Abstract

In this chapter, induction plasma technology and its application for synthesis of nanomaterials are introduced. Also, the scientific base for the induction plasma processing of materials is briefly described. Two typical induction plasma systems developed by Tekna for laboratory research and pilot-scale industrial production of nanomaterials, respectively, are presented, together with various examples of the nanopowders, nanotubes, nanorods, and nanowires synthesized using its facilities. The advantages of the induction plasma process over the alternative techniques and its adaptability into industrial-scale operation are particularly illustrated. Some specific issues related to the nanomaterial synthesis process are also discussed.

Keywords: Inductively coupled plasma, synthesis, nanomaterials, nanopowders, nanorods, nanotubes, nanowires

1. Introduction

Nanomaterials have been evolving into a large family including members such as nanoparticles, nanocomposites, nanocapsules, nanoporous materials, nanofibers, nanowires, nanorods, nanotubes, fullerenes, quantum dots, and nanocoatings. Interest in nanomaterials has been continuously increasing in the past decades. Owing to their unusual properties in various aspects such as magnetic, conductive, optical, energetic, and catalytic, nanomaterials are finding more and more industrial applications. [1–5] So far, there are hundreds of types of nanomaterials in use or under development. The market and applications of the nanomaterials can be found in various industries. Examples include inks and pigments, coatings and adhesives in polymers, ultrafine polishing compounds [silicon dioxide (SiO₂) and aluminum oxide (Al₂O₃)], sunscreens and other personal care products [titanium dioxide (TiO₂) and zinc oxide (ZnO)], synthetic bone and tooth materials (calcium and phosphate), life sciences, healthcare and medicines (drug delivery and bioanalysis), aerospace (e.g., lighter and stronger...
nanocomposites for weight reduction), defense (solid-fuel rocket propellant, new “thermo-
baric” bombs, etc.), energy (batteries, fuel cells, solar cells, etc.) [Li2TiO3 and silicon (Si)],
information technology, telecom and electronics (MLCC) [titanate and nickel (Ni)], automotive
and transportation [auto lubricants and copper (Cu)], light-emitting diodes (LEDs; rare earth
and nanophosphors), textiles, catalysts, foods and drinks [dietary supplements and silver
(Ag)], magnetic separations and MRI contrast agents (iron oxide), 3D printing/additive
manufacturing, and so on. It was predicted that by 2017, nanomaterials’ share of the market
will have increased to 76.3% on total sales of 37.3 billions.[4] In recent years, 3D printing/
additive manufacturing has been developed rapidly. Sales of 3D printing materials are to grow
at a compound annual growth rate (CAGR) of 17.9% during the period from 2015 to 2019,
reaching at $650 millions in 2019.[5] The continuously increased demand for nanomaterials
stimulated the extensive research and development (R&D) of various techniques and proc-
esses,[6] among them thermal plasma being one of the most widely used techniques.

While different techniques and processes have their own features, they all face the same
challenges on the road to commercialization, that is, productivity, quality controllability, and
affordability. Induction plasma technology used as one of the alternatives for nanomaterial
preparation stands out owing to its numerous unique advantages. It has a large-volume, high-
temperature plasma zone. It allows for central injection of feed stock, making possible in-flight
evaporation of even the highest boiling-point raw materials. It can be operated under various
atmospheres, permitting synthesis of various nanomaterials. Due to the extensive R&D in the
last two decades, induction plasma process has become a much more reliable and efficient
technology than ever, making it suitable for preparation of nanomaterials in both laboratory
and industrial scales. Indeed, induction plasma technology used for synthesis of nanomaterials
has gained increased popularity around the world in recent years,[6–39] thanks to a great
extent to the availability and improvement of the technology itself.

Boron nitride nanotube (BNNT), due to its potential superior properties over carbon nanotube,
has attracted people’s interests since its discovery in 1995.[40–47] This material was synthe-
sized using arc discharge between a BN-packed tungsten (W) rod and a cooled Cu elec-
trode[40] and laser ablation technique under high pressure.[44] However, these techniques
resulted in very low productivity of less than a few grams per hour. It was recently demon-
strated that induction plasma process can be conveniently used to produce BNNT at large
quantity (>180 g/day).[45]

2. Theoretical

2.1. Induction plasma generation and its properties

Induction plasma is generated through induction coupling mechanism. When an alternative
current of radio frequency and high voltage is imposed on a spiral coil, the conductor placed
in the center of the coil will be heated up under the alternative electromagnetic field. Intro-
ducing a continuum gas flow into such coil could heat the gas and ionize it into plasma. The
plasma so generated is called inductively coupled plasma or induction plasma in short. Figure
1(a) and (b) shows the mechanism of induction plasma torch and the photo of induction plasma generated by high-frequency discharge, respectively.

Figure 1. (a) Schematic of the mechanism of induction plasma torch (b) Photo of induction plasma generated by high frequency discharge

Tekna has been the world leader in the induction plasma technology. Its proprietary plasma torches have been widely used in numerous research laboratories and industrial R&D centers, as shown in Figure 2(a) and (b). They are featured by following characteristics: (1) ceramic tube used to confine plasma providing a high-purity processing environment; (2) solid torch body encapsulating the induction coil, which eases the manipulation during maintenance and certifies a perfect positioning of the coil during assembly; (3) easily interchangeable nozzle design allowing for replacement of nozzles of various diameters and configurations; and (4) variable position of the central injection probe for optimum performance based on process needs. Tekna has developed different models of plasma torches to match different power supplies of various frequency and power level requirements (see Table 1).

Induction plasma process has numerous advantageous characteristics. It is electrodeless and thus has no issue of erosion-caused contamination. As a clean heat source, it is particularly suitable for high-purity material processing. Because of its relatively large volume of high temperature zone and low gas velocity, induction plasma is an ideal tool for high-temperature material processing where melting or evaporation of material is required. Induction plasma is not only a heat source but can be a chemical reaction source as well due to the fact that almost
any kinds of gases (Ar, He, H₂, O₂, N₂, air, NH₃, CH₄, or mixtures) can be used as the plasma working gas.

![Fig. 1(a) Schematic of the mechanism of induction plasma torch](image1)

Figure 1. (a) Schematic of the mechanism of induction plasma torch (b) Photo of induction plasma generated by high frequency discharge

![Fig. 2(a) Tekna’s ceramic wall plasma torch design](image2)

Figure 2. (a) Tekna’s ceramic wall plasma torch design (U.S. Patent #5200595 and International PCT/CA92/00156) (b) Tekna’s plasma torches used for different power levels

<table>
<thead>
<tr>
<th>Torch</th>
<th>Frequency</th>
<th>Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL-25</td>
<td>4-5 MHz</td>
<td>15</td>
</tr>
<tr>
<td>PL-35</td>
<td>2-4 MHz</td>
<td>30</td>
</tr>
<tr>
<td>PL-50</td>
<td>2-4 MHz</td>
<td>60</td>
</tr>
<tr>
<td>PL-70</td>
<td>400 kHz-4 MHz</td>
<td>100</td>
</tr>
<tr>
<td>PL-100</td>
<td>400 kHz-4 MHz</td>
<td>200-500</td>
</tr>
</tbody>
</table>

Table 1. Tekna’s induction plasma torch series

In an induction plasma torch, the highest temperatures always occur away from the axis. This is caused by the skin effect existing in high-frequency electromagnetic field. However, the skin depth is an important parameter in determining the coupling efficiency of the induction plasma torch. The skin depth can be expressed as follows:

\[
\text{Skin depth } \delta = \frac{1}{\sqrt{\pi \mu_0 \sigma f}}.
\]
where $\xi_0 = 4\pi \times 10^{-7}$ (H/m or Vs/Am) is the magnetic conductivity under vacuum; σ is the electrical conductivity of the load (mho/m or A/Vm) ($\sigma = 1000$ S/m for Ar plasma, corresponding to about 8000 K); f is the working frequency (Hz or s$^{-1}$). If $f = 3$ MHz, then the skin depth $\delta = 9$ mm. An illustration of the skin depth in an induction plasma torch is shown in Figure 3.

![Figure 3. Illustration of the skin depth in an induction plasma torch](image)

Based on the modeling and experimental results of a standard PL-50 plasma torch,[48] the typical velocity of plasma/particle in the torch is 20–80 m/s, and the resultant typical residence time of particles in the plasma is about 0.5–2 ms.

To make better use of the limited residence time and to increase the heating rates of the particles injected into the plasma, one should increase the enthalpy and thermal conductivity of the plasma, which can usually be achieved by changing the plasma gas compositions. The enthalpies of some of the most common plasma gases (H_2, N_2, O_2, He, Ar) as a function of temperature are shown in Figure 4, where, in general, hydrogen plasma has the highest enthalpy ($350–450$ kJ/kg $\times 10^3$ in the range of 6000–10,000 K), whereas the argon plasma has the lowest ($2–5$ kJ/kg $\times 10^3$ for the same temperature range). Figures 5 and 6 show the thermal conductivity of pure nitrogen plasma and ($\text{Ar} + \text{H}_2$) mixture plasma as a function of temperature, respectively. As shown in Fig. 6, pure argon has poor thermal conductivity in the working temperature range, but addition of hydrogen can significantly increase the thermal conductivity of ($\text{Ar} + \text{H}_2$) mixture plasma. The occurrence of peak values in thermal conductivity for both Figures 5 and 6 is due to the contribution of dissociation of molecules to atoms ($\text{N}_2 \rightarrow \text{N}$ or $\text{H}_2 \rightarrow \text{H}$) or ionization of atoms to ions ($\text{N} \rightarrow \text{N}^+$ or $\text{H} \rightarrow \text{H}^+$).

2.2. Induction plasma used for nanomaterial synthesis

Synthesis of nanomaterials in induction plasma is accomplished by either pure physical process or chemical process. The physical process is an evaporation–condensation process, in which the material is first heated up and evaporated in the plasma, and the resulting vapors are subsequently subjected to a very rapid quench where homogeneous nucleation gives rise to the formation of nanoparticles. The chemical process refers to any synthesis route where
Figure 4. Specific enthalpy of various gases as a function of temperature (at atmospheric pressure) [6, 49].

Figure 5. Thermal conductivity of nitrogen as a function of temperature (at atmospheric pressure) [6, 49].
chemical reaction is involved. It is an evaporation–reaction–condensation process, in which one or more gaseous reactants react with the vapor generated from the material introduced into the plasma reactor, and the resultant product condenses to form nanoparticles. The gaseous reactant can be a plasma gas component or separately injected at appropriate locations (into the plasma zone or in the reactor). Nanomaterial syntheses through thermal decompositions and pyrolysis of the precursors in the plasma followed by condensation are also included in the chemical processes. The quench agent used can be inert gases such as Ar and N\textsubscript{2} or reactive gases such as CO\textsubscript{2}, CH\textsubscript{4}, and NH\textsubscript{3}, depending on the needs of the process and the type of the nanomaterial to be synthesized. Based on the modeling results by Guo et al.,\[6\] gas quench rate achievable in a typical plasma reactor is in the order of magnitude of 106 K/s. Porous filters (metallic or polymeric) are usually used for collection of the nanomaterials prepared, which are installed downstream from the plasma reactor section. In the case of synthesis of metallic or other reactive powders, special care should be taken to powder handling and manipulation. Usually, passivation of the powders is required prior to their removal from the filtration section of the process or from a glove box.

Figure 7 illustrates the process steps of nanomaterials’ synthesis in induction plasma. The in-flight vaporization of the feed material is a prerequisite for synthesis of uniform nanomaterials. The fed particle gets heat from plasma through convection heat transfer and internal conduction while it loses heat to environment through radiation. To ensure the vaporization of the particle, the total net heat it absorbs has to be greater than the sum of the heat it needs to be
heated up to vaporization point and its latent heats of melting and vaporization. A heat balance analysis for in-flight plasma vaporization of fed powders is illustrated in Figure 8.

Figure 7. Illustration of nanopowder formation in RF plasma through two different routes.

Figure 8. An analysis of thermal balance for in-flight plasma vaporization of fed powders.

In-flight Melting and VAPORIZATION of Powders

\[
q_{cv} = h_a(T_a - T_s)
\]

\[
q_R = \sigma_{BK}(T_s^4 - T_a^4)
\]

\[
Q_{net} = q_{cv} - q_R
\]

\[
= h_a(T_a - T_p) - \sigma_{BK}(T_s^4 - T_a^4)
\]

For complete vaporization

\[
\int Q_{net} \, dt > m \, C_p \left(T_v - T_0 \right) + m \lambda_{m+v}
\]

Figure 8. An analysis of thermal balance for in-flight plasma vaporization of fed powders.
Table 2 lists out a detailed overall comparison of the induction plasma to the alternative techniques used for synthesis of nanomaterials.

<table>
<thead>
<tr>
<th>Technology principle</th>
<th>Wet Process (Sol-gel)</th>
<th>Ball Milling</th>
<th>Lasers</th>
<th>DC Plasma</th>
<th>Induction Plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powder quality</td>
<td>High purity but</td>
<td>Limited purity and</td>
<td>High purity and</td>
<td>Limited purity,</td>
<td>High purity, spherical</td>
</tr>
<tr>
<td></td>
<td>agglomerated. Non</td>
<td>uniformity of the</td>
<td>quality of the</td>
<td>highly agglomerated</td>
<td>particles with soft</td>
</tr>
<tr>
<td></td>
<td>spherical and poor</td>
<td>composition</td>
<td>powder</td>
<td></td>
<td>agglomeration</td>
</tr>
<tr>
<td></td>
<td>crystallinity</td>
<td>Limited to oxide</td>
<td>Limited to low</td>
<td>Limited by the small</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ceramics;</td>
<td>capacity;</td>
<td>volume of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impurities pick-up;</td>
<td></td>
<td>discharge;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>production</td>
<td></td>
<td>Presence of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>limited type of</td>
<td></td>
<td>electrodes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>powders (metallic)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Precursor selectivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexibility /</td>
<td>Limited to oxide</td>
<td>Limited to low</td>
<td>Limited by the small</td>
<td></td>
<td></td>
</tr>
<tr>
<td>limitation</td>
<td>ceramics;</td>
<td>capacity;</td>
<td>volume of the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lengthy post</td>
<td>Impurities pick-up;</td>
<td></td>
<td>discharge;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>treatment (filtration,</td>
<td>production</td>
<td></td>
<td>Presence of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>drying, de-</td>
<td>limited type of</td>
<td></td>
<td>electrodes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>agglomeration, etc.)</td>
<td>powders (metallic)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Continuous</td>
<td>continuous</td>
<td>Continuous</td>
<td>Continuous, scalable</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>Low cost</td>
<td>Low cost</td>
<td>High cost</td>
<td>Mid cost</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Comparison of various techniques for nanomaterial synthesis

3. Experimental

3.1. Resume of the nanomaterials synthesized using induction plasma system

Over the past two decades or so, Tekna has been actively involved in R&D of the nanomaterial synthesis using induction plasma technology. It has developed turnkey systems used for both laboratory-scale and pilot-scale production of various nanomaterials. A typical plasma material processing system is composed of the following sections: (1) feedstock preparation and injection; (2) evaporation/reaction; (3) quench; (4) powder collection; and (5) process control. Figure 9 shows schematically a pilot-scale 60 kW induction plasma reactor set-up used for nanomaterial synthesis at Tekna, which is featured by full automation, flexible operation, gas recycling, and powder handling in glove box. Figure 10 shows a complete laboratory-scale 15 kW induction plasma system, which is a compact design and used essentially for production of small samples in research projects. The typical size of the nanoparticles produced ranges from 15 to 200 nm, depending on the material type and operating conditions employed. A summary on the nanomaterials synthesized at Tekna’s systems is detailed in Table 3. The list
of materials is getting longer as more activities are carried out to meet the increased demands from the market.

![Diagram of the 60 kW pilot-scale reactor and powder collection system](image1)

![Photo of the 60 kW system (3 MHz), built by Tekna](image2)

Figure 9. Tek60 Nano - 60 kW pilot-scale RF induction plasma set-up used for nanomaterial synthesis at Tekna

3.2. Synthesis of pure metals and alloys (Al, Cu, Ag, Ni, Fe, Co, Cr, Si, B, Mo, Ta, W, Re, etc.)

Nanosized metal or alloy powders have been prepared through pure evaporation–condensation manner. Coarse particles of pure metal or alloy are injected into induction plasma torch for vaporization and recondensation. The particle sizes and distributions of the feedstock ought to be carefully selected to obtain the optimal results of the nanomaterials synthesized. An alternative route used often for synthesis of pure metal powders is to go through pyrolysis or decomposition of metal-containing precursors in induction plasma.

Figure 11 shows the characteristics of the nanosized aluminum (Al), Ni, Ag, Cu, Si, chromium (Cr), boron (B), molybdenum (Mo), and tungsten (W) powders. In the case of Ni, it was also synthesized from the decomposition of nickel carbonyl (Ni(CO)$_4$) in plasma (Figure 11(b-2)). These examples represent the group of materials with low boiling points (<2600°C), medium boiling points (2600–4000°C), and high boiling points (4000–6000°C), respectively. In general, metallic nanoparticles appear spherical while it is also common that some particles have polyhedron shapes as their sizes are reduced, as revealed by the high-magnification field emission scanning electron microscope (FE-SEM) pictures of Ni, B, and Mo in Figure 11(b-1), (g), and (h-2), respectively.
Fine metallic powders can be highly pyrophoric, handling and storage of such powders are, therefore, of great concern to users. The passivation of the particle surface is a very important task during the preparation of the nanometric metal powders. The passivation can be performed in dry conditions, such as controlled oxidation with air, or in wet conditions, such as immersion in liquid. Other sophisticated passivation methods include polymer coating, surface carburetion, and nitridation.

Table 3. Summary of nanomaterials synthesized using Tekna’s induction plasma systems

<table>
<thead>
<tr>
<th>Type of powders</th>
<th>Examples</th>
<th>Precursors</th>
<th>Mean size, (d_p) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure metals</td>
<td>Al, Cu, Ag, Ni, Fe, Co, Cr, Mo, Ta, W, Re, Si, B</td>
<td>Solid/gas phases</td>
<td>15 - 200</td>
</tr>
<tr>
<td>Alloys/Composites</td>
<td>Al-Mg, Co-Cr, Si-Sn, Si-Zn, Co-Cr(_2)O(_3), Co-SiO(_2), Co-TiO(_2)</td>
<td>Solid/gas phases</td>
<td>15 - 200</td>
</tr>
<tr>
<td>Carbides</td>
<td>SiC, B(_6)C, Mo(_2)C, WC, TaC,...</td>
<td>Solid/liquid/gas phases</td>
<td>30 - 100</td>
</tr>
<tr>
<td>Nitrides</td>
<td>Si(_3)N(_4), AlN, BN</td>
<td>Solid/liquid/gas phases</td>
<td>30 - 100</td>
</tr>
<tr>
<td>Oxides</td>
<td>CuO, Al(_2)O(_3), MoO(_3), TiO(_2), GeO(_2), CeO(_2), Y(_2)O(_3), SiO(_2), SiO(_2), In(_2)O(_3), SnO(_2) (ITO), ZnO, ZrO(_2)+La(_2)O(_3)+Al(_2)O(_3), Nano-glasses</td>
<td>Solid/liquid/gas phases</td>
<td>20 - 200</td>
</tr>
<tr>
<td>Others</td>
<td>C-nanotubes, BN nanotubes, ZnS, ZnO nanorods, Si nanowires</td>
<td>Solid/gas phases</td>
<td></td>
</tr>
</tbody>
</table>
3.3. Synthesis of oxides and composites (CuO, Al₂O₃, MoO₃, TiO₂, GeO₂, CeO₂, Y₂O₃, SiO₂, SiO₂, SnO₂, In₂O₃-SnO₂ (ITO), ZnO, ZrO₂ + La₂O₃ + Al₂O₃, ZrO₂, Gd₂O₃⋅2ZrO₂, nanoglasses, etc.)

Nanometric oxide powders can be synthesized from oxidation of pure metal or pyrolysis of selected compound (gaseous, liquid, or solid) in induction plasma. In either case, the result depends on the prior evaporation of the injected starting materials, followed by oxidation of the metal vapor by plasma gas (air or oxygen) and condensation of the vapor phase. As mentioned earlier, induction plasma can be operated under different atmospheres. Using oxygen as working gas in induction plasma torch is a convenient choice. It should be mentioned that the oxidation reaction could be highly exothermic. The heat generated could help in evaporation of the feedstock on one hand, but it can also cause reactor temperature rise on the other hand. Thus, extra quench capacity may be required to control the particle sizes and
to avoid agglomeration of the nanopowders produced. Another approach for synthesis of nano-oxide powders is to evaporate the coarse feedstock of same composition in oxygen plasma followed by recondensation. This route could, however, be more challenging because of the high demand of energy intensity and the difficulty of maintaining chemical composition for some materials. The stoichiometry of the product powders obtained could be different from the starting materials after the plasma vaporization and recondensation process.

![Figure 12. Examples of nanometric oxide powders synthesized [67-89]](http://dx.doi.org/10.5772/62549)

Some of the examples of the synthesized nano-oxide powders are shown in Figure 12(a–j), respectively, which are nanosized copper oxide (CuO), SiO$_2$, TiO$_2$, Al$_2$O$_3$, nanoglass (PbO-based), nanoglass (borosilicate-based), indium tin oxide (ITO), silicon monoxide (SiO),
gadolinium zirconate (Gd₂O₃⋅2ZrO₂) and ceria (CeO₂) powders. These powders were synthesized using Tekna’s 60 kW system. The CuO, SiO₂, TiO₂, and Al₂O₃ powders were synthesized from the reaction of Cu, Si, titanium (Ti), and Al with oxygen in plasma, respectively. In the case of CuO, study was made how to ensure the full oxidation of the injected Cu particles in oxygen plasma. Cu has two states of oxidation, i.e., tenorite (CuO) and cuprite (Cu₂O). It was found that to convert the pure Cu into tenorite, two major parameters had to be well controlled, i.e., oxygen concentration in plasma and the temperature in the reactor.

The nanoglass powders and nano-ITO were synthesized from the evaporation and condensation of coarse feedstock powders in oxygen plasma. By controlling the operating conditions, nanosized glass powders of mean sizes of 44 nm and 157 nm were obtained (Figure 12(f-1) and (f-2), respectively). Nano-SiO₂ particles were synthesized through controlled reduction of SiO₂ powders in induction plasma. Gadolinium zirconate (Gd₂O₃⋅2ZrO₂) nanopowders were synthesized from the co-injection of gadolinium- and zirconium-containing precursors into oxygen plasma. The CeO₂ powders were synthesized from two different types of precursors in oxygen plasma. One was a solid precursor, whereas the other was a liquid precursor. In both cases, single-phase CeO₂ were obtained with the mean particle sizes of less than 20 nm.

3.4. Synthesis of advanced non-oxide ceramics (SiC, Si₃N₄, B₄C, BN, AlN, TiN, WC, TaC, ZnS, etc.)

Non-oxide ceramics are mostly synthesized through chemical reaction in a plasma reactor. Gaseous or liquid organic precursors are often used together with carburization or nitridation agents for synthesis of non-oxide nanomaterials such as silicon carbide (SiC), silicon nitride (Si₃N₄), aluminum nitride (AlN), titanium nitride (TiN), and boron nitride (BN) through vapor-phase reaction in induction plasma. Examples include synthesis of nano-SiC from injection of silane and methane (SiH₄ + CH₄) or methyltrichlosilane (CH₃SiCl₃) into plasma and synthesis of nano-Si₃N₄ from injection of silane and ammonia (SiH₄ + NH₃) into plasma. Solid precursors can also be used for synthesizing non-oxide ceramic powders in induction plasma reactor, carburization of Si powder for SiC, and nitridation of Al powder for AlN, for instance. Pure physical process of evaporation–condensation can be used as well for producing some types of ceramic powders that have stable melting and boiling temperatures such as boron carbide (B₄C). It should be pointed out, however, that the evaporation of non-oxide materials often requires very high energy density and long residence time, and, thus, the powder productivity will be very limited. As examples, Figure 13(a-1) and (a-2) shows the micrographs of the nano-SiC synthesized from co-injection of (Si + CH₄) into induction plasma torch; Figure 13(b) shows the nano-ZnS particles from evaporation and recondensation of the coarse ZnS powders in plasma; Figure 13(c-1) and (c-2) shows nanosized B₄C powders synthesized from solid and liquid precursors, respectively, at Tekna’s 60 kW induction plasma unit. X-ray diffraction (XRD) and chemical analyses reveal that these powders consist of predominant B₄C along with some free B and C.
3.5. Synthesis of other advanced nanomaterials (CNT, BNNT, ZnO nanorods, Si nanowires, etc.)

Induction plasma processes have been successfully used for synthesis of carbon nanotubes, BNNTs, nanorods, and nanowires. Figure 14(a) shows the micrograph of zinc oxide nanorods synthesized from decomposition of zinc-containing compound in oxygen plasma at Tekna’s 15 kW unit. Figure 14(b) and (c) shows the micrographs of SiO and Si nanowires, respectively, synthesized at the 15 kW and 60 kW plasma unit. They were obtained by injection of coarse SiO or Si powders into hydrogen or neutral plasma under carefully controlled operating conditions. Figure 14(d) and (e) shows the carbon nanotubes synthesized from different carbon-containing precursors in hydrogen plasma at Tekna and by NRC, respectively. The BNNTs can be synthesized from injection of hexagonal BN powders into induction plasma under a wide range of operating conditions. Figure 14(f) and (g) shows some of the BNNT results obtained.
All of these above-mentioned results indicate that induction plasma can indeed be a promising tool for synthesis of various nanomaterials.

4. Discussion

4.1. Particle size and distribution

The particle size and distribution of nanopowders synthesized depend on both the evaporation of the feedstock and the quench of the vapour formed, which can be controlled by a number of plasma processing parameters. In the case of solid particle injected into the plasma, the nanopowders obtained could have included large micrometric particles if the feedstock was not completely vaporized in the plasma. If the required quench condition is not present, the nanoparticles formed could grow and agglomerate into large particles. The cooling rate of the gaseous product can determine both the particle sizes and their distributions. As the temperatures decrease, vapor condenses to liquid droplets and then solidifies to nanoparticles. According to the equation by Guo et al.,[6] the diameter of the droplets \(d_p \) is predominantly determined by the degree of supersaturation of vapor \(S_v \). The greater the \(S_v \), the smaller the \(d_p \). The \(S_v \), on the other hand, is inversely proportional to the temperature \(T \). The lower the \(T \), the greater the \(S_v \). Therefore, the cooling rate of vapor has to be extremely fast to obtain ultra...
fine nanometric particles. Such a high-quench rate is usually achieved through proper design of reactor and injection of large amount of cooling gas, resulting in a typical cooling rate in the range of 10^5 to 10^6 K/s or higher.

Figure 15(a) shows an example that the particle size of germanium dioxide was a function of the quench gas flow rate used. The GeO$_2$ was synthesized from injection of germanium tetrachloride (GeCl$_4$) into oxygen plasma. The micrographs of the corresponding powders produced are shown in Figure 15(b-1–3), respectively. Figure 16 shows that different particle sizes and morphologies can also be obtained by altering quench and plasma operating conditions in the evaporation–recondensation of solid precursors.

![Graph showing mean particle size vs. flow rate of quench gas for GeO$_2$ powders](image)

(a) Particle size as a function of quench gas flow rate.

(b) SEM of the germanium oxide (GeO$_2$) particles produced from (GeCl$_4$+O$_2$) with different quench rates.

Figure 15. Effects of gas quench rates on the morphology and particle size of the nanopowders synthesized – liquid precursor

In the case of chemical reaction involved in the evaporation–condensation process, the control of quench rate is more delicate. Sufficiently high temperatures should be maintained in order for the reaction to complete before quench is introduced.
4.2. Chemical composition

In the synthesis of nanomaterials other than pure metals, there will be always some reactions involved during the plasma process. It remains a big challenge to ensure the completeness of desired reaction or to avoid the occurrence of undesired reaction under plasma conditions. Whether it is synthesis of oxide from oxidation of solid particles or synthesis of carbide or nitride from carburetion or nitridation of condensed phases, undesired by-products or impurities could be present in the product powders. Obtaining a satisfactory purity or chemical composition of the product powder will require not only the optimization of the plasma processing parameters but very often a proper process and reactor design as well. As example, in the process of synthesis of nanometric CuO the product powders obtained may contain both CuO and Cu$_2$O phases.[6] To obtain pure CuO phase, certain measures had been taken, which include changing raw powder and its feeding conditions, modifying reactor structure to extend the high-temperature profile, and optimizing the plasma operating conditions. In the process of B$_4$C synthesis, the as-produced B$_4$C nanomaterials could contain free B, free C, and even some boron oxide.[6] These impurities came from different sources: free B was due to incomplete conversion of the B-containing precursor used; free C could be due to either incomplete reaction or excessive injection of the C-containing reacting agent; and the B$_2$O$_3$ could be due to oxidation of the unreacted B-containing precursor or the nanosized B$_4$C powders synthesized. It is not unlikely that nano-B$_4$C could be sensitive to air, and thus special care is needed for the handling of such powders after synthesis.

4.3. Processing efficiency

Induction plasma offers a simple tool for nanomaterial synthesis. Its efficiency, to a great extent, relies on the in-flight vaporization of fed materials in the high-temperature plasma. In order for the materials to be heated up sufficiently to evaporation, the fed materials should be all exposed to the high-temperature plasma. The evaporation rate of the fed materials often determines the production rate of the desired nanomaterial. In the case of particle injection, it was observed that the evaporation rate was closely related to the dispersion of fed particles in the plasma zones. When the powders are injected into plasma using a column-like pattern, some particles in the axial direction could not get adequate heating before being carried away from plasma zone. Poor dispersion greatly limits the process efficiency and the productivity.
of the nanomaterial. A good dispersion allows for full utilization of the plasma energy at higher throughputs and thus results in higher production rate. Consequently, efforts should be made to improve the design of particle injector and to optimize the particle injection conditions. As examples, Figure 17 shows the comparison of powder dispersion patterns of three different types of particle injectors: Figure 17(a) pattern has minimal dispersion; Figure 17(b) pattern has limited dispersion; and Figure 17(c) pattern provides much improved dispersion. It can be anticipated that the energy utilization efficiency and powder productivity will increase as the dispersion is improved. To quantify the effect of the different types of injectors on the powder processing efficiencies, tests of spheroidization of Ti and Mo powders were carried out at Tekna’s 60 kW induction plasma system. Spheroidization of Ti and Mo powders requires the particles injected into the plasma to be heated up to above 1668°C and 2623°C, respectively, for melting, followed by solidification. The raw powders were introduced into plasma using different injection probes at the same feed rate. After plasma treatment, the collected powders were evaluated by spheroidization efficiency or by measurement of tap density. The comparative test results for both Ti and Mo spheroidization are given in Table 4, showing that the Ti powder spheroidization efficiency was only 20% and 31%, respectively, with the powder injections shown in Figure 17(a) and (b). Significant increase in spheroidization was achieved with the much improved injection shown in Fig. 17(c), as the efficiency reached 90% under the same operating conditions. In the case of Mo spheroidization, the same trend was observed. The SEM micrographs reveal many more spherical particles obtained with injector 3 than with injector 1, as shown in Table 4. Higher spheroidization arised from better melting and densification of the particles. Therefore, the tap density of the Mo powders increased from 2.613 g/cm3 for raw to 4.582 g/cm3 after plasma treatment with the poor dispersion straight injection and also increased to 6.555 g/cm3 with the well-dispersed powder injection. Based on these results, one can expect similar effect in the processes of nanomaterial synthesis. The difference lies in that in the latter case, the dispersed particles must be heated up to boiling temperatures in plasma for being completely evaporated.

<table>
<thead>
<tr>
<th>Powder type and feed rate</th>
<th>Spheroidization efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powder type and feed rate</td>
<td>Injector 1</td>
</tr>
<tr>
<td>(Ti, -100 mesh) 9.6 kg/hr</td>
<td>20%</td>
</tr>
</tbody>
</table>
Table 4. Comparison of probe injectors vs. powder spheroidization efficiency

<table>
<thead>
<tr>
<th>Powder type and feed rate</th>
<th>Spheroidization efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Injector 1</td>
</tr>
<tr>
<td>(Mo, 10 - 400 μm; Tap density = 2,613 g/cm³; 6 kg/hr)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tap density = 4,582 g/cm³</td>
</tr>
</tbody>
</table>

Figure 17. Particle dispersion patterns vs. probe design and injection conditions.

5. Summary and conclusion

Various nanomaterials have been successfully produced using Tekna’s induction plasma systems. The production rates and product compositions depend on the type of precursor,
reaction route, feeding conditions, plasma power level, and other processing parameters used. An improved dispersion of the fed materials in the plasma can significantly increase the productivity of the nanomaterials synthesized under the same operating conditions. Numerous quench methods and designs can be employed to control the particle sizes and the surface of the nanopowders produced. More developmental work will be required in the aspects of passivation and handling of reactive nanomaterials and classification and separation of the nanoparticles as-synthesized. Compared to the alternative techniques, induction plasma used for nanomaterial synthesis has the advantages of high purity, high versatility, scalability, and good controllability. It can be used in both laboratory and industrial scales.

Author details

Jiayin Guo’
Address all correspondence to: jiayin.guo@tekna.com
Tekna Plasma Systems Inc., Sherbrooke, Quebec, Canada

References

[29] Benoit Simard, Christopher Thomas Kingston, Stephane Denommee, Gervais Soucy, German Cota-sanchez, Method and apparatus for the continuous production and

[76] Jiayin Guo, Synthesis of nanometric glass powders from coarse (xAl₂O₃+ySiO₂+zMgO) mixture using induction plasma, Tekna internal R & D report, 04 July 2006.

[84] Jiayin Guo, Induction plasma synthesis of nano-sized gadolinium zirconate (Gd₂Zr₂O₇) powders (2), Tekna internal R & D report, 26 September 2013.

