after the onset of
inflammation.

7. Cell therapy

Mesenchymal stem cells (MSCs) are known to have anti-apoptotic, anti-fibrotic, pro-angio‐
genic, as well as immunomodulatory features. Linthout et al. [65] demonstrated that MSCs
reduced CVB3-infected cardiomyocytes apoptosis and viral production in a nitric oxide-
dependent manner in vitro, and MSCs required priming via IFN-γ to exert their protective
effects. Furthermore, in vivo administration of MSCs in mice with CVB3-induced myocarditis
improved cardiac function through reduction in cardiac apoptosis and myocardial injury. The
authors also isolated and identified novel cardiac-derived cells from human cardiac biopsy
specimen, that is cardiac-derived adherent proliferating cells (CAPs). CAPs have anti-
apoptotic and immunomodulatory features similar to MSCs. Like MSCs, in vivo administration
of CAPs in mice with CVB3-induced myocarditis improved cardiac function through reduction
in cardiac apoptosis and virus proliferation [66].

8. MicroRNA

MicroRNAs (miRNAs) are small non-coding RNA molecules endogenously held by many
species. It is known that miRNAs repress the expression of mRNAs by binding to 3 ' untrans‐
lated region of their target mRNAs. Corsten et al. [67] analyzed the profiles of miRNA
expression in myocardial biopsy specimen from patients with acute myocarditis, and in
myocardial tissue from myocarditis-susceptible and non-susceptible strain of mice with CVB3-
induced acute myocarditis. They found that expression of microRNA-155, primarily localized
in infiltrating cells, was consistently and strongly upregulated during acute myocarditis in
both humans and susceptible mice. Inhibition of microRNA-155 by a systemically delivered
locked nucleic acid (LNA)-anti-miRNA, a class of miRNA inhibitors, attenuated cardiac cell
infiltration and myocardial damage in acute phase of murine myocarditis. MicroRNA-155
inhibition further improved cardiac function and reduced mortality of mice with viral
myocarditis in later phase, offering a promising therapy against acute myocarditis. Micro‐
RNA-122 is expressed in the liver, and is implicated as a key regulator of cholesterol and fatty-
acid metabolism. Elmen et al. [68] first demonstrated using African green monkeys that in
vivo administration of LNA-anti-microRNA-122 resulted in long-lasting decrease in plasma
cholesterol levels without any toxicities. For anti-microRNA therapy against viral infection in
primates, Lanford et al. [69] reported that treatment of chimpanzees chronically infected with
hepatitis C virus with LNA-anti-microRNA-122 resulted in long-lasting suppression of
viremia and improvement of liver pathology with safety profile. Successful study in primates
against virus infection common to a human disease may strongly support clinical trials in
patients with hepatitis C virus infection as well as acute myocarditis.
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