
Chapter 1

© 2012 Majzoub and Diab, licensee InTech. This is an open access chapter distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reconfigurable Systems for Cryptography
and Multimedia Applications

Sohaib Majzoub and Hassan Diab

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/10.5772/30186

1. Introduction
The area of reconfigurable computing has received considerable interest in both its forms:
fine-grained (represented in FPGA) and coarse-grained architectures. Both architecture
styles attempt to combine two of the important traits of General Purpose Processors (GPPs)
and Application-Specific Integrated Circuits (ASICs): flexibility and speed (Hartenstein,
2001). It provides performance close to application-specific hardware and yet preserves, to a
certain degree, the flexibility of general-purpose processors. In this chapter, we explore,
evaluate, and analyze the performance of a reconfigurable hardware, namely MorphoSys,
considering certain key applications targeted for such hardware (Hauck, 1998).

MorphoSys is a reconfigurable architecture designed for multimedia applications, digital
signal and image processing, cryptographic algorithms, and networking protocols (Singh et
al., 1998). In this chapter, we discuss application mapping, identify potential limitations and
key improvements and compare the results with other reconfigurable, GPP, and ASIC
architectures. In cryptography, we present the mapping and performance analysis of the
Advanced Encryption Standard, namely Rijndael, (Daemen & Rijmen, 2002), along with
another cryptography algorithm, namely Twofish, (Schneier et al., 1998). In image
processing, we present linear filtering, and 2D and 3D computer graphics algorithms, (Diab
& Majzoub, 2003), (Damaj et al, 2002). We present the mapping with detailed analysis,
highlighting bottlenecks, proposing possible improvements, and comparing the results to
other types of multimedia processing architectures (Maestre et al., 1999), (Mei et al, 2003),
(Tessier & Burleson, 2001).

2. Reconfigurable computing

General-purpose processor (GPP) is a confined hardware system that computes any task
using existing instructions and registers. Thus, GPP is used to compute diverse range of

Data Acquisition Applications 4

applications. Application-Specific Integrated Circuits (ASIC), on the other hand, are used to
implement a single fixed function. Therefore, ASICs have no flexibility and they can only
execute a very limited type of the targeted applications known beforehand (Singh et al.,
1998), (Kozyrakis, 1998), (Möller et al., 2006).

Combining the two main traits of the two design styles, namely GPPs and ASICs,
reconfigurable systems stand halfway between traditional computing systems and
application specific hardware (Kozyrakis & Patterson, 1998). Thus, reconfigurable hardware
is a name referred to a system that can be reconfigured and customized in post-fabrication
to execute a specific algorithm. MorphoSys, with its customizable logic and routing
resources, can be configured, and customized during runtime. This feature provides the
ability to compute a wide variety of applications. It shares characteristics of
microprocessors, it can be programmed in post-fabrication, and of specific hardware, it can
employ a specific algorithm or function to gain the speed (Hartenstein, 2001), (Ferrandi et al,
2005).

Reconfigurable computing is the hardware capability to adapt, configure, and customize
itself to provide the best performance for a specific application. It is shifting some of the
software complexity to the hardware itself. Fine-grain reconfigurable platforms have bitwise
reconfigurable logic, for instance FPGAs. Coarse-grain reconfigurable platforms have more
than one bit granularity. Coarse-grain reconfigurable platforms have the advantage of less
power consumption and area over the fine-grain at expense of lower flexibility (Galanis et
al, 2004), (Eguro & Hauck, 2003). For the multimedia applications, the foreseen potential of
the reconfigurable computing in general and coarse-grain reconfigurable platforms in
particular is well recognized. The goal of reconfigurable platforms, whether fine-grain or
coarse-grain, is to provide high performance, close to ASIC and high flexibility close to
general-purpose processors. As such, reconfigurable computing is seen as a major shift in
the processor design and research (Hartenstein, 2001).

The parallelism feature of most of the coarse-grain platforms adds a distinctive yet essential
advantage to such hardware. Recent work in mesh-based coarse-grain reconfigurable
architectures includes GARP (UC Berkeley) (Hauser & Wawrzynek, 1997), MATRIX
(CalTech) (Mirsky & DeHon, 1996), REMARC (Stanford) (Miyamori & Olukotun, 1998), and
MorphoSys (UC Irvine) (Singh et al., 1998).

In view of all that, performance and hardware analysis should be investigated to identify all
the bottlenecks and provide a realistic feedback in order to propose future improvements.
Targeted applications, such as multimedia, cryptographic, and communication, should be
mapped to determine the hardware behaviour. The analysis is intended to provide feedback
on the hardware capability and highlight potential modifications and enhancements (Bosi,
Bois, & Savaria, 1999). Unfortunately, most of the coarse-grain reconfigurable platforms,
except the FPGA based platforms, lack-easy-to-use compiler and mapping tools to map such
applications on the hardware under examination. Therefore, the mapping of the targeted
applications for such hardware evaluation must be carried out manually. This hand-
mapping process can provide valuable information to prospective compilers that eventually

Reconfigurable Systems for Cryptography and Multimedia Applications 5

will emerge out of the implementation of wide range of applications (Majzoub & Diab,
2003), (Majzoub & Diab, 2006), (Majzoub et al, 2006), (Itani & Diab, 2004),(Bagherzadeh,
Kamalizad & Koohi, 2003).

3. MorphoSys design

MorphoSys is one of the few coarse-grain reconfigurable platforms. Fig. 1 shows the block
diagram and internal structure of MorphoSys M1 chip and the logic block for each
reconfigurable cell. MorphoSys consists of two main blocks: a RISC processor, TinyRISC,
and the Reconfigurable Cell (RC) Array. The other supporting blocks are: the RC context
memory, the frame buffer, and the DMA controller. The frame buffer as well as the context
memory provides the data and instructions, respectively, in parallel fashion to the RC Array
(Lee et al., 2000).

The computing power of the MorphoSys hardware lies in the reconfigurable device. It is
divided into four quadrants. Fig. 2 shows the internal interconnectivity of the RC system
(Lee et al., 2000). As shown, three hierarchical levels define the interconnection meshwork.
The first is a layer that connects each cell to its adjacent cell, i.e. upper, lower, and left cells.
The second is an intra-quadrant connection that connects the RCs in the same row or
column within the same quadrant. The third level of connectivity is an inter-quadrant
connection that links any two cells in different quadrant but in the same column or in the
same row. Fig. 1 also shows the RC block diagram. It consists of multiplexers, ALU, four
registers, variable shifter, and output register. The inputs for every RC are from the frame
buffer, other RCs, and internal Registers (Singh et al., 1998).

Figure 1. MorphoSys Block Diagram and RC Logic Digaram

Data Acquisition Applications 6

Figure 2. RC Array Communication Buses

4. Cryptographic algorithms mapping onto MorphoSys

Cryptography has grown to be a fundamental element to handle authenticity, integrity,
confidentiality and non-reputability of private data flows through public networks. With the
increasing demand for high performance hardware, and high level of security, better ciphers
are making their way to replace aging algorithms that have proven to be too weak or too
slow for the current applications (Schneier, 1996). In this section, we discuss the mapping of
the Rijndeal and Twofish encryption algorithms.

4.1. Rijndael encryption algorithm

The Advanced Encryption Standard, AES, is a block cipher adopted as an encryption
standard by the National Institute of Standards and Technology, NIST, in November 2001
after a five-year standardization process. The block diagram of the Rijndael algorithm is
shown in Fig. 3. The figure shows the steps for both encryption and decryption cases
(Daemen & Rijmen, 2002).

4.1.1. Rijndael rounds

First, the input bits are arranged according to the length of the plain text to be encrypted. In
the case of 128 bit length, the bits are arranged as 44 matrix of bytes; for 192, it will be 46
matrix of bytes; and for 256, it will be 48 matrix of bytes. The numbers 4, 6, and 8 are called
the block width, Nb. The keys of the cipher are also arranged in the same fashion (Daemen &
Rijmen, 2002).

Rijndael has three different types of Rounds; as shown in Fig. 3:

i. The first is the Initial Round. It is, as shown in equation (1), performed by XORing the
input Plain Text matrix with a predefined Key. This process called Add-Round-Key.

Reconfigurable Systems for Cryptography and Multimedia Applications 7

 B A K  (1)

where B (size 4 by Nb) is the output byte matrix, A (size 4 by Nb) is the input byte matrix and
K (size 4 by Nb) is the Key byte matrix.

Figure 3. The Rijndael Algorithm (Daemen & Rijmen, 2002).

ii. The second is the Standard Round. In the Standard Round four different steps are
performed:

a. Sub-Bytes: this is a simple byte substitution using a predefined lookup table. Two tables
are used, one for encryption and another for decryption.

b. Shift-Row: this step is performed through shifting and rotating the bytes in each row of
the input matrix in a predefined manner. The shifting offset is defined according to the
block width Nb. The bytes will be shifted, then, rotated repeatedly.

c. Mix-Column: the columns are mixed through a matrix multiplication of the plain text by
a predefined matrix, given by the authors of the Rijndael algorithm (Daemen & Rijmen,
2002), over Galois Field with an irreducible polynomial 100011011. In the decryption
case, this step is referred to as Inverse Mix-Column or InvMix-Column.

Some mathematical simplification is carried out in order to reduce the multiplication
computation. In the encryption case the multiplication is performed as shown in equation
(2). Note that the multiplication operator is shown as  to indicate that the multiplication is
over Galois Field (Daemen & Rijmen, 2002).

Data Acquisition Applications 8

00 07 00 07

10 17 10 17

20 27 20 27

30 37 30 37

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

B B A A
B B A A
B B A A
B B A A

    
    
         
    

        

 
 
 
 

 (2)

The matrix used in the multiplication during the Inverse Mix-Column (InvMix-Column) step
is shown in equation (3). This multiplication is also carried over Galois Field with the
irreducible polynomial 100011011 (Daemen & Rijmen, 2002).

00 07 00 07

10 17 10 17

20 27 20 27

30 37 30 37

0 0 0 09
09 0 0 0
0 09 0 0
0 0 09 0

B B A AE B D
B B A AE B D
B B A AD E B
B B A AB D E

    
    
         
    

        

 
 
 
 

 (3)

a. Add-Round-key: is XORing each byte with a predefined key.

Rijndael has a variable number of iterations, Ni, for the Standard Round:

 Ni = 9, where Nr = Number of rounds = 10, if both the block and the key are 128 bits long.
 Ni = 11, where Nr = 12, if either the block or the key is 192 bits long, and neither of them

is longer than that.
 Ni = 13, where Nr = 14, if either the block or the key is 256 bits long.

Table 1. shows the key size, block width Nb and the corresponding Nr.

 Key Size
 128 192 256

Nb 4 6 8
Nr 9 11 13

Table 1. Key Size, Block Width Nb and Round Number Nr, (Daemen & Rijmen, 2002)

i. The third type of round is called the Final Round. In the Final Round only three of the
four steps, mentioned in the Standard Round, are performed excluding the Mix-
Column step.

During decryption, all the steps are preformed in reversed order (Daemen & Rijmen, 2002).

4.1.2. The key schedule for Rijndael

The Round-Keys are derived from the original Cipher Key by means of the Key Schedule.
The algorithm to generate the key is shown in Fig. 4. The original key provided is 128, 192 or
256 bits. The key should be arranged in a 4Nb Matrix. As discussed in the previous section,
the Add-Round-Key step is performed once in the First Round, Nr-1 times in the Standard
Round, and once again in the Final Round. In total, Nr+1 Round-Key matrices are needed to
cover all the rounds.

Reconfigurable Systems for Cryptography and Multimedia Applications 9

The first Round-Key is given, as shown in equation (4), however, the remaining, Nr, Round-
Key matrices are generated (Daemen & Rijmen, 2002). For example, for a block length of 128
bits, 10 Round-Keys matrices are needed: 9 for the Standard Rounds and 1 for the Final
Round. For block length of 192 bits, 12 Round-Keys are needed and for 256 bits length 14 are
needed.

0 1 0 1
00 00

1 1 1 110 10
0 1

20 202 1 2 1

30 303 1 3 1

;

b b

b b

b
b b

b b

N N

N N
N

N N

N N

k kk k
k kk k

K K K
k kk k
k kk k

 

 


 

 

                                 








 (4)

Figure 4. Generating key schedule for Rijndael (Daemen & Rijmen, 2002).

Then the remaining keys are generated (Daemen & Rijmen, 2002). Fig. 4 shows the key
schedule algorithm, where i denotes the column number, iterating from 0 to Nb-1. The
function S1(Ki-1) is a cyclic shift of the elements in Ki-1. For example, if Ki-1 column is [k0x, k1x,
k2x, k3x], then S1(Ki-1) is [k1x, k2x, k3x, k0x].

The rcon function is a round-dependent constant XORed to the first byte of each column
(Daemen & Rijmen, 2002). These round constants are calculated offline. It is the successive
powers of 2 in the representation of GF(2^8) (Daemen & Rijmen, 2002). The Key is saved in
the memory to be XORed during the encryption or decryption.

4.1.3. Rijndeal performance analysis

In this section, the performance results are presented. Some of the bottleneck problems are
discussed, and possible solutions are proposed (Majzoub et al., 2006). Fig. 5(a) shows the
time cost of the four steps done in one iteration of the Standard Round. The figure shows the

Data Acquisition Applications 10

encryption and the decryption costs for all the key length cases. Clearly, the Sub-Bytes step,
or the lookup table step, is dominating the computation time. The Sub-Bytes step is taking
83% of the total Round cost in the best case and 97% in the worst case. The next bottleneck is
the Mix-Column and InvMix-Column step. Both InvMix-Column and Mix-Column steps are
taking 2% in the best case and 16% in the worst case.

 (a) (b)

Figure 5. Time cost breakdown, (a) Encryption and Decryption, and (b) Inverse-Key (Inv-Key)
Schedule.

Fig. 5(b) shows the time cost of the Inverse Key Schedule performance results. Again, the
Sub-Bytes and the InvMix-Column are the major bottlenecks. The Sub-Bytes is taking 60% in
the best case and 74% in the worst case. The InvMix-Column is taking 22% in the best case
and 35% in the worst case.

Fig. 6 shows the RC Utilization during the encryption and decryption respectively. The
figure shows the RC utilization for one iteration of the Standard Round. It is clear the 8×8
RC Array is fully utilized during the lookup table and partially utilized, but with high rate,
during the Mix-Column and InvMix-Column.

As shown in Fig. 6, there are 4 lookups in case of 256 covering the 4 rows. In the 192 case,
there are 3 lookups to cover the 3 rows and in the case of 128 there are 2. During every
lookup there is a full utilization and then a small stall when switching from one row to
another. At the end of lookup step, the Mix-Column step starts. The Mix-Column utilizes
half the RC Array in the 192 and 256 cases and quarter of the RC Array in the 128 case. The
InvMix-Column almost utilizes the whole RC. In the utilization image, seem the lookup
table and the InvMix-Column still dominates the major bottlenecks.

Reconfigurable Systems for Cryptography and Multimedia Applications 11

Figure 6. RC Utilization, Encryption and Decryption (Standard Round)

Figure 7. RC Utilization, Key and Inverse Key Schedule (One Round-Key)

Fig. 7 shows the RC Utilization during the Key Schedule. The lookup table steps are
utilizing half of the RC Array in the 256 and 192 cases. However, it utilizes the whole RC
Array in the case of 128, this is because it is doing a redundant lookup on the other half to
save few cycles. This can be changed to be like the 192 and 256 cases, especially if two keys
need to be processed at a time. This way we can double the throughput in the cost of few
cycles, which is better implementation anyway. The Inverse key shows the same results the
key with the addition of the InvMix-Column. In the InvMix-Column case the utilization is a
bit high. This is because the column mixing should be done for all the columns not for one
like the case of the lookup.

As all the figures and analysis showed, the lookup table is the major bottleneck in terms of
both RC utilization and time consuming. In order to improve the Rijndael on MorphoSys,
the first idea to think of is implanting a lookup table. A good implementation of a lookup
table in the system can improve the Rijndael performance tremendously. Although the
InvMix-Column is of specific nature, there are still some improvements that can be
proposed. Further work could be by implementing new bit wise instructions. Moreover,
better results can be achieved also by implementing a second level of RC-Instruction level
parallelism.

Fig. 8 shows the RC instruction utilization. These results are for one iteration of the Standard
Round for the three cases: 128, 192 and 256. The CMULBADD instruction is basically

Data Acquisition Applications 12

multiplying MUX_A input by the constant C and adding the result to MUX_B. The SR and
SL are shifting to the right and left respectively. The analysis in these figures can clarify the
importance of some of the instructions. The XOR, BTM, ADD, and SR are the most
instructions utilized during the process (Singh et al., 1998). Note that the BTM instruction is
a bit-wise instruction that counts the number of ones in a byte.

Figure 8. RC-Instruction Utilization, 128 and 192, and 256 cases (One Round)

It should be mentioned here that if the lookup table, the most extensive operation, is
replaced by other means then this figure might change dramatically. One improvement
could be by adding a parallelism at the RC instruction level. For instance, The XORing will
have three operands instead of two. This reduces the XORing utilization by one third.
Similar improvements can be done in the same fashion for the other instructions.

The fourth plot in Fig. 8 shows the RC instruction utilization in the major steps. This figure
clearly shows that if there is any further investigation, it should be in the lookup table and
the InvMix-Column. Better implementation of the BTM instruction improves the results
(Singh et al., 1998). For instance, implementing a similar BTM instruction but with XORing
all the output instead of counting all the ones eliminates 8 cycles of the computation of every
byte. We will elaborate on this issue later.

Fig. 9 shows the final performance results for both the encryption and the decryption for the
three plain text length cases. It shows also the performance results of the Key Schedule for
the three plain text length cases.

Reconfigurable Systems for Cryptography and Multimedia Applications 13

Tables 2 and 3 show the performance results of the MorphoSys compared to the platforms
submitted with the Rijndael proposal to the NIST (Daemen & Rijmen, 2002).

Figure 9. Rijndeal Performance Results

Key
Size

AES CD
(ANSI C)

Brain
Gladman

(VC++)
MorphoSys

Key InvKey Key InvKey Key InvKey
128 2100 2900 305 1389 1040 1223
192 2600 3600 277 1595 1224 1829
256 2800 3800 374 1960 2758 3473

Table 2. Key Schedule compared to other platforms showing number of cycles, (Daemen & Rijmen,
2002).

Key
Size

Intel
8051

Motorola
68HC08

AES CD
(ANSI C)

Brain
Gladman

(VC++)
Java MorphoSys

En/Dc

128 4065 8390 950 363 23000 2021/2236
192 4512 10780 1125 432 27600 3546/4041
256 5221 12490 1295 500 32300 5426/6010

Table 3. Performance results for Encryption/Decryption compared to other platforms, showing
number of cycles, (Daemen & Rijmen, 2002).

The MorphoSys shows acceptable results compared these platforms. However, and since the
proposal submission, there were many implementations on FPGAs and ASIC platforms
(Sklaos & Koufopavlou, 2002). These implementations showed a throughput that
MorphoSys cannot compete with. For instance, the throughput ranged from 248 up to 3650
MBps which is very high throughput compared to our results. In contrast, the MorphoSys
platform is much more flexible than the ASIC or FPGA. A wide range of applications can be
implemented on MorphoSys, taking advantage of the fact that MorphoSys is a low power
consumption platform (Majzoub & Diab, 2006). Saying all this, still the MorphoSys can and
should be improved in order to compete with other platforms.

Data Acquisition Applications 14

4.2. Twofish encryption algorithm

In this section, the Twofish cipher, one of the five finalists considered in the advanced
encryption standard (AES) competition is implemented on MorphoSys. Twofish is a 128-bit
cipher that supports keys with length of 128-, 192- or 256-bits. It is the successor of Blowfish,
a well-established cipher without any known flaws (Schneier et al., 1998). The Twofish
cipher has many qualities that make it interesting for a research. It has been designed to
offer different possibilities of trade-offs between space and speed, thus it can be mapped
efficiently to hardware devices such as FPGAs, SmartCards and RCs (Majzoub & Diab,
2003), (Schneier 1996).

Fig. 10 shows the overall structure of the Twofish algorithm. As shown, the input is first
latched into a register. It is then separated into four words and XORed with four subkeys
K0,K1,K2 and K3. This step is referred to as the input whitening. The data then goes through a
F-function module where various rotations, transformations and permutations are applied.
The F-function is made of two g-functions containing key-dependant S-boxes, a Maximum
Distance Separable (MDS), (Schneier et al., 1998), matrices and a Pseudo-Hadamard
Transform (PHT), (Schneier et al., 1998); all of which will be described later. After
performing 16 rounds of the F-function, the four data words are once again XORed with
another four subkeys K4, K5, K6 and K7 to produce the cipher text. This step is called the
output whitening (Schneier et al., 1998).

4.2.1. Twofish phases

In this section, we explain the mapping details of the Twofish algorithm on MorphoSys
platform. The computationally expensive operations, such as the S-box, MDS and PHT, are
performed in the reconfigurable part of the MorphoSys. While the other operations, for
instance data loading and saving operations are executed in the TinyRISC processor. Fig. 10
shows the overall steps of the Twofish algorithm.

The Twofish steps are as following:

a. Input Whitening: the plain text input, P0,P1,P2, and P3, are XORed with the whitening
keys i.e.: P0  K0; P1  K1; P2  K2; and P3  K3.

b. S-Box Computations: The S-box is a phase in which a lookup table is used. The inputs are
substituted by data with the same number of bits from a predefined lookup table.

c. MDS Matrix Multiplication: the input data is multiplied by a predefined matrix over
Galois field with irreducible polynomial 101101001.

d. PHT Computations: The PHT, (Pseudo-Hadamard Transforms), as stated before, is the
calculation of the following equations:

32 32

0 0 1 1 0 1mod2 ; 2 mod2P P P P P P     (5)

where P0 and P1 are 32 bit each, the first one in the first four columns and the second is in the
second four columns of the RC Array.

0P  and
1P  are the expected results of these two

equations.

Reconfigurable Systems for Cryptography and Multimedia Applications 15

Figure 10. Overall Structure of Twofish Algorithm

a. XOR with k-Subkeys: This operation can be done either by adding or XORing. In our
implementation, we used XORing as it is faster.

b. XORing with P2 and P3: the result should be XORed with P2 and P3. Then, a rotation to
the left or to the right by one bit is performed after or before the XORing. The first
block, i.e. P0, is XORed with P2 and then rotated by one bit to the right. The next one, i.e.
P1, is XORed with P3, and then rotated by one bit to the left.

c. Output Whitening: This phase is exactly the same as the input-whitening step, which is
basically XORing with output subkeys.

4.2.2. The key schedule for Twofish

The key schedule has to provide 40 words of expanded key K0 ,…, K39. Twofish is defined
for keys of length N = 128, N = 192, and N = 256. A constant k is defined as k = N/64. Key
generation begins by deriving three key vectors each half the length of the original key
(Schneier et al., 1998). The first two are formed by splitting the key into 32-bit parts. These
parts are numbered starting from zero, the even-numbered are Me, and the odd-numbered
are Mo. This can be expressed by equation (6).

3
8

(4)
0

.2 0,...,2 1j
i i j

j
M m i k



   (6)

The first two vectors are Me=(M0,M2,…,M2k-2) and Mo=(M1,M3,…,M2k-1). The calculation of the
vectors Mo and Me are straightforward. We just have to separate the odd bytes from the even
ones. Afterwards the expanded key words should be derived from Me and Mo and stored in

F

P (128 bits)

C (128 bits)

Input Whitening

Output Whitening

15 more rounds

S-box 0

S-box 1

S-box 2

S-box 3

MDS

g

S-box 0

S-box 1

S-box 2

S-box 3

MDS

g

<<<8

PHT

<<<1

O
ne round operation

k

k
>>>1

Data Acquisition Applications 16

the memory to be used later. The key computations are performed offline and then stored in
main memory to be used later in the encryption.

The key scheduling operation is shown in Fig. 11. Initially, 2i and 2i+1 words are passed to
the S-Boxes so that the M vector is initially XORed with values represent S(2i) or S(2i+1).
This is because the 2i and 2i+1 values are predefined and do not change with different key
values. For each expanded key word the vector Me or Mo is XORed with a number taken
from the frame buffer represents S(2i) or S(2i+1). The RC instructions used to calculate the h-
function in the context memory are the same ones used to calculate F function with some
modifications. Some additional planes in context memory are used to resolve the difference
in the h- and g-functions. Before the PHT step, the word k2i+1 is rotated 8 bits to the left.

Figure 11. Key Schedule for Twofish

Afterwards, the PHT is performed. Then, the last four bytes are rotated by nine bits. The
final result is transferred to the cell in the first row. The content is then loaded from this cell
to the registers in the TinyRISC using RCRISC instruction.

In the case of 256 bits, there are eight bytes. In the case of the 192 bits, there are three bytes
in each vector. Finally, in the case of the 128, there are 2 bytes in each vector. As stated
before, the odd bytes should be separated from the even ones. Each vector has four bytes.
On the other hand, the S vector is derived through multiplying the Key K (256, 192, or 128
bits) by the RS matrix. The key K is divided into 8 bytes groups and multiplied by the RS
matrix as shown in equation (7).

8

8 1

,0 8 2

,1 8 3

8 4,2

8 5,3

8 6

8 7

01 4 55 87 5 58 9
4 56 82 3 1 6 68 5

.
02 1 1 47 3 19

4 55 87 5 58 9 03

i

i

i i

i i

ii

ii

i

i

m
m

s mA A DB E
s mA F E C E

ms A FC C AE D
mA A DB Es
m
m















 
 
 

    
    
        
            

 
 
 

 (7)

K2i

K2i+1

M
D

S

M2 M0

h

2i
2i
2i

2i

M
D

S

M3 M1

h

2i+1
2i+1
2i+1

2i+1

<<8 <<9

PHT

Reconfigurable Systems for Cryptography and Multimedia Applications 17

Similar to the MDS matrix the multiplication should take place over Galois field with
irreducible polynomial, 101101001.

4.2.3. Twofish performance analysis

The performance analysis of the Twofish algorithm is shown in Table 4. . Fig. 12 shows the
performance results with key lengths of 128, 192 and 256 respectively compared to other
platforms. Twofish has been tested in different architectures, for instance Pentium Pro,
Pentium II, UltraSPARC, PowerPC 750, and 68040 smart card (Majzoub & Diab, 2003),
(Majzoub & Diab, 2010).

Table 5. shows the speedup achieved by the MorphoSys system. As shown, as far as
encryption, MorphoSys shows better results than 68040 processor only. However, in terms
of the key-schedule the MorphoSys architecture provides a minimum of 3.8 speedup ratio
compared to Pentium Pro. The overall speed up shows that MorphoSys is 1.86 times faster
than Pentium Pro.

Architecture Cycles to Encrypt Cycles to Key
(256) Overall Cycles

MorphoSys 3541 3557 7098
Pentium Pro 315 13500 13815
Pentium II 315 16000 16315

UltraSPARC 750 24900 25650
PowerPC 750 590 22200 22790

68040 3500 96700 100200

Architecture Cycles to Encrypt
Cycles to Key

(192) Overall Cycles

MorphoSys 2884 2797 5681
Pentium Pro 315 10700 11015
Pentium II 315 14100 14415

UltraSPARC 750 21600 22350
PowerPC 750 590 17100 17690

68040 3500 63500 67000

Architecture Cycles to Encrypt Cycles to Key
(128) Overall Cycles

MorphoSys 2324 2037 4361
Pentium Pro 315 7800 8115
Pentium II 315 8200 8515

UltraSPARC 750 16600 17350
PowerPC 750 590 12200 12790

68040 3500 53000 56500

Table 4. Performance Analysis compared to other architectures (128 key)

Data Acquisition Applications 18

Architecture Encrypt Key (128) Overall
MorphoSys 1 1 1
Pentium Pro 0.13 3.8 1.86
Pentium II 0.13 4 1.95

UltraSPARC 0.32 8.14 3.97
PowerPC 750 0.25 6 2.93

68040 1.5 26 13

Table 5. Speedup normalized to MorphoSys

Figure 12. Twofish Performance Results

The implementation of the Twofish on MorphoSys clarifies some of the pros and cons of the
system. The encryption process takes more time than the keying process. This is due to the
fact that the encryption process involves more sequential operations. There are 16 repeated
rounds that should finish considering 128 bits input and output each round. This can be
done using an 8-bit bus only, that is available at the RC level. Accordingly, the 16 rounds
cannot be parallelized further. On the other hand, there are a lot more that can be
parallelized in key scheduling. The expensive matrix multiplication and the hash tables are
converted and mapped into parallel and simpler mathematical operations that can benefit
from the MorphoSys architectural attributes.

Reconfigurable Systems for Cryptography and Multimedia Applications 19

5. Image processing algorithms on MorphoSys

In this section, we discuss two image manipulation algorithms, namely linear filtering and
computer graphics transformation.

5.1. Linear filtering algorithm

Filtering is a technique for amending or enhancing an image. Images can be of low quality
due to a poor image contrast or, more usually, from an improper usage of the available
range of possible brightness and darkness levels. In performing image enhancement, we
compute an enhanced version of the original image. The most basic methods of image
enhancement involve point operations, in which the value of any given pixel in the output
image is determined by applying an algorithm to the values of the pixels in the
neighborhood of the corresponding input pixel. A pixel’s neighborhood is some set of
pixels, defined by their locations relative to that pixel. The most common point operation is
the linear contrast stretching operation, which seeks to maximally utilize the available gray-
scale range. In other words, in linear filtering, the value of an output pixel is a linear
combination of the values of the pixels in the input pixel’s neighborhood (Diab & Majzoub,
2003). Linear filters are useful for image enhancement, which includes noise-smoothing,
sharpening or simply emphasizing certain features and removing others. Usually, an image
is dimmed because of improper exposure setting. Images are also blurred by motion in the
scene or by inherent optical problems. The benefactor of image enhancement either may be a
human observer or a computer vision program performing some kind of higher-level image
analysis, such as target detection or scene understanding.

5.1.1. Two-dimensional convolution

Multi-dimensional convolution is a common operation in signal and image processing with
applications to digital filtering and video processing (Diab & Majzoub, 2003). Thus, many
approaches have been suggested to achieve high-speed processing for linear convolution,
and to design efficient convolution architectures.

Linear filtering can be implemented through the two-dimensional convolution. In 2D
convolution, the value of the output pixel is computed by multiplying elements of two
matrices and summing the results. One of these matrices represents the image itself, while
the other matrix is the filter kernel or the computational molecule (Diab & Majzoub, 2003).

The sliding window, filter kernel, centers on each pixel in an input image and generates new
output pixels. The new pixel value is computed by multiplying each pixel value in the
neighborhood with the corresponding weight in the convolution kernel and summing these
products. This is placed step by step over the image, at each step creating a new window in
the image the same size of kernel, and then associating with each element in the kernel a
corresponding pixel in the image.

This operation is shown in Fig. 13, which is the general case of the convolution operation.
The image size is MN pixels and the kernel is RS elements.

Data Acquisition Applications 20

Figure 13. An MN image processed using an RS convolution kernel

This "shift, add, multiply" operation is termed the "convolution" of the kernel with the
image. If the kernel is an odd-sized (2rx + 1)(2ry + 1)  RS kernel and I1(x,y) is the image,
then the convolution of K with I1 is written as:

 2 1(,) (1 , 1) (,)
yx

x y

rr

x y
m r n r

I x y K r m r n I x m y n
 

         (8)

5.1.2. Algorithm steps

The 2D convolution operation can be summarized by the following steps:

a. Rotate the convolution kernel 180 degrees to produce a computational molecule.
b. Determine the centre pixel of the computational molecule.
c. Apply the computational molecule to each pixel in the input image.

This can be expressed by equation (9). If the kernel size is 33 and I1(x,y) is an 88 pixel
image, then:

11 18
1 2 3

4 5 6 1

7 8 9
81 88

. .
. .

;
. .

. .

a a
k k k

k k k k I
k k k

a a

 
   
       
       

 (9)

The value of any given pixel in I2 is determined by applying the computational molecule k
to the corresponding pixel in I1. This can be visualized by overlying k on I1, with the center
pixel of k over the pixel of interest in I2. Then each element of k must be multiplied by the
corresponding pixel in I1, and sum the results. For example, to determine the value of the
pixel (4,5) in I2, overlay k on I1, with the center pixel of k covering the pixel (4,5) in I1 as
shown in Fig. 14.

Reconfigurable Systems for Cryptography and Multimedia Applications 21

Figure 14. The 88 pixels image and the computational molecule at pixel (4,5)

2 1 43 2 44 3 45 4 53

5 54 6 55 7 63 8 64 9 65

(4,5)I k a k a k a k a

k a k a k a k a k a

        

        
 (10)

Perform this procedure for each pixel in I1 to determine the value of each corresponding
pixel in I2.

STAGE PROCESS No OF CYCLES

1
MM to FB 28 cycles (4 insts + 25 NOPs)
MM to CM 74 cycles (1 inst + 73 NOPs)

2
2D convolution

operation
24 cycles

RC to FB 8 cycles

3 F to MM
28 cycles (2 insts and 26

NOPs)

Table 6. Performance results of the three stages of overall operation on MorphoSys.

 Total number of
cycles Cycles per Pixel

Case (1) 162 2.5
Case (2) 32 0.5

Table 7. Performance results on MorphoSys.

 Number of cycles per pixel
MorphoSys 0.5

C40 coprocessor 2

Table 8. MorphoSys Case(2) compared to C40.

Some of the elements of the computational molecule may not overlap actual image pixels at
the borders of an image. In order to compute output values for the border pixels, a special
technique should be used in this algorithm. This technique pads the image matrix with
zeroes. In other words, the output values are computed by assuming that the input image is
padded on the edges with additional rows and columns of zeros.

Data Acquisition Applications 22

5.1.3. Performance analysis of linear filtering

The execution speed of the algorithm is used to evaluate the performance of the MorphoSys
system with an operational frequency of 100 MHz, as a platform to demonstrate the
implementation of 2D convolution on RC systems. For this mapping of the 2D convolution
operation, the time of the whole operation can be divided into three categories as shown in
Table 6: the loading from main memory to the context memory (CM) and frame buffer, the
2D convolution operation then RC Array to Frame Buffer, and the loading from the Frame
Buffer (FB) to the Main Memory. As a result of this, the performance can be calculated with
(Case (1)) or without (Case (2)) the loading from and saving to memory. For each case, the
corresponding performance results are shown in Table 7. The performance results compared
to an FPGA-based 2D convolution coprocessor for the TMS320C40 DSP microprocessor
(C40) from Texas Instruments (TI). The comparison is shown in Table 8 (Diab & Majzoub,
2003).

5.2. Geometrical transformations in computer graphics

Transformations are a fundamental part of computer graphics. Transformations are used to
position, shape, and change viewing positions of objects, as well as change how they are
viewed (e.g. the type of perspective that is used) (Damaj et al, 2002).

There are many types of transformations used in computer graphics, such as translation,
scaling, rotation, shear, and composite transformations. These transformations can also be
combined to obtain more complex transformations. The purpose of composing
transformations is to increase the efficiency by applying a single composed transformation,
rather than applying a series of transformations, one after the other.

Transformation can be as simple as a matrix multiplication operation. Multiplying a matrix
A with matrix B would mean multiplying one row of A with one column of B and then
adding their results yielding (c11) of the result matrix C. Matrices A, B, and C are considered
to be dense matrices. The matrix-matrix multiplication involves O(n3) operations on a single
processing plat form, since for each element Cij of C, we must compute

 1
0

N
kij ik kjC A B
  (11)

Considering translation, scaling, and rotation, the following matrices are used to perform
the overall operation:

- Translation:

1 0 0
0 1 0

0 0 1
0 0 0 1

x

y

z

d
d

T
d

 
 
   
 
  

 (12)

Reconfigurable Systems for Cryptography and Multimedia Applications 23

- Scaling:

0 0 0
0 0 0

0 0 0
0 0 0 1

x

y

z

S
S

S
S

 
 
   
 
  

 (13)

- Rotation, in our case we took the rotation angle to be 90 around the z-axis:

cos sin 0 0
sin cos 0 0

()
0 0 1 0
0 0 0 1

zR

 
 



 
 
   
 
  

 (14)

The resultant transformation will be:

 W T S R   (15)

To get the results: matrix W should be multiplied by the coordinate vectors of the points to
be translated. With MorphoSys capabilities, the transformation can be done for eight
elements at once. Translated Points Matrix:

2 4 1 2 3 4 5 6 7 8

1 5 1 2 3 4 5 6 7 8

3 6 1 2 3 4 5 7 7 8

0 0
0 0

0 0
0 0 0 1 1 1 1 1 1 1 1 1

w w x x x x x x x x
w w y y y y y y y y

w w z z z z z z z z

   
   
      
   
      

 (16)

5.2.1. Performance analysis of 3D geometric transforms

The performance is based on the execution speed of the algorithms. The MorphoSys system is
considered to be operational at a frequency of 100 MHz. The algorithm takes 70 cycles in order
to terminate. The cycle time for the MorphoSys is 1/100 MHz i.e. the cycle time is equal to 10
nsec. Thus the speed in matrix elements per cycle is equal to 4.38 cycles for each element.
Accordingly, the time for the algorithm to terminate is equal to 2.56 sec (Damaj et al, 2002).

After presenting the obtained results of the mapped algorithm, a comparison is done with
the same algorithms mapped onto some Intel micro-processing systems. In this research the
chosen processors are the Intel 80486 and Pentium. Note that the instructions used are
upward compatible with newer Intel processors. Note that the chosen systems have
comparable frequencies of 100 ~ 133 MHz.

The above mapped matrix-matrix multiplication algorithm, has its direct positive effect on
fast computations for graphics geometrical transformations. Especially, that a matrix is a
general enough representation to implement any geometrical transformation: Translation,
Rotation, Scaling, Shear, or any composition of these. Performance analysis is compared

Data Acquisition Applications 24

with other reconfigurable systems, such as FPGAs with one prototype chosen from this
field: RC-1000 from CELOXICA as shown in Table 10.

Algorithm

Sy
st

em

N

of
 C

yc
le

s

Sp
ee

du
p

General Composite Algorithm Using Matrix
Algorithm “16 Elements”.

Morphosys 70 1
Pentium 1328 18.97

80486 3354 47.91

General Composite Algorithm Using Matrix
Algorithm “64-Elements”.

MorphoSys 45 1
Pentium 2551 56.67

80486 6773 150.5

Table 9. Comparisons with other systems.

Algorithm System
N# of
Cycles

Speedup of the RC-
1000 over MorphoSys

General Composite Algorithm Using
Matrix Algorithm “16 Elements”.

MorphoSys 70

RC-1000 12 5.8

General Composite Algorithm Using
Matrix Algorithm “64-Elements”.

MorphoSys 45

RC-1000 12 3.7

Table 10. Comparisons with RC-1000 FPGA.

6. Discussions and analysis
In this section we discuss some of the bottlenecks and problems we faced during the
implementation of the Rijndael (Daemen & Rijmen, 2002), Twofish (Schneier et al., 1998), 2D
convolution (Diab & Majzoub, 2003), and 3D transformation (Damaj et al, 2002) algorithms
on MorphoSys (Singh et al., 1998). First, the lookup table should be considered to improve
the performance, with an appropriate tradeoff of area and power. Second, the BTM
instruction should be improved so that it can produce the result in one cycle.

The implementation of the lookup table can follow two approaches: local versus global lookup
table. A local approach would implement a lookup table for every RC. These lookup tables can
be accessed through one of the RC internal Multiplexers. Filling these lookup tables can follow
the same Frame-Buffer-Data-Distribution scheme, which means same Row/Column would
have the same data or completely unshared data are sent to every one. Whether the lookup
table is place on or off the RC, the drawback of this method is that it increases the RC size
greatly, and thus, the area of the whole chip, which make the system hard to scale. Moreover,
it puts a heavy load on the buses in loading the data to the tables to fill the 64 RCs tables. The

Reconfigurable Systems for Cryptography and Multimedia Applications 25

advantage of this method is that it speeds the lookup access. So this method is the optimal in
terms of speed but it is the worst in terms of area. In this option the size of the lookup table
should be small and scaling up the RC Array size to more than 8×8 would be difficult.

A more global approach is to put one lookup table outside the RC Array that all the RCs can
access. This option requires less area. It is feasible to increase the size of the lookup table
here into the size of the frame buffer itself. The cost of loading data into the lookup table is
then the same as the Frame Buffer. This global lookup table could be placed between the
Frame Buffer and the RC Array. The data coming from the Frame Buffer to RC Array is
multiplexed to the address bus of this lookup table and the needed data are passed to the
RCs from this table. The distribution of the data on the RCs follows the same Frame-Buffer-
Data-Distribution scheme. The disadvantage of this method is that all the RCs have the same
lookup table. If another lookup table is needed then it should be reloaded. Another
disadvantage is that it takes more time to access it by the RCs. The time is at least double the
time accessing the Frame Buffer. This method will have lower performance.

A middle solution between the two methods is to have 8 lookup tables, where each one
would cover one Row/Column. This way the access time is fast, because every lookup table
is covering only one Row or Column. More over it will be reasonable in terms of area,
because instead of 64 lookup tables only 8 are needed in this approach. Ideally, the speed up
in case of lookup hardware implementation will be 96% in the best case and 82% in the
worst per one round in the case of the Rijndeal algorithm. This improvement puts the
MorphoSys into high competitive level with other platforms.

On the other hand, to improve the fine-grain capabilities in MorphoSys, the BTM instruction
should be changed. For instance, it should be ANDing MUX_A and MUX_B and then
XORing the bits of the output result instead of counting the 1’s. For instance, this
implementation will save several cycles in the Mix and InvMix- Column. Other schemes
could be implemented as well, so that the MorphoSys can handle fine-grain operations with
a very good performance.

Instruction
Mnemonic

Description

BWAX
ANDing MUX_A and MUX_B, then XORing

all the output bits in the result

BWRA
ORing MUX_A with MUX_B, then ANDing all

the bits in the output result

BWRP
XORing MUX_A with MUX_C, then ORing the
result with MUX B, then ANDing all the bits in

the output result

CNCT
Concatenate the lower 8 bits from both

MUX_A and MUX_B.
ORALL ORing MUX_A, MUX_B, and MUX_C

ANDALL ANDing MUX_A, MUX_B, and MUX_C
XORALL XORing MUX_A, MUX_B, and MUX_C

Table 11. The proposed new RC-Instructions

Data Acquisition Applications 26

In order to improve the bit wise operations some new instructions should be implemented.
Table 7 shows the proposed RC-instructions. Also, it is very useful to introduce another
MUX_C to the RC. MUX_C can be identical to MUX_A. As the bus overhead to the RC itself
already paid, it is useful to increase the use of these buses.

The first instruction, BWAX, is a bit wise XOR of input coming from MUX_A. The second
instruction is calculating terms in Modulo-2 algebra. This instruction can help
implementing new Modulo-2 compiler. The third instruction is to calculate Boolean terms.
This instruction will help implementing a Boolean algebra compiler. These instructions are
very useful in the Mix-Column and its inverse (InvMix-Column) in Rijndael as well as the
MDS in Twofish.

The concatenate instruction is necessary to exploit the 16 bus width. Since the frame buffer
bus is only 8 bits, the other 8 bits of the RC Array are useless most of the time, the RC bus
width is 16 bits. So it is better either to reduce the RC bus width to 12, or may be 8, or to
implement new instructions that can make use of the 16 bits. The other three instructions are
to implement another level of parallelism on the RC level. These logical instructions are very
easy to implement and can greatly help the performance. Since most of the cryptographic
applications, as well as multimedia type of applications requires iterative and repetitive
operations on different data.

7. Conclusion

In this chapter we implemented a number of multimedia applications, namely Rijndael,
Twofish, image filtering and computer graphics algorithms. This implementation was
carried out on a coarse grained reconfigurable architecture, MorphoSys, designed and
implemented at UC Irvine. Furthermore, we presented the results of such implementations
along with analyses and highlights of the current bottlenecks and problems. Solutions and
possible workarounds are suggested to improve the performance results and further
improve the MorphoSys hardware as a viable solution for multimedia applications.

Author details

Sohaib Majzoub
American University in Dubai, Dubai, UAE

Hassan Diab
American University of Beirut, Beirut, Lebanon

8. References
Bagherzadeh, N., Kamalizad, A. H., & Koohi, A. (n.d.). Design and analysis of a programmable

single-chip architecture for DVB-T base-band receiver. 2003 Design, Automation and Test in
Europe Conference and Exhibition (pp. 468-473). IEEE Comput. Soc. doi:10.1109/
DATE.2003.1253653

Reconfigurable Systems for Cryptography and Multimedia Applications 27

Bosi, B., Bois, G., & Savaria, Y. (1999). Reconfigurable Pipelined 2D Convolvers for Fast Digital
Signal Processing. IEEE Trans. On Very Large Scale Integration (VLSI) Systems. Retrieved
from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.124

Christoforos E. Kozyrakis, D. A. P. (n.d.). A New Direction for Computer Architecture Research.
Retrieved from http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.146.743

Daemen, J., & Rijmen, V. (2002). The Design of RijndaeL: AES - The Advanced Encryption Standard
(Information Security and Cryptography) (p. 255). Springer. Retrieved from
http://www.amazon.com/Design-RijndaeL-Encryption-Information-
Cryptography/dp/3540425802

Damaj, I., Majzoub, Sohaib, & Diab, Hassan. (2002). 2D and 3D Computer Graphics Algorithms
under MORPHOSYS, 1076-1079. Retrieved from

 http://portal.acm.org/citation.cfm?id=647929.740227
Diab, H., & Majzoub, S. (n.d.). Linear filtering using reconfigurable computing. ACS/IEEE

International Conference on Computer Systems and Applications, 2003. Book of Abstracts. (p. 15).
IEEE. doi:10.1109/AICCSA.2003.1227452

Eguro, K., & Hauck, S. (n.d.). Issues and Approaches to Coarse-Grain Reconfigurable
Architecture Development. Retrieved from

 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.3501
Ferrandi, F., Santambrogio, M. D., & Sciuto, D. (n.d.). A Design Methodology for Dynamic

Reconfiguration: The Caronte Architecture. 19th IEEE International Parallel and Distributed
Processing Symposium (p. 163b-163b). IEEE. doi:10.1109/IPDPS.2005.17

Galanis, M. D., Theodoridis, G., Tragoudas, S., Soudris, D., & Goutis, C. E. (2004). A novel
coarse-grain reconfigurable data-path for accelerating DSP kernels. Proceeding of the 2004
ACM/SIGDA 12th international symposium on Field programmable gate arrays - FPGA ’04 (p.
252). New York, New York, USA: ACM Press. doi:10.1145/968280.968337

Hartenstein, R. (2001, March 13). A Decade of Reconfigurable Computing: A Visionary
Retrospective. Published by the IEEE Computer Society. Retrieved from:
www.computer.org/portal/web/csdl/doi/10.1109/DATE.2001.915091

Hauck, S. (1998). The Future of Reconfigurable Systems. in 5th Canadian Conference on Field
Programmable Devices. Retrieved from

 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.5820
Hauser, J. R., & Wawrzynek, J. (n.d.). Garp: a MIPS processor with a reconfigurable coprocessor.

Proceedings. The 5th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines Cat. No.97TB100186) (pp. 12-21). IEEE Comput. Soc. doi:10.1109/
FPGA.1997.624600

Itani, M., & Diab, Hassan. (2004). Reconfigurable Computing for RC6 Cryptography. Proceedings
of the The IEEE/ACS International Conference on Pervasive Services (pp. 121–127). Washington:
IEEE Computer Society. doi:10.1109/ICPS.2004.25

Lee, M.-hau, Singh, Hartej, Lu, G., Bagherzadeh, Nader, Kurdahi, Fadi J., Fadi, & Kurdahi, J.
(2000). Design and Implementation of the MorphoSys Reconfigurable Computing
Processor. Journal of VLSI and Signal Processing-Systems for Signal, Image and Video
Technology. Retrieved from

 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.3761
Maestre, R., Kurdahi, F.J., Bagherzadeh, N., Singh, H., Hermida, R., & Fernandez, M. (n.d.).

Kernel scheduling in reconfigurable computing. Design, Automation and Test in Europe

Data Acquisition Applications 28

Conference and Exhibition, 1999. Proceedings (Cat. No. PR00078) (pp. 90-96). IEEE Comput.
Soc. doi:10.1109/DATE.1999.761102

Majzoub, S., & Diab, H. (n.d.). Mapping and performance analysis of the Twofish algorithm on
MorphoSys. ACS/IEEE International Conference on Computer Systems and Applications, 2003.
Book of Abstracts. (p. 9). IEEE. doi:10.1109/AICCSA.2003.1227446

Majzoub, Sohaib, & Diab, Hassan. (2006). Instruction-Set Extension for Cryptographic
Applications on Reconfigurable Platform. 2006 6th International Workshop on System on Chip
for Real Time Applications (pp. 173-178). IEEE. doi:10.1109/IWSOC.2006.348231

Majzoub, Sohaib, & Diab, Hassan. (2010). MorphoSys reconfigurable hardware
for cryptography: the twofish case. The Journal of Supercomputing, 1-20-20. Springer
Netherlands. doi:10.1007/s11227-010-0413-3

Majzoub, Sohaib, Saleh, R., & Diab, Hassan. (2006). Reconfigurable Platform Evaluation
Through Application Mapping And Performance Analysis. 2006 IEEE International
Symposium on Signal Processing and Information Technology (pp. 496-501). IEEE.
doi:10.1109/ISSPIT.2006.270852

Mei, B., Vernalde, S., Verkest, D., De Man, H., & Lauwereins, R. (2003). Field Programmable Logic
and Application. (P. Cheung & G. A. Constantinides, Eds.)Lecture Notes in Computer Science
(Vol. 2778, pp. 61-70). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/b12007

Mirsky, E., & DeHon, A. (1996). MATRIX: a reconfigurable computing architecture with
configurable instruction distribution and deployable resources. Proceedings IEEE Symposium
on FPGAs for Custom Computing Machines FPGA-96 (pp. 157-166). IEEE.
doi:10.1109/FPGA.1996.564808

Miyamori, T., & Olukotun, K. (1998). REMARC: Reconfigurable Multimedia Array
Coprocessor. IEICE Transactions on Information and Systems E82-D. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.607

Möller, L., Soares, R., Carvalho, E., Grehs, I., Calazans, N., & Moraes, F. (2006). Infrastructure for
dynamic reconfigurable systems. Proceedings of the 19th annual symposium on Integrated
circuits and systems design - SBCCI ’06 (p. 44). New York, New York, USA: ACM Press.
doi:10.1145/1150343.1150360

Schneier, B. (1996). Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second
Edition (p. 758). Wiley. Retrieved from http://www.amazon.com/Applied-Cryptography-
Protocols-Algorithms-Source/dp/0471117099

Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., & Ferguson, N. (1998). Twofish: A 128-
Bit Block Cipher. in First Advanced Encryption Standard (AES) Conference. Retrieved
from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.1273

Singh, H., Kurdahi, F.J., Bagherzadeh, N., & Filho, E. M. C. (n.d.). MorphoSys: a reconfigurable
architecture for multimedia applications. Proceedings. XI Brazilian Symposium on Integrated
Circuit Design (Cat. No.98EX216) (pp. 134-139). IEEE Comput. Soc. doi:10.1109/
SBCCI.1998.715427

Sklaos, N., & Koufopavlou, O. (2002). Architectures and VLSI implementations of the AES-
Proposal Rijndael. IEEE Transactions on Computers, 51(12), 1454-1459. doi:10.1109/
TC.2002.1146712

Tessier, R., & Burleson, W. (2001). Reconfigurable Computing for Digital Signal Processing: A
Survey. Journal of VLSI Signal Processing Systems, 28(1/2), 7-27. doi:10.1023/A:1008155020711

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

