
Chapter 5

The Relationship Between Mastication and Cognition

Kin-ya Kubo, Huayue Chen and Minoru Onozuka

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/54911

1. Introduction

Although mastication is primarily involved in food intake and digestion, it also promotes and
preserves general health, including cognitive function. Functional magnetic resonance
imaging (fMRI) and positron emission topography studies recently revealed that mastication
leads to increases in cortical blood flow and activates the somatosensory, supplementary
motor, and insular cortices, as well as the striatum, thalamus, and cerebellum [1]. Masticating
immediately before performing a cognitive task increases blood oxygen levels (BOLD) in the
prefrontal cortex and hippocampus, important structures involved in learning and memory,
thereby improving task performance [1]. Thus, mastication may be a drug-free and simple
method of attenuating the development of senile dementia and stress-related disorders that
are often associated with cognitive dysfunction. Previous epidemiologic studies demonstrated
that a decreased number of residual teeth, decreased denture use, and a small maximal biting
force are directly related to the development of dementia, further supporting the notion that
mastication contributes to maintain cognitive function [2].

Here we provide further evidence supporting the interaction between mastication and
learning and memory, focusing on the function of the hippocampus, which is essential for the
formation of new memories. We first summarize recent progress in understanding how
mastication affects learning and memory. We then describe the impaired function and
pathology of the hippocampus in an animal model of reduced mastication using senescence-
accelerated prone (SAMP8) mice, and discuss human studies showing that mastication
enhances hippocampal-dependent cognitive function. We then describe how occlusal dishar‐
mony is a potential chronic stressor that impedes or suppresses hippocampal-mediated
learning and memory, suggesting that normal occlusion is essential for producing the
ameliorative effects of mastication on stress-induced changes in the hippocampus. Finally, we
focus on the ameliorative effects of mastication on stress-induced suppression of learning and
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memory functions in the hippocampus and on systemic stress responses in both animals and
humans.

2. Dysfunctional mastication and cognitive function

Dysfunctional mastication affects cognitive function, and reduced mastication contributes to
senile dementia, Alzheimer’s disease, and a declining quality of life in the elderly. In partic‐
ular, the systemic effects of tooth loss are an epidemiologic risk factor for Alzheimer’s dis‐
ease [2]. Missing teeth, due to dental caries and periodontitis are common in the elderly, and
reduce their ability to masticate. We created a molarless senescence-accelerated prone
(SAMP8) mouse model of dysfunctional mastication by extracting or cutting the upper mo‐
lar teeth (molarless). SAMP8 mice mature normally for up to 6 months of age, but then ex‐
hibit accelerated aging (with a median life span of 12 months compared with 2- to 3 years
for other strains). SAMP8 mice show clear aging-related impairments in learning and mem‐
ory at 6 months of age [3, 4], and these mice are often used in aging studies. Molarless
SAMP8 mice exhibit age-dependent deficits in spatial learning in the Morris water maze
[5-10] (Fig. 1). The duration of the molarless condition in aged SAMP8 mice correlates with
the level of impaired learning [7], and restoring lost molars with artificial crowns attenuates
the molarless-induced increases in the learning and memory deficits [9]. Masticatory stimu‐
lation is also impaired by a soft-food diet [11], which leads to learning impairment [11]. To‐
gether, these findings indicate that masticatory stimulation is closely related to learning and
memory.

Several morphologic changes are observed in the hippocampus of molarless mice, including
a decreased number of pyramidal cells [6], hypertrophied glial fibrillary acid protein-labeled
astrocytes [7, 10] and decreased dendritic spines in the CA1 region [8], suppressed cell pro‐
liferation in the dentate gyrus [12]. These behavioral and morphologic changes are very sim‐
ilar to aging-related changes in the hippocampus [13]. The decreased masticatory
stimulation resulting from a soft-food diet results in similar morphologic features [14, 15].
Thus, masticatory dysfunction appears to accelerate the aging process in the hippocampus.

Although the relationship between dysfunctional mastication and these behavioral and
morphologic changes in the hippocampus is unclear, there are several possible mechanisms.

Decreased mastication decreases the information input from the oral area to the central
nervous system, which leads to the degeneration of target cells [16], as exercise promotes
axonal sprouting and synaptogenesis [17] and enhances neurogenesis in the hippocampus [18].
Tooth loss or extraction causes degenerative changes in the trigeminal ganglion cell bodies of
the primary sensory neurons innervating the teeth [19] and transganglionic degeneration in
the secondary neurons in the trigeminal spinal tract nucleus [20]. Hence, the impairment in
cognitive function due to masticatory dysfunction might be related to the decreased activity
of the sensory pathways of the oral areas. Further, dysfunctional mastication leads to increased
decreased cholinergic activity. The number of choline acetyltransferase-positive neurons in
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the septal nucleus is decreased in molarless mice [24], and decreased acetylcholine concentra‐
tions are observed in the cerebral cortex and hippocampus [24], as well as decreased acetyl‐
choline release [24] in the hippocampus in response to extracellular stimulation. In rodents,
spatial memory is associated with acetylcholine levels in the hippocampus [25]. Therefore, the
decreased cholinergic activity induced by the molarless condition could contribute learning
impairments.

Decreased mastication may also lead to increases in the plasma corticosterone levels. The
molarless condition in aged SAMP8 mice increases plasma corticosterone levels [5], and
downregulates glucocorticoid receptors (GRs) and GR messenger ribonucleic acid (GR

Figure 1. Effect of molarless condition on spatial learning in the Morris water maze test. The results are expressed as
the mean score (mean ± SE, n=6 for each group) of four trials per day. Note that 9-month-old molarless mice required
a significantly longer time than age-matched controls to reach the platform.
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mRNA) in the hippocampus [21]. The hippocampus contains a high density of GR and is in‐
volved in the negative feedback mechanism with the hypothalamo-pituitary-adrenal axis
via GR, making it very sensitive to corticosterone [22]. The morphologic and behavioral
changes in the hippocampus due to chronic stress or long-term exposure to excessive corti‐
costerone are similar to the changes observed with reduced mastication [23]. In support of
this notion, treatment with the corticosterone synthesis inhibitor metyrapone prevents mo‐
larless-induced learning impairments and neuron loss in the hippocampus [5]. Thus, chronic
stress induced by masticatory dysfunction could lead to learning and memory impairments.

Recent fMRI and positron emission tomography studies in humans revealed that several
brain regions are activated during mastication [26, 27]. We performed fMRI studies in hu‐
mans to evaluate the areas of the brain that are activated in association with chewing. In
these studies, subjects were asked chew gum with no odor or taste components and per‐
form  rhythmic  chewing  at  a  rate  of  approximately  1  Hz.  Bilateral  increases  in  activity
were  observed in  several  brain  areas,  including  the  primary  somatosensory  cortex,  pri‐
mary motor  cortex,  supplementary  motor  area,  premotor  area,  prefrontal  cortex,  insula,
posterior  cortex,  thalamus,  striatum, and cerebellum [26,  27].  Age-dependent changes in
the  chewing-induced  BOLD  signals  were  observed  in  the  primary  sensorimotor  cortex,
cerebellum,  and  thalamus  [26,  27].  The  right  prefrontal  cortex  showed  the  highest  in‐
crease in activity in elderly persons compared to both young adults and young persons
[1] (Fig. 2). The prefrontal cortex is involved in cognitive function [28], and neuronal ac‐
tivity between the right prefrontal cortex and hippocampus might contribute to cognitive
function. An fMRI evaluation of the effects of chewing on brain activity during a work‐
ing memory task showed an increase in BOLD signals in the right premotor cortex, pre‐
cuneus,  thalamus,  hippocampus,  and  inferior  parietal  lobe  [29].  In  another  fMRI
experiment examining the effect  of  chewing on hippocampal  activity in a  spatial  cogni‐
tion task [1],  subjects were shown 16 photographs followed by the same number of pic‐
tures  of  a  plus  character  (+)  on a  green background during each cycle.  Each picture  or
photograph was projected every 2 s during the cycle and the subjects were asked to re‐
member  as  many  of  the  photographs  as  possible.  The  hippocampal  BOLD  signals  in
young subject were strongly increased but no significant difference was seen before and
after chewing, whereas hippocampal activation in aged subject was quite small compared
to that in young subject.  The activation area and the intensity of the fMRI signals were,
however, increased by chewing [1] (Fig. 3 and 4). Memory acquisition in aged subjects is
also significantly enhanced by chewing, whereas chewing had no effect in young subject
[1]  (Fig.  5).  These  findings  in  humans  support  a  link  between  increased  hippocampal
BOLD signals and enhanced memory acquisition.

Further studies are needed to clarify how the reduced oral input activity to the aging hippo‐
campus resulting from masticatory dysfunction differs from reduced activity of other types
sensory pathways.
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Figure 2. Effects of aging on brain regional activity during chewing. Significant signal increases associated with gum
chewing in a young adult subject (A), middle-aged subject (B), and an aged subject (C). Upper section: activated areas
superimposed on a template (P<0.05, corrected for multiple comparisons). Lower section: activated regions superim‐
posed on a T1-weighted MRI scan (P<0.01, uncorrected for multiple comparisons). pfa, prefrontal area; sma, supple‐
mentary motor area; smc, primary sensorimotor cortex; c, cerebellum; i, insula; t, thalamus. Color scale: t value (degree
of freedom=87.12). (Onuzuka et al., 2008, [1] with permission)
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3. Occlusal disharmony and cognitive function

Occlusal disharmony, such as loss of teeth and increases in the vertical dimension of crowns,
bridges, or dentures, causes bruxism or pain in the masticatory muscles and temporomandib‐
ular joints, and general malaise [30, 31]. Studies in SAMP8 mice also show that occlusal
disharmony impairs learning and memory. Using SAMP8 mice, we created a model of occlusal
disharmony by raising the bite by approximately 0.1 mm using dental materials, referred to
as the bite-raised condition. Animals in the bite-raised condition show age-dependent deficits
in spatial learning in the Morris water maze [32-39] (Fig. 6). Raising the bite in aged SAMP8
mice decreases the number of pyramidal cells [34] as well as the number of their dendritic
spines [39], and increases hypertrophy and hyperplasia of grail fibrillary acid protein-labeled
astrocytes [38] in the hippocampal CA1and CA3 regions, suggesting that occlusal disharmony

 

Figure 3. Hippocampal activities in young subject. A Task paradigm. B Significant signal increases associated with pho‐
tograph encoding before and after gum chewing. Hip, hippocampus. Color scale: t value. (Onozuka et al., 2008, [1]
with permission)
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resulting from the bite-raised condition also enhances aging-related changes in the hippo‐
campus.

In rodents and monkeys, alterations of the bite alignment induced by attaching acrylic caps to
the incisors [40-42] or inserting occlusal splints in the maxilla [43, 44] are associated with
increases urinary cortisol levels and plasma corticosterone levels, suggesting that occlusal
disharmony is also a source of stress. In support of this notion, aged bite-raised SAMP8 mice
with learning deficits exhibit marked increase in plasma corticosterone levels [33, 36, 37] and
downregulation of hippocampal GR and GR mRNA [33]. The behavioral and morphologic
changes observed in animals with occlusal disharmony closely resemble the changes induced

Figure 4. Hippocampal activities in an aged subject. A, Significant signal increases are associated with photograph en‐
coding before and after gum chewing. Color scale: t value. B, Changes in signal intensity on an image-by image basis
for 64 successive images during four cycles of encoding of photographs: brown (without chewing) and pink (with
chewing) boxes; plus (+) characters (without boxes) (Onozuka et al., 2008, [1], with permission)
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by chronic stress and/or long-term exposure to glucocorticoid exposure [23, 100]. The hippo‐
campus is very sensitive to corticosterone [22]. These hippocampal behavioral and morpho‐
logic impairments induced by occlusal disharmony are also attenuated by administration of
the corticosterone synthesis inhibitor metyrapone [37]. These findings suggest that occlusal
disharmony-induced changes in learning behavioral and hippocampal morphology due to
increases in the glucocorticoid levels in association with the downregulation of GR and GR
mRNA.

Occlusal disharmony, like masticatory dysfunction, decreases hippocampal activity resulting
from the activity of masticatory organ pathways. In bite-raised aged SAMP8 mice, both
induction of Fos in the hippocampus following a learning task [36] and the number of spines
in hippocampal CA1 pyramidal cells are decreased [39]. Further, the bite-raised condition
leads to a decreased number of choline acetyltransferase-positive neurons in the septal nucleus,
and reduction in extracellular stimulation-induced acetylcholine release [45].

Occlusal disharmony also affects catecholaminergic activity. Altering the bite by placing an
acrylic cap on the lower incisors leads to increases in both dopamine and noradrenaline levels
in the hypothalamus and/or frontal cortex [40-42], and decreases in tyrosine hydroxylase, GTP
cyclohydroxylase I, and serotonin immunoreactivity in the cerebral cortex, caudate nucleus,

Figure 5. Memory acquisition before and after gum chewing for 2 min. A recall test was carried out 20 min after the
encoding experiments. In the recall test, we used 64 photographs at random: 32 of the photographs were repeated
from the encoding test, and the other 32 photographs were newly added. The subject had to judge whether each
photograph had been seen before. (Onozuka et al., 2008, [1], with permission)
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substantia nigra, locus coeruleus, and nucleus raphe dorsalis [46], which are similar to the
changes induced by chronic stress [47]. These changes in the catecholaminergic and seroto‐
nergic systems induced by occlusal disharmony likely affect the innervations of the hippo‐
campus. The bite-raised condition impairs neurogenesis and leads to apoptosis in the
hippocampal dentate gyrus and decreases the expression of hippocampal brain derived
neurotrophic factor, all of which could contribute to the learning impairments observed in
animals with occlusal disharmony.

These findings in animal models were extended to humans. In humans, we used a custom-
made splint that forced the mandible into a retrusive position and a splint without modification
as a control in order to measure BOLD signals during clenching in a malocclusal model [48].
Several regions were activated by clenching, including the premotor cortex, prefrontal cortex,
sensorimotor cortex, and insula. In the malocclusion model, which also induces psychologic
discomfort, clenching further increased BOLD signals in the anterior cingulate cortex and the
amygdala [48]. These findings suggest that clenching under malocclusal conditions induces
emotional stress and/or pain-related neuronal processing in the brain.

Figure 6. Effect of bite-raised condition on spatial learning in the Morris water maze test. The results are expressed as
the mean score (mean ± SE, n=6 for each group) of four trials per day. 9m BR, 9-month-old bite-raised mice; 9m Cont,
9-month-old control mice; 5m BR, 5-month-old bite-raised mice; 5m Cont, 5-month-old control mice; 3m BR, 3-month-
old bite-raised mice; 3m Cont, 3-month-old control mice. Note that 9-month-old bite-raised mice required a signifi‐
cantly longer time to reach the platform than age-matched controls. (Kubo et al., 2007, [34])
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Together these findings suggest that changes in the hippocampus induced by occlusal
disharmony result from increased stress. Occlusal disharmony, like masticatory dysfunction
leads to alterations in the central nervous system, especially the hippocampus. Further studies
are needed to elucidate differences in the effects of dysfunctional mastication and occlusal
disharmony.

4. Mastication and stress coping

The act of chewing, or masticatory stimulation, during stressful conditions may attenuate the ef‐
fects of stress on cognitive function. To examine the effect of mastication on stress-induced be‐
havioral and morphologic changes, we placed mice in a ventilated plastic restraint tube in which
they were only able to move back and forth, but not turn around, to induce restraint stress. Half
of mice were given a wooden stick (diameter, ~2mm) to chew during restraint [12]. As men‐
tioned above, the hippocampus plays a crucial role in memory formation and is highly sensi‐
tive to aging [49, 50] and stress [51]. Increased plasma corticosterone levels suppress synaptic
plasticity in the hippocampus [52] and cell proliferation in the hippocampal dentate gyrus [12]
(Fig. 7). Chewing during a stressful event, on the other hand, attenuates stress-induced impair‐
ments of plasticity in the hippocampus by activating stress-suppressed N-methyl-D-aspartate-
receptor function [53, 54]. Chewing under stress conditions also blocks the stress-induced
suppression of cell generation in the hippocampal dentate gyrus [12]. In adults, neurogenesis in
the hippocampus is required for hippocampus-dependent learning and memory [55]. Thus,
chewing during stress may attenuate stress-induced impairments in cognitive function.

Rodents permitted to chew on a wooden stick during restraint stress showed attenuated
restraint-induced increase in plasma corticosterone levels [12] and corticotrophin releasing
factor expression [56], c-Fos induction [57], and phosphorylation of extracellular signal-
regulated protein kinase 1/2 [58], oxidative stress [59], and nitric oxide [60, 61] in the paraven‐
tricular nucleus of the hypothalamus, compared with controls not provided with a wooden
stick. Thus, chewing under stressful conditions appears to attenuate stress-induced increase
in plasma corticosterone levels by inhibiting the hypothalamo-pituitary-adrenal-axis.

Mastication may also activate histamine neurons through the ventromedial hypothalamus and
mesencephalic trigeminal sensory nucleus [62]. The histamine system could modulate the
activity of the septohippocampal cholinergic system, which is involved in learning and
memory [63]. Chewing under stress conditions increases the release of histamine in the
hippocampus by activating H1 receptors [64]. Therefore, chewing may induce changes in the
amounts of acetylcholine released, thereby attenuating stress-induced impairments in
memory function.

In animals that aggressively chew on a wooden stick during immobilization stress, the stress-
induced release of noradrenaline in the amygdala [65] and Fos-immunoreactivity in the right
medial prefrontal cortex are increased [66], whereas Fos-immunoreactivity in the right central
nucleus of the amygdala [66], and the dopamine response in the medial prefrontal cortex are
decreased [67]. The prefrontal cortex has a crucial role in several cognitive, affective, and
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physiologic processes, and the central nucleus of the amygdala regulates dopamine neuro‐
transmission in the medial prefrontal nucleus [60, 61]. These findings suggest that chewing
during stressful conditions modulates catecholaminergic neurotransmission in the central
nervous system, leading to changes in cognitive function.

Clinical  studies  have  shown  that  offspring  of  mothers  who  suffer  social,  emotional  or
hostile experiences displayed enhanced susceptibility to some mental disorders, including
depression,  schizophrenia and cognitive deficits  [68].  Maternal  stress is  a  suggested risk
factor for impaired brain developmental and anxiety, depressive-like behavior and learn‐
ing deficits  in  rodents  pups [69-71],  and maternal  stress  model  is  often used in  studies
for  depression  and  cognitive  deficits  in  pups.  We  recently  evaluated  whether  chewing
during maternal  restraint  stress  prevents  stress-induced anxiety-like behavior and learn‐
ing impairment in pups. Pregnant mice were exposed to restraint stress beginning on day
15 and continuing until  delivery.  Mice were placed in a ventilated plastic  restraint  tube
in which they were only able to move back and forth, but not turn around, to induce re‐
straint stress. Half of the dams were given a wooden stick (diameter, ~2mm) to chew on
during the restraint stress.  The pups were raised to adulthood and behavioral and mor‐
phologic  changes  were  assessed.  Restraint  stress  during  pregnancy  caused  anxiety-like,
impaired  learning  and  suppressed  cell  proliferation  in  the  hippocampal  dentate  gyrus.
Chewing during restraint stress, however, attenuated the anxiety-like behavior, impaired
learning, and suppressed cell  generation induced by restraint stress.  These findings sug‐
gest  that  maternal  chewing  contributes  to  prevent  stress-induced  anxiety-like  behavior,
learning impairment, and morphologic changes in hippocampus in pups.

In humans, chewing gum alleviates a negative mood, reduces cortisol levels during acute
laboratory-induced psychologic stress [72], and reduces perceived levels of daily stress [73].
These findings indicate that the stress response in human is also ameliorated by chewing.

Additional studies are needed to investigate the mechanisms by which aggressive chewing
under stress conditions attenuates stress-induced changes to the brain.

5. Conclusion

Masticatory dysfunction resulting from tooth loss or extraction, feeding on a soft-diet or
occlusal  disharmony,  induces  pathologic  changes  in  the  hippocampus  and  deficits  in
learning and memory. Aggressive biting or chewing activates several regions in the cen‐
tral  nervous system, including the right prefrontal  cortex,  which is  strongly involved in
learning  and  memory.  Chewing  under  stressful  conditions  attenuates  stress-induced
changes in the brain. These findings together indicate that masticatory function is impor‐
tant for maintaining cognitive function, and chewing during exposure to stress might be
a useful  method of  coping with stress.  Chewing gum may thus be a  simple method to
attenuate  or  delay  the  development  of  dementia  and to  ameliorate  the  effects  of  stress
on the brain.
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Figure 7. Effect of chewing during prenatal stress on learning ability and cell proliferation in the hippocampal dentate
gyrus. Spatial learning in the water maze test (A) and BrdU-positive cells (B). The results are expressed as the mean
score (mean ± SD, n=6 for each group) of four trials per day (A). The results are presented as the mean ± SD (n=5 for
each group). C, control; S, restraint stress; S/C, restraint/chewing. *P<0.05 (B). Note that prenatal stress induced learn‐
ing and memory deficits, and decreased cell proliferation in the hippocampal dentate gyrus. Maternal chewing during
stress inhibits the stress-induced learning and memory deficits, and suppression of cell generation.
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