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1. Introduction

The family Taccaceae is composed of two genera, Tacca and Schizocapsa, and about 10 spe‐
cies, with most distributed in tropical regions of Asia, the Pacific Islands, and Australia [1].
Tacca chantrieri André is a perennial plant that occurs in the southeast region of mainland
China, and its rhizomes have been used for the treatment of gastric ulcers, enteritis, and
hepatitis in Chinese folk medicine. According to a Chinese herbal dictionary, T. plantaginea
has also been used for the same purposes as T. chantrieri [2]. The chemical constituents of T.
plantaginea have been extensively examined and a series of highly oxygenated pentacyclic
steroids named taccalonolids, which have a γ-enol lactone, have been isolated as characteris‐
tic components of the herb [3], but there has been only one report of the secondary metabo‐
lites of T. chantrieri, in which a few trivial sterols such as stigmasterol and daucusterol, and a
diosgenin glycoside were found [4]. Therefore, we focused our attention on the constituents
of T. chantrieri rhizomes, and a detailed phytochemical investigation of this herbal medicine
has been carried out.

In this chapter, we describe the phytochemicals isolated from T. chantrieri rhizomes and
their biological activities with a focus on cytotoxicity against human cancer cells.

2. Isolation and structural determination

T. chantrieri specimens were collected in Yunnan Province, People’s Republic of China. The
rhizomes of T. chantrieri (fresh weight, 7.3 kg) were extracted with hot MeOH (3 L × 2). The
MeOH extract was concentrated under reduced pressure, and the extract was passed
through a polystyrene resin (Diaion HP-20) column eluted with MeOH/H2O gradients,
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EtOH, and EtOAc. The 50% MeOH and MeOH eluate portion was subjected to silica gel and
octadecylsilanized silica gel column chromatography to afford a total of 41 compounds, clas‐
sified into diarylheptanoids (1 and 2), diarylheptanoid glucosides (3–9), ergostane gluco‐
sides (10–21), withanolide glucosides (22 and 23), spirostan glycosides (24–28), furostan
glycosides (29–32), pseudofurostan glycosides (33–37), pregnane glycosides (38–40), and a
phenolic glucoside (41) (Fig.1). Their structures were determined through extensive spectro‐
scopic studies and through chemical transformations followed by chromatographic and
spectroscopic analysis.

Figure 1. Extraction, partition, and purification procedures
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3. Diarylheptanoids and diarylheptanoid glucosides

Diarylheptanoids consist of two phenyl groups linked by a linear seven-carbon aliphatic
chain. Compounds 1 and 2 are diarylheptanoids and 3–9 are diarylheptanoid monogluco‐
sides (Fig. 2) [5].
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Figure 2. Structures of 1–9 and their derivatives

Compound 1 was isolated as a viscous syrup, [α]D +1.7˚ (MeOH). HREIMS of 1 showed an
[M]+ peak at m/z 332.1623, corresponding the empirical molecular formula of C19H24O5,
which was also deduced by analysis of its 13C NMR and DEPT spectral data. The IR spec‐
trum suggested the presence of hydroxy groups (3347 cm-1) and aromatic rings (1611 and
1515 cm-1). The UV spectrum showed an absorption maximum due to substituted aromatic
rings (281.4 nm). The planar structure of 1 was assigned as 3,5-dihydroxy-1-(3,4-dihydroxy‐
phenyl)-7-(4-hydroxyphenyl)heptane by analysis of the 1D (1H and 13C) and 2D (1H-1H CO‐
SY, HMQC, and HMBC) spectra. The absolute configuration of the 3,5-dihydroxy moieties
of the new diarylheptanoids were determined by applying the CD exciton chirality method
to acyclic 1,3-dibenzoates [6]. The trimethyl derivative (1a) was converted to the correspond‐
ing 3,5-bis(p-bromobenzoate) (1b) and its CD spectrum exhibited positive (237.4 nm, Δε
+29.9) and negative (253.3 nm, Δε –20.0) Cotton effects, which were consistent with a nega‐
tive chirality. Thus, the absolute configurations were determined as 3R and 5R (Fig. 3). The
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structure of 1 was shown to be (3R,5R)-3,5-dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydrox‐
yphenyl)heptane. In the same way, the structure of 2 was elucidated as (3R,5R)-3,5-dihy‐
droxy-1,7-bis(3,4-dihydroxyphenyl)heptane.

Figure 3. Determination of the absolute configurations at C-3 and C-5 of 1

Compounds 3–9 are diarylheptanoid monoglucosides. Enzymatic hydrolysis of 3–9 with
naringinase gave the diarylheptanoid derivatives and D-glucose. Identification of D-glucose,
including its absolute configuration, was carried out by direct HPLC analysis of the hydro‐
lysates. In the HMBC spectra, a long-range correlation was observed from each anomeric
proton to the C-3 carbon in 3 and 5–9, and to the C-5 carbon in 4.

Diarylheptanoids are known to occur in only a limited number species of higher plants be‐
longing to the families Zingiberaceae [7–10], Betulaceae [11], and Aceraceae [12]. This is the
first isolation of diarylheptanoids from a plant of the family Taccaceae.

4. Ergostane glucosides

Compounds 10–21 are new ergostane glucosides (Fig. 4) [13–15]. Taccasterosides A–C (10–
12) are novel bisdesmosideic oligoglucosides of (24R,25S)-3β-hydroxyergost-5-ene-26-oic
acid (10a), whereas 13–20 are those of (24S,25R)-ergost-5-ene-3β,26-diol (10b). Compound 21
is an ergostane glucoside with the six-membered lactone on the side chain of the aglycone.

Taccasteroside A (10) was obtained as an amorphous solid. Acid hydrolysis of 10 with 1 M
HCl in dixane/H2O gave D-glucose and a C28-sterol as the aglycone (10a). The structure of
10a, except for the absolute configurations at C-24 and C-25, was identified as 3β-hydroxyer‐
gost-5-en-26-oic acid by analysis of its 1H, 13C, and 2D NMR spectra. In order to determine
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the absolute configuration at C-25, 10a was reduced with LiAlH4 to (24R,25S)-ergost-5-
ene-3β,26-diol (10b). Then, 10b was converted to the diastereomeric pairs of (R)-MTPA (10a-
R) and (S)-MTPA (10a-S) esters with respect to the C-26 primary hydroxy group next to the
C-25 chiral center and the differences in the 1H NMR coupling patterns of the H2-26 protons
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Figure 4. Structures of 10–21
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were inspected. The H2-26 protons of 10a-R were observed as a doublet-like signal at δ 4.20
(J = 6.3 Hz), whereas those of 10a-S were observed as a doublet of doublets at δ 4.30 (J = 10.8,
6.6 Hz) and 4.09 (J = 10.8, 7.2 Hz). Application of these spectral data to the empirical rule
reported by Yasuhara et al. [17] allowed us to confirm that the C-25 configuration was exclu‐
sively S. The configuration of C-24 position and other steroidal skeleton were established by
the following chemical transformations. Compound 10b was treated with p-toluenesulfonyl
chloride to give the 26-O-tosylate of 10b (10b-T), which was then reduced with LiAlH4, af‐
fording (24R)-ergost-5-ene-3β-ol, that is, campesterol. The structure of 10a was determined
as (24R,25S)-3β-hydroxyergost-5-en-26-oic acid (Fig. 5).

7 

 
 
Figure 5  
 

a

b

d

O OH

H

OH

H

OTs

H

10b Campesterol10b-T

Reagents and conditions: a, LiAlH4, THF, 0 ºC, 5 h; b, (R)-MTPA or (S)-MTPA, EDC·HCl, 4-DMAP,

CH2Cl2, r.t.,12 h; c, p-TsCl, pyridine, r.t., 6 h; d, LiAlH4, THF, 0 ºC, 5 h

10a

24
25

26

O-(R)-MTPA

H

10b-R
O-(S)-MTPA

H

10b-S

+

c

Figure 5. Chemical transformations of 10a

The severe overlap of the proton signals for the sugar moieties in 10 excluded the possibility of
complete assignment in a straightforward way by conventional 2D NMR methods such as the
1H-1H COSY, 2D TOCSY, and HSQC spectroscopy. The exact structures of the sugar moieties
and their linkage positions of the aglycone were resolved by detailed analysis of the 1D TOCSY
and 2D NMR spectra. The 1H NMR subspectra of individual monosaccharide units were ob‐
tained by using selective irradiation of easily identifiable anomeric proton signals, as well as ir‐
radiation of other nonoverlapping proton signals in a series of 1D TOCSY experiments [17–19].
Subsequent analysis of the 1H-1H COSY spectrum resulted in the sequential assignment of all
the proton resonances due to the seven glucosyl units, including identification of their multip‐
let patterns and coupling constants. The HSQC and HSQC-TOCSY spectra correlated the pro‐
ton  resonances  to  those  of  the  corresponding  one-bond  coupled  carbons,  leading  to
unambiguous assignments of the carbon shifts. The carbon chemical shifts thus assigned were
compared with those of the reference methyl α-D- and β-D-glucosides [20], taking into account
the known effects of O-glycosylation shifts. The comparison indicated that 10 contained three
terminal β-D-glucopyranosyl moieties (Glc′, Glc′′′′, Glc′′′′′′′), three C-4 substituted β-D-glu‐
copyranosyl moieties (Glc′′′, Glc′′′′, Glp′′′′′′), and a C-2 and C-6 disubstituted β-D-glucopyra‐
nosyl moiety (Glc′′). The β-orientations of the anomeric centers of all the glucosyl moieties
were supported by the relatively large J values of their anomeric protons (7.7–8.4 Hz).
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In the HMBC spectrum, the anomeric proton of the terminal glucosyl unit (Glc′) at δ 5.07
exhibited a long-range correlation with C-3 of the aglycone at δ 78.2, indicating that one glu‐
cosyl unit was attached to the C-3 hydroxy group of the aglycone. Consequently, an oligo‐
glucoside composed of six glucosyl units was presumed to be linkage with the C-26 carboxy
group of the aglycone. Further HMBC correlations from H-1 of Glc′′ at δ 6.30 to C-26 of the
aglycone at δ 175.2, H-1 of Glc′′′ at δ 5.20 to C-2 of Glc′′ at δ 82.9, H-1 of Glc′′′′′′′ at δ 5.17 to
C-4 of Glc′′′′′′ at δ 80.9, H-1 of Glc′′′′ at δ 5.16 to C-4 of Glc′′′ at δ 81.5, H-1 of Glc′′′′′ at δ
5.13 to C-4 of Glc′′′′ at δ 80.9, and H-1 of Glc′′′′′′ at δ 4.93 to C-6 of Glc′′ at δ 69.2 confirmed
the hexaglucoside sequence as Glc-(1→4)-Glc-(1→4)-Glc-(1→2)-[Glc-(1→4)-Glc-(1→6)]-Glc,
which was attached to C-26 of the aglycone (Fig. 6). Accordingly, the structure of 10 was elu‐
cidated as (24R,25S)-3β-[(β-D-glucopyranosyl)oxy]-ergost-5-en-26-oic acid O-β-D-glucopyr‐
anosyl-(1→4)-O-β-D-glucopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→2)-O-[O-β-D-
glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)]-β-D-glucopyranosyl ester.

In the same way, the structures of 11–20 were elucidated as shown in Fig. 4.
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Phytosterols and their monoglucosides such as campesterol, stigmasterol, and β-sitosterol,
and their 3-O-glucoside, widely occur in the plant kingdom. However, 10–20 are the first
representatives of oligoglucosides of a phytosterol derivative to have sugar moieties with a
total of four to seven glucose units. The bisdesmosidic nature of these structures, except for
15, is also notable.

5. Withanolide glucosides

Compounds 22 and 23 are withanolide glucosides, named chantriolides A and B (Fig. 7)
[21]. Chantriolides A and B were found to be minor components relative to the other secon‐
dary metabolites concomitantly isolated from T. chantrieri. However, it is notable that witha‐
nolides, which have been isolated almost exclusively from plants of the family Solanaceae
previously [22, 23], have now been found in a species of the family Taccaceae in the study.
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6. Other glycosides

Spirostan glucosides (24–28), furostan glycosides (29–32), pseudofurostan glycosides (33–
37), pregnane glycosides (38–40), and a phenolic glucoside (41) were also isolated from T.
chantrieri rhizomes (Fig. 8) [15, 24–26].

The known naturally occurring 22,26-hydroxyfurostan glycosides exclusively exist in the
form of glycoside, bearing a monosaccharide at C-26 [27]. The monosaccharide among the
furostan glycosides reported thus far is limited to β-d-glucopyranose, except for one furo‐
stan glycoside from Dracaena afromontana, which has an α-l-rhamnopyranosyl group at C-26
[28]. Compound 31 is distinctive in carrying a diglucosyl group, O-glucosyl-(1→6)-glucosyl,
in place of a monoglucosyl unit at C-26.
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Compounds 33 is the corresponding Δ20(22)-furostan glycoside of 29. This was confirmed by
the fact that the peracetate (33a) of 33 agreed with the product (29a) obtained by treatment
of 29 with Ac2O in pyridine at 110 °C for 2.5 h, during which dehydration at C-20 and C-22,
as well as the introduction of an acetyl group to all the hydroxy groups of the sugar moiet‐
ies, occurred (Fig. 9).

The structure of 38, including the absolute configuration at C-25, was found by the follow‐
ing chemical conversion. When the C-20 and C-22 bond of 33a was oxidatively cleaved by
treating it with CrO3 in AcOH at room temperature for 2 h, the resultant product was com‐
pletely consistent with the peracetyl derivative of 38 (38a) (Fig. 9).
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Figure 8. Continued. 
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A few compounds related to 38 and 39 have been isolated [29-31]; however, their C-25 con‐
figuration is not clearly presented in all the reports. In this investigation, we unequivocally
determined the C-25 configuration of 38 to be S by a chemical correlation method. Com‐
pounds 38 and 39 could be defined as pregnane glycosides rather than furostan glycosides.
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7. Biological activity

7.1. Cytotoxic activity against HL-60 cells

The isolated compounds were evaluated for their cytotoxic activity against HL-60 human
promyelocytic leukemia cells by a modified MTT assay method [32]. Diarylheptanoids (1
and 2), diarylheptanoid glucosides (3, 4, 6, and 7), and spirostan glycosides (24 and 28)
showed moderate cytotoxicity (IC50 1.8–6.4 μg/mL) against HL-60 cells. Compounds 5, 8–23,
25–27, and 29–41 did not show apparent cytotoxic activity against HL-60 cells at a sample
concentration of 10 μg/mL.

7.2. Cytotoxic activity and structure–activity relationships of diarylheptanoids and
diarylheptanoid glucosides against HL-60 cells, HSC-2 cells, and HGF

The diarylheptanoids and some derivatives, including 9b prepared by treatment of 9 with
CH2N2, were evaluated for their cytotoxic activities against HL-60 cells, HSC-2 human oral
squamous carcinoma cells, and normal human gingival fibroblasts (HGF) (Table 1). The dia‐
rylheptanoids 1, 2, and 7a, and the diarylheptanoid glucosides 3, 4, 6, and 7, each of which
has three or four phenolic hydroxy groups, showed moderate cytotoxic activity against
HL-60 cells with IC50 values ranging 1.8 to 6.4 μg/mL, while those possessing two phenolic
hydroxy groups (5, 5a, 8, 8a, 9, and 9a) did not exhibit apparent cytotoxic activity even at a
sample concentration of 10 μg/mL. Notably, the diarylheptanoids whose phenolic hydroxy
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groups were all masked with methyl groups (1a, 2a, and 9b) were also cytotoxic. These ob‐
servations suggest that the number of phenolic hydroxy groups contributes to the resultant
cytotoxicity. Compounds 1a, 2a, and 9b showed considerable cytotoxic activity against
HSC-2 cells, whereas they had little effect on normal HGF.

aKey: HL-60 (human promyelocytic leukemia cells); HSC-2 (human oral squamous carcinoma cells); and HGF (normal
human gingival fibroblasts). bnot determined.

Table 1. Cytotoxic activities of compounds 1-9 and their derivates (1a, 4a, 5a, 7a-9a, and 9b), and etopside against
HL-60 cells, HSC-2 cells, and HGFa

7.3. Cytotoxic activity and structure–activity relationships of steroidal glycosides against
HL-60 cells

Spirostan glycosides (24 and 28) showed moderate cytotoxicity (IC50 1.9 and 1.8 μg/mL)
against HL-60 cells. Compounds 25 and 27, the corresponding C-24 hydroxy derivatives of
24 and 28, and 26, the analogue of 24 without the terminal rhamnosyl group linked to C-2 of
the inner glucosyl residue, did not show any cytotoxic activity at a sample concentration of
10 μg/mL. Furostan glycosides (29–32), pseudofurostan glycosides (33–37), and pregnane
glycosides (38–40) also did not show cytotoxic activity. These data suggest that the struc‐
tures of both the aglycone and sugar moieties contribute to the cytotoxicity.
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7.4. Panel screening in the Japanese Foundation for Cancer Research 39 cell line assay

Diarylheptanoid 2 and spirostan glycosides 24, which showed significant cytotoxic activity
against HL-60 cells, were subjected to the Japanese Foundation for Cancer Research 39 cell
line assay [33]. Subsequent evaluation of 2 and 24 showed that the mean concentration re‐
quired for achieving GI50 levels against the panel of cells were 87 μM and 1.8 μM, respective‐
ly. Although 2 and 24 exhibited no significant differential cellar sensitivity, some cell lines
such as colon cancer HCT-116 (GI50 25 μM), ovarian cancer OVCAR-3 (GI50 36 μM), OV‐
CAR-4 (GI50 39 μM), and stomach MKN-7 (GI50 34 μM) were relatively sensitive to 2.

8. Conclusion

Our systematic chemical investigations of T. chantrieri rhizomes revealed that this plant con‐
tains a variety of secondary metabolites, namely, diarylheptanoids, diarylheptanoid gluco‐
sides, steroidal glycosides with the aglycone structures of ergostane, withanolide, spirostan,
furostan, pseudofurostan, and pregnane, as well as a phenolic glucoside. Some diarylhepta‐
noids and steroidal glycosides showed cytotoxicity against human cancer cells. These com‐
pounds may be possible leads for new anticancer drugs.

On the other hand, a number of researchers have reported biological activities of diarylhep‐
tanoids and steroidal glycosides other than cytotoxicity. It has been reported that curcumi‐
noids, well-known diarylheptanoid derivatives, showed antioxidant [34, 35], anti-
inflammatory [35, 36], estrogenic [37, 38], and anticancer [39] effects. Steroidal glycosides
have been shown to have antidiabetic [40, 41], antitumor [42], antitussive [43], antiherpes vi‐
rus [44], and platelet aggregation inhibitory [45] activities. T. chantrieri rhizomes could be
applied to treating a wide variety of ailments as an alternative herbal medicine.
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