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1. Introduction 

In earthquake resistant structural steel design, there are two commonly used structural 
systems. “Moment resisting frames” consist of beams connected to columns with moment 
resisting (i.e., rigid) connections. Rigid connection of a steel beam to a steel column requires 
rigorous connection details. On the other hand, in “braced frames”, the simple (i.e., pinned) 
connections of beams to columns are allowed since most of the earthquake forces are carried 
by steel braces connected to joints or frame elements with pinned connections. The load 
carrying capacity of a braced frame almost entirely based on axial load carrying capacities of 
the braces. If a brace is under tension in one half-cycle of an earthquake excitation, it will be 
subjected to compression in the other half cycle. Provided that the connection details are 
designed properly, the tensile capacity of a brace is usually much higher than its 
compressive capacity. In fact, the fundamental limit state that governs the behavior of such 
steel braces under seismic forces is their global buckling behavior under compression.  

After detailed evaluation, if a steel braced structure is decided to have insufficient lateral 
strength/stiffness, it has to be strengthened/stiffened, which can be done by increasing the 
load carrying capacities of the braces. The key parameter that controls the buckling capacity 
of a brace is its “slenderness” (Salmon et al., 2009). As the slenderness of a brace decreases, 
its buckling capacity increases considerably. In order to decrease the slenderness of a brace, 
either its length has to be decreased, which is usually not possible or practical due to 
architectural reasons, or its flexural stiffness has to be increased. Flexural stiffness of a brace 
can be increased by welding steel plates or by wrapping fiber reinforced polymers around 
the steel section. Analytical studies (e.g., Timoshenko & Gere, 1961) have shown that it 
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usually leads to more economic designs if only the partial length, instead of the entire 
length, of the brace is stiffened. This also eliminates possible complications in connection 
details that have to be considered at the ends of the member. 

Nonuniform structural elements are not only used in seismic strengthening and rehabilitation 
of existing structures. In an attempt to design economic and aesthetic structures, many 
engineers and architects nowadays prefer to use nonuniform structural elements in their 
structural designs. However, stability analysis of such nonuniform members is usually much 
more complex than that of uniform members (e.g., see Li, 2001). In fact, most of the design 
formulae/charts given in design specifications are developed for uniform members. Thus, 
there is a need for a practical tool to analyze buckling behavior of nonuniform members. 

This study investigates elastic buckling behavior of three-segment symmetric stepped 
compression members with pinned ends (Fig. 1) using three different approaches: (i) 
analytical, (ii) numerical and (iii) experimental approaches. As already mentioned, such a 
member can easily be used to strengthen/rehabilitate an existing steel braced frame or can 
directly be used in a new construction. Surely, the use of stepped elements is not only 
limited to the structural engineering applications; they can be used in many other 
engineering applications, such as in mechanical and aeronautical engineering. 

In analytical studies, first the governing equations of the studied stability problem are derived. 
Then, exact solution to the problem is obtained. Since exact solution requires finding the 
smallest root of a rather complex characteristic equation which highly depends on initial 
guess, the governing equation is also solved using a recently developed analytical technique 
by He (1999), which is called Variational Iteration Method (VIM). Many researchers (e.g., 
Abulwafa et al., 2007; Batiha et al., 2007; Coskun & Atay, 2007, 2008; Ganji & Sadighi, 2007; 
Miansari et al., 2008; Ozturk, 2009 and Sweilan & Khader, 2007) have shown that complex 
engineering problems can easily and successfully be solved using VIM. Recently, VIM has also 
been applied to stability analysis of compression and flexural members. Coskun and Atay 
(2009), Atay and Coskun (2009), Okay et al. (2010) and Pinarbasi (2011) have shown that it is 
much easier to solve the resulting characteristic equation derived using VIM. In this paper, by 
comparing the approximate VIM results with the exact results, the effectiveness of using VIM 
in determining buckling loads of multi-segment compression members is investigated. 

The problem is also handled, for some special cases, using widely known structural analysis 
program SAP2000 (CSI, 2008). After determining the buckling load of a uniform member 
with a hollow rectangular cross section, the stiffness of the member is increased along its 
length partially in different length ratios and the effect of such stiffening on buckling load of 
the member is investigated. By comparing numerical results with analytical results, the 
effectiveness of using such an analysis program in stability analysis of multi-segment 
elements is also investigated. 

Finally, buckling loads of uniform and three-segment stepped steel compression members 
with hollow rectangular cross section are determined experimentally. In the experiments, 
the “stiffened” columns are prepared by welding additional steel plates over two sides of 
the member in such a way that the addition of the plates predominantly increases the 
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smaller flexural rigidity of the cross section, which governs the buckling behavior of the 
member. By changing the length of the stiffening plates, i.e., by changing the stiffened 
length ratio, the degree of overall stiffening is investigated in the experimental study. The 
experimental study also shows in what extent the ideal conditions assumed in analytical and 
numerical studies can be realized in a laboratory research. 

 
Figure 1. Three-segment symmetric stepped compression member with pinned ends 

 
Figure 2. “Equivalent” two-segment stepped compression member with one end fixed (clamped), the 
other hinged 
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2. Analytical studies on elastic buckling of a three-segment stepped 
compression member with pinned ends 

2.1. Derivation of governing (buckling) equations 

Consider a three-segment symmetric stepped compression member subjected to a 
compressive load P applied at its top end, as shown in Fig. 1. Assume that both ends of the 
member are pinned; i.e., free to rotate. Also assume that the top and bottom segments of the 
member have identical flexural stiffness, EI1, while that of the middle segment may be 
different, say EI2. As long as the stiffness variation along the height of the member is 
symmetric about the mid-height, the buckled shape of the member is also symmetric about 
the same point as shown in Fig. 1. When such a symmetry exists, the buckling load of the 
three-segment member can be obtained by analyzing the simpler two-segment member 
shown in Fig. 2a. This “equivalent” two-segment member has a fixed (clamped) boundary 
condition at its bottom end whereas its top end is free. From comparison of Fig. 1 and Fig. 
2a, one can also see that the length of the equivalent two-segment member equals to the 
half-length of the original three-segment member, i.e., L=H/2. Similarly, L2=a/2. Since the 
analysis of a two-segment column is much simpler than that of a three-segment column, the 
analytical study presented in this section is based on the equivalent two-segment member. 

The undeformed and deformed shapes of the equivalent two-segment member under uniform 
compression are illustrated in Fig. 2a. The origin of x-y coordinate system is located at the 
bottom end of the column. Since the stiffnesses of two segments of the column can be different 
in general, each segment of the column has to be analyzed separately. Equilibrium equation at 
an arbitrary section in Segment I can be written from the free body diagram shown in Fig. 2b: 
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In Eq. (1) and Eq. (2), w1 is lateral displacement of Segment I at any point,  is the lateral 
displacement of the top end of the member, i.e.,  = w1 (x = L). Eq. (2) is valid for L2  x  L. 
Similarly, from Fig. 2c, the equilibrium equation at an arbitrary section in Segment II can be 
written as 
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where w2 is the displacement of Segment II in y direction. Eq. (3) is valid for 0 x L2. For 
easier computations, the buckling equations in Eq. (2) and Eq. (3) can be written in 
nondimensional form as follows: 
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      2 2
1 1 1 1 andw w           2 2

2 2 2 2w w      (4) 

with 

 1 1 andk L   2 2k L   (5) 

where /x x L , 1 1 /w w L , 2 2 /w w L , / L   and prime denotes differentiation with 
respect to x . Since both of the differential equations in Eq. (4) are in second order, the 
solutions will contain four integration constants. Considering that  is also unknown, the 
solution of these buckling equations requires five conditions to determine the resulting five 
unknowns. Two of these conditions come from the continuity conditions where the flexural 
stiffness of the column changes and the remaining three conditions are obtained from the 
boundary conditions at the ends of the column. At x=L2, the lateral displacement and slope 
functions have to be continuous, which requires 
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where 2 /s L L . As far as the boundary conditions are concerned, for a clamped-free 
column, the end conditions can be written in nondimensional form as: 
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Thus, Eq. (4) with Eq. (6) and Eq. (7) constitutes the governing equations for the studied 
stability problem. 

2.2. Exact solution to buckling equations 

Since the differential equations given in Eq. (4) are relatively simple, it is not too difficult to 
obtain their exact solutions, which can be written in the following form: 

    1 1 1 2 1sin cos andw C x C x      and    2 3 2 4 2sin cosw C x C x      (8) 

where Ci (i=1-4) are integration constants to be determined from continuity and end 
conditions. From the first and second conditions given in Eq. (7), one can find that  

 3 0andC   and 4C    (9) 

Then, using Eq. (6), the other integration constants are obtained as: 
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Finally, the last condition given in Eq. (7) results in 
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For a nontrivial solution, the coefficient term must be equal to zero, yielding the following 
characteristic equation for the studied buckling problem: 
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Since 1 2 2 1/ /EI EI   , if the stiffness ratio n is defined as 2 1/n EI EI , Eq. (12) can be 

written in terms of 1 (square root of nondimensional buckling load of the equivalent two-
segment element in terms of EI1), n (stiffness ratio) and s (stiffened length ratio) as follows: 

  1 1tan 1 tan ss n
n

 
       

 (13) 

One can show that the buckling load of the three-segment stepped compression member 
with length H shown in Fig. 1 can be written in terms of that of the equivalent two-segment 
member with length L=H/2 shown in Fig. 2a as 

 1
2 wherecr

EI
P

H
  2

14   (14) 

In other words,  is the nondimensional buckling load of the three-segment compression 
member in terms of EI1. 

2.3. VIM solution to buckling equations 

According to the variational iteration method (VIM), a general nonlinear differential 
equation can be written in the following form: 

      Lw x Nw x g x   (15) 

where L is a linear operator and N is a nonlinear operator, g(x) is the nonhomogeneous term. 
Based on VIM, the “correction functional” can be constructed as 

           1
0

x

n n n nw x w x Lw Nw d          (16) 

where     is a general Lagrange multiplier that can be identified optimally via variational 
theory, nw  is the n-th approximate solution and nw  denotes a restricted variation, i.e., 

0nw   (He, 1999). As summarized in He et al. (2010), for a second order differential 
equation such as the buckling equations given in Eq. (4),     simply equals to 
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    x     (17) 

The original variational iteration algorithm proposed by He (1999) has the following 
iteration formula: 

           1
0

x
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In a recent paper, He et al. (2010) proposed two additional variational iteration algorithms 
for solving various types of differential equations. These algorithms can be expressed as 
follows: 
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and 
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Thus, the three VIM iteration algorithms for the buckling equations given in Eq. (4) can be 
written as follows: 
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where i is the segment number and can take the values of one or two. It has already been 
shown in Pinarbasi (2011) that all VIM algorithms yield exactly the same results for a similar 
stability problem. For this reason, considering its simplicity, the second iteration algorithm 
is decided to be used in this study. 

Recalling that 1 2/ n    and 2
14  , the iteration formulas for the buckling equations of 

the studied problem can be written in terms of  and n as follows: 
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As an initial approximation for displacement function of each segment, a linear function 
with unknown coefficients is used: 

 1,0 1 2w C x C   and 2,0 3 4w C x C   (23) 

where Ci (i=1-4) are to be determined from continuity and end conditions. After conducting 
seventeen iterations, 1,17w  and 2,17w  are obtained. Substituting these approximate solutions 

to the continuity equations in Eq. (6) and to the end conditions in Eq. (7), five equations are 
obtained. Four of them are used to determine the unknown coefficients in terms of  , while 
the remaining one is used to construct the characteristic equation for the studied problem: 

   0F       (24) 

where  F   is the coefficient term of  . For a nontrivial solution  F   must be equal to 

zero. The smallest possible real root of the characteristic equation gives the nondimensional 
buckling load ( 2

1/PH EI  ) of the three-segment compression member in the first 
buckling mode. 

2.4. Comparison of VIM results with exact results 

For various values of stiffness ratio (n=EI2/EI1) and stiffened length ratio (s=a/H), 
nondimensional buckling loads of a three-segment compression member with pinned ends 
are determined both by using Eq. (13) and VIM. VIM results are compared with the exact 
results in Table 1.  
 

 
Table 1. Comparison of VIM predictions for nondimensional buckling load () of a three-segment 
compression member with exact results for various values of stiffness ratio (n=EI2/EI1) and stiffened 
length ratio (s=a/H) 

Exact VIM Exact VIM Exact VIM Exact VIM
100 15.344 15.344 27.052 27.052 59.843 59.843 225.706 225.706

10 14.675 14.675 24.006 24.006 44.978 44.978 85.880 85.880

5 13.978 13.978 21.109 21.109 33.471 33.471 46.651 46.651

2.5 12.721 12.721 16.694 16.693 21.275 21.275 24.186 24.186

1.67 11.632 11.632 13.642 13.642 15.406 15.406 16.306 16.306

1.25 10.689 10.689 11.471 11.471 12.039 12.039 12.297 12.297

s
0.2 0.4 0.6 0.8n
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As it can be seen from Table 1, VIM results perfectly match with exact results, verifying the 
efficiency of VIM in this particular stability problem. It is worth noting that it is somewhat 
difficult to solve the characteristic equation given in Eq. (13) since it is highly sensitive to the 
initial guess. While solving this equation, one should be aware of that an improper initial 
guess can result in a buckling load in higher modes. On the other hand, the characteristic 
equations derived using VIM are composed of polynomials, all roots of which can be 
obtained more easily. This is one of the strength of VIM even when an exact solution is 
available for the problem, as in our case.  

2.5. VIM results for various stiffness and stiffened length ratios 

Table 2 tabulates VIM predictions for nondimensional buckling load of a three-segment 
stepped compression member for various values of stiffness (n) and stiffened length (s) 
ratios. The results listed in this table can directly be used by design engineers who 
design/strengthen three-segment symmetric stepped compression members with pinned 
ends. 
 

 
Table 2. VIM predictions for nondimensional buckling load () of a three-segment column for various 
values of stiffness ratio (n=EI2/EI1) and stiffened length ratio (s=a/H) 

At this stage, it can be valuable to investigate the amount of increase in buckling load due to 
partial stiffening of a compression member. Fig. 3 shows variation of increase in critical 
buckling load, with respect to the uniform case, with stiffened length ratio for different 
values of stiffness ratio. From Fig. 3, it can be inferred that there is no need to stiffen entire 

0.1 0.2 0.25 0.3333 0.5 0.75 0.9999

1 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696

1.5 10.5592 11.3029 11.6881 12.3342 13.5322 14.6186 14.8044

2 10.9332 12.1571 12.8290 14.0255 16.5379 19.2404 19.7392

2.5 11.1676 12.7211 13.6051 15.2433 19.0149 23.7328 24.6740

3 11.3282 13.1202 14.1651 16.1557 21.0707 28.0942 29.6088

4 11.5338 13.6465 14.9165 17.4239 24.2442 36.4193 39.4784

5 11.6599 13.9775 15.3962 18.2587 26.5469 44.2105 49.3480

7.5 11.8311 14.4372 16.0711 19.4641 30.1728 61.3848 74.0220

10 11.9181 14.6750 16.4240 20.1076 32.2453 75.4700 98.6960

20 12.0504 15.0419 16.9731 21.1249 35.6828 109.4880 197.3920

50 12.1307 15.2680 17.3139 21.7652 37.9220 138.1940 493.4800

100 12.1577 15.3444 17.4295 21.9836 38.6944 148.2010 986.9600

n
s
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length of the member to gain appreciable amount of increase in buckling load especially if n 
is not too large. For n=2, increase in buckling load when only half length of the member is 
stiffened is more than 80 % of the increase that can be gained when the entire length of the 
member is stiffened. Fig. 3 also shows that if n increases, to get such an enhancement in 
buckling load, s has to be increased. For example, when n=10, the stiffened length of the 
member has to be more than 75% of its entire length if similar enhancement in member 
behavior is required. In fact, this can be seen more easily from Fig. 4 where the increase in 
buckling load is plotted in terms of stiffness ratio for various stiffened length ratios. Fig. 4 
shows that if the stiffened length ratio is small, there is no need to increase the stiffness ratio 
too much. As an example, if only one-fifth of the entire length of the member is to be 
stiffened, increase in buckling load when n=2 is more than 80% of that when n=10. On the 
other hand, if 75 % of the entire length is allowed to be stiffened, increase in buckling load 
when n=2 is approximately 25% of that when n=10.  

 
 
 
 
 

 
 
 
 
 
 
Figure 3. Variation of increase in buckling load with stiffened length ratio (s) for various values of 
stiffness ratio (n) 
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Figure 4. Variation of increase in buckling load with stiffness ratio (n) for various values of stiffened 
length ratio (s) 

3. Numerical studies on elastic buckling of a three-segment stepped 
compression member with pinned ends 

In order to obtain directly comparable results with the experimental results that will be 
discussed in the following section, in the numerical analysis, the reference “unstiffened” 
member is selected to have a hollow rectangular cross section, namely RCF 120x40x4, the 
geometric properties of which is given in Fig. 5a. The length of the steel (with modulus of 
elasticity of E=200 GPa) columns is chosen to be 2 m., which is the largest height of a 
compression member that can be tested in the laboratory due to the height limitations of the 
test setup. Elastic stability (buckling) analysis is performed using a well-known commercial 
structural analysis program SAP2000 (CSI, 2008). 

Fig. 5b shows numerical solutions for the buckled shape and buckling load, Pcr,num,n=1 = 156.55 
kN, of the uniform column. Exact value of the buckling load Pcr for this column can be 
computed from the well-known formula of Euler; 2 2/crP EI L , which gives Pcr,exact,n=1 = 
157.42 kN. The error between the numerical and exact analytical result is only 0.5 %, which 
encourages the use of this technique in determining the buckling load of “stiffened” 
members.  
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Figure 5. Geometric properties and buckling load of the uniform column (n=1) analyzed in numerical 
study 

a. cross sectional properties (in meters)

b. buckling load (in kN) 
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In the experimental study, in addition to the unstiffened members, three different types of 
stiffened columns are tested. In these specimens, the stiffness ratio is kept constant (n2) 
while the stiffened length ratio is varied. The stiffnesses of the three-segment members are 
increased by welding rectangular steel plates, with 100 mm width and 3 mm thickness as 
shown in Fig. 6a, to the wider faces of the hollow cross section. The length of the stiffening 
plates is 0.4 m in members with s=0.2, approximately 0.67 m in members with s=0.3333 and 
1.0 m in members with s=0.5. This stiffening method increases the cross sectional area of the 
section about 1.56 times and major and minor axis flexural rigidities of the cross section, 
respectively, about 1.36 and 1.96 times. In the numerical analysis, the geometrical properties 
of the cross section for the stiffened region of the column have to be increased in these 
ratios. In SAP2000 (CSI, 2008), this step can easily be performed by using “property/stiffness 
modification factors” command (Fig. 6a). It is to be noted that axis-2 is still the minor axis of 
the member, so the buckling is expected to be observed about this axis, as in the uniform 
column case. Fig. 6b shows the buckled shape and buckling load (Pcr,num,n=1.96,s=0.2 = 192.30 kN) 
of the stiffened members when one-fifth of the entire length of the member is stiffened as 
illustrated in Fig. 6a; i.e., when n=1.96 and s=0.2. Similar analyses on members with s=0.3333 
and s=0.5 yield buckling loads of Pcr,num,n=1.96,s=0.3333 = 220.42 kN and Pcr,num,n=1.96,s=0.5 = 258.93 kN, 
respectively. If these values of buckling loads for stiffened elements are normalized with 
respect to the buckling load for the uniform member (Pcr,num,n=1 = 156.55 kN), the amount of 
increase achieved in buckling load in each stiffening scheme is computed approximately as 
1.23 when s=0.2, 1.41 when s=0.3333 and 1.65 when s=0.5. To compare numerical results with 
analytical results, buckling loads for three-segment symmetric stepped columns with n=1.96 
are determined using VIM for various values of s and increase in buckling load with varying 
s is plotted in Fig. 7. It can be seen that the approximate results obtained through numerical 
analysis exactly match with VIM solutions. The effectiveness of the numerical analysis in 
solving this special buckling problem is examined further for different values of n and s. The 
results are presented in Table 4, which indicates very good agreement between the 
analytical and numerical results. 

 
Table 3.  Comparison of numerical results with analytical (exact and approximate (VIM)) results for 
increase in buckling load for a three-segment compression member with pinned ends for various values 
of stiffness ratio (n=EI2/EI1) and stiffened length ratio (s=a/H) 

n Exact VIM SAP2000 Exact VIM SAP2000 Exact VIM SAP2000

1.5 1.18 1.18 1.18 1.37 1.37 1.38 1.48 1.48 1.48
2 1.30 1.30 1.30 1.68 1.68 1.68 1.95 1.95 1.93
2.5 1.38 1.38 1.38 1.93 1.93 1.92 2.40 2.40 2.38
3 1.44 1.44 1.44 2.13 2.13 2.13 2.85 2.85 2.80
5 1.56 1.56 1.56 2.69 2.69 2.67 4.48 4.48 4.35
7.5 1.63 1.63 1.63 3.06 3.06 3.03 6.22 6.22 5.94
10 1.66 1.66 1.67 3.27 3.27 3.24 7.65 7.65 7.20

s=0.25 s=0.5 s=0.75



 
Advances in Computational Stability Analysis 104 

 
Figure 6. Geometric properties and buckling load a three-segment stepped column with stiffened 
length ratio s=0.2 and stiffness ratio n=1.96 

a. area/stiffness modifiers for the stiffened region of the column

b. buckling load (in kN) 
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Figure 7. Increase in critical buckling load for various stiffened length ratios (s) when stiffness ratio is n 
 1.96 (VIM results) 

4. Experimental studies on elastic buckling of a three-segment stepped 
compression member with pinned ends 

The experimental part of the study is conducted in the Structures Laboratory of Civil 
Engineering Department in Kocaeli University. Test specimens are subjected to 
monotonically increasing compressive load until they buckle about their minor axis in a 
test setup specifically designed for such types of buckling tests (Fig. 8). Due to the height 
limitations of the test setup, the length of the test specimens is fixed to 2 m. To observe 
elastic buckling, “unstiffened” (uniform) reference specimens are selected to have a rather 
small cross section; hollow rectangular section with side dimensions of 120 mm x 40 mm 
and wall thickness of 4 mm, as shown in Fig. 5a. In addition to the three unstiffened 
specimens, named B0-1, B0-2 and B0-3, three sets of “stiffened” specimens, each of which 
consists of three columns with identical stiffening, are tested. To obtain comparable 
results, the stiffness ratio of the stiffened specimens is kept constant (n2) while their 
stiffened length ratios (s) are varied in each set. Such stiffening is attained by welding 
rectangular steel plates, with 100 mm width and 3 mm thickness as shown in Fig. 6a, to 
the wider faces of the hollow cross sections of the test specimens, in different lengths. The 
length of the stiffening plates is 0.4 m for the members with stiffened length ratio s=0.2, 
which are named B1-1, B1-2 and B1-3, approximately 0.67 m for the members with 
s=0.3333, named B2-1, B2-2 and B2-3, and 1.0 m for the members with s=0.5, named B3-1, 
B3-2 and B3-3.  
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Figure 8. Test setup 

As shown in Fig. 8, the test specimens are placed between the top and bottom supports in 
the test rig, which is rigidly connected to the strong reaction wall. To ensure minor-axis 
buckling of the test columns, the supports are designed in such a way that the rotation is 
about a single axis, resisting rotation about the orthogonal axis. In other words, the supports 
behave as pinned supports in minor-axis bending whereas fixed supports in major-axis 
bending. The compressive load is applied to the columns through a hydraulic jack placed at 
the top of the upper support. During the tests, in addition to the load readings, which are 
measured by a pressure gage, strains at the outermost fibers in the central cross section of 
each column are recorded via two strain gages (SG1 and SG2) (see Fig. 8). 
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The buckled shapes of the tested columns are presented in Fig. 9 and Fig. 10. As shown in 
Fig. 9a, uniform columns buckle in the shape of a half-sine wave, which is in agreement 
with the well-known Euler’s formulation for ideal pinned-pinned columns. In contrast to 
ideal columns, however, test columns have not buckled suddenly during the tests. This is 
mainly due to the fact that all test specimens have unavoidable initial crookedness. Even 
though the amount of these imperfections remain within the tolerances specified by the 
specifications, they cause bending of the specimens with the initiation of loading. This is 
also apparent from the graphs presented in Fig. 11. These graphs plot strain gage 
measurements taken at the opposite sides of the column faces (SG1 and SG2) during the 
test of each specimen with respect to the applied load values. The divergence of strain 
gage readings (SG1 and SG2) from each other as the load increases clearly indicates onset 
of the bending under axial compression. This is compatible with the expectations since as 
stated by Galambos (1998), “geometric imperfections, in the form of tolerable but 
unavoidable out-of-straightness of the column and/or eccentricity of the axial load, will 
introduce bending from the onset of loading”. Even though the test columns start to bend 
at smaller load levels, they continue to carry additional loads until they reach their 
“buckling” capacities, which are characterized as the peak values of their load-strain 
curves. 

The buckling loads of all test specimens are tabulated in Table 4. When the buckling loads 
of three uniform columns are compared, it is observed that the buckling load for 
Specimen B0-3 (150.18 kN) is larger than those for Specimens B0-1 (129.60 kN) and B0-2 
(128.49 kN). When Fig. 11a is examined closely, it can be observed that strain gage 
measurements start to deviate from each other at larger loads in Specimen B0-3 than B-01 
and B0-2. Thus, it can be concluded that the capacity difference among these specimens 
occurs most probably due to the fact that the initial out-of-straightness of Specimen B0-3 is 
much smaller than that of B-01 and B-02. When the load-strain plots of the stiffened 
specimens (Fig. 11b-d) are examined, similar trends are observed for specimens with 
larger load values in their own sets, e.g., B2-1 and B2-3 in the third set, B3-1 in the forth 
set. These differences can also be attributed partially to the initial out-of-straightness. 
Unlike uniform columns, stiffened columns have additional initial imperfections due to 
the welding process of the stiffeners. It is now well known that welding cause 
unavoidable residual stresses to develop within the cross section of the member, which, in 
turn, can change the behavior of the member significantly. Since the columns with larger 
stiffened length ratios have longer welds, they are expected to have more initial 
imperfection. The effects of initial imperfections can also be seen from the last column of 
Table 4, where the ratios of experimental results to the analytical results which are 
obtained for ideal columns are presented. 

For better comparison, experimental (Pcr,exp) and analytical (Pcr,analy) buckling loads are 
also plotted in Fig. 12. As shown in the figure, all test results lay below the analytical 
curve. 
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Figure 9. Buckled shapes of unstiffened and stiffened (with s=0.2) test specimens  

a. Unstiffened columns

b. Stiffened columns with s=0.2
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Figure 10. Buckled shapes of stiffened test specimens with s=0.3333 and s=0.5 

a. Stiffened columns with s=0.3333

b. Stiffened columns with s=0.5
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Figure 11. Load versus strain gage measurements for the test specimens 

a. Unstiffened columns 

b. Stiffened columns with s=0.2

c. Stiffened columns with s=0.3333

d. Stiffened columns with s=0.5 
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Table 4. Experimental buckling loads for uniform and stiffened columns compared with the analytical 
predictions 

 

 
Figure 12. Experimental results compared with analytical and modified analytical buckling loads 

It is important to note that most design specifications modify the buckling load equations 
derived for ideal columns to take into account the effects of initial out-of-straightness of the 
columns in the design of compression members. As an example, to reflect an initial out-of-
straightness of about 1/1500, AISC (2010) modifies the “Euler” load by multiplying with a 
factor of 0.877 in the calculation of compressive capacity of elastically buckling members 

Specimen s Pcr,exp (kN) Pcr,analy (kN) Pcr,exp / Pcr,analy

B0-1 129.60 0.823
B0-2 128.49 0.816
B0-3 150.18 0.954
B1-1 166.31 0.862
B1-2 177.44 0.919
B1-3 176.32 0.914
B2-1 190.23 0.858
B2-2 153.52 0.692
B2-3 188.56 0.850
B3-1 241.96 0.930
B3-2 194.12 0.746
B3-3 172.43 0.663

157.420

192.98

0.5 260.10

0.3333 221.78

0.2
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(Salmon et al., 2009). By applying a similar modification to the analytical results obtained in 
this study for ideal three-segment compression members, a more realistic analytical curve is 
drawn. This curve is plotted in Fig. 12 with a label ‘0.877 Pcr,analy’. From Fig. 12, it is seen that the 
“modified” analytical curve almost “averages” most of the test results. The larger discrepancies 
observed in stiffened specimens with s=0.3333 and s=0.5 are believed to be resulted from the 
residual stresses locked in the specimens during welding of the steel stiffening plates, which 
highly depends on quality of workmanship. For this reason, while calculating the buckling 
load of a multi-segment compression member formed by welding, not only the initial out-of-
straightness of the member, but also the effects of welding have to be taken into account. 
Considering that stiffened columns will always have more initial imperfections than uniform 
columns, it is suggested that a smaller modification factor be used in the design of multi-
segment columns. Based on the limited test data obtained in the experimental phase of this 
study, the following modification factor is proposed to be used in the design of three-segment 
symmetric steel compression members formed by welding steel stiffening plates:  

  0.877 0.2MF s   (25) 

where s is the stiffened length ratio of the compression member, which equals to the weld 
length in the stiffened members. Thus, the proposed buckling load (Pcr,proposed) for such a 
member can be computed by modifying the analytical buckling load (Pcr,analy) as in the 
following expression:  

 , ,cr proposed cr analyP MF P   (26) 

The proposed buckling loads for the multi-segment columns tested in the experimental part 
of this study are computed using Eq. (26) with Eq. (25) and plotted in Fig. 12 with a label 
‘Pcr,proposed’. For easier comparison, a linear trend line fitted to the experimental data is also 
plotted in the same figure. Fig. 12 shows perfect match of design values of buckling loads 
with the trend line. While using Eq. (25), it should be kept in mind that the modification 
factor proposed in this paper is derived based on the limited test data obtained in the 
experimental part of this study and needs being verified by further studies. 

5. Conclusion  

In an attempt to design economic and aesthetic structures, many engineers nowadays prefer 
to use nonuniform members in their designs. Strengthening a steel braced structure which 
have insufficient lateral resistant by stiffening the braces through welding additional steel 
plates or wrapping fiber reinforced polymers in partial length is, for example, a special 
application of use of multi-segment nonuniform members in earthquake resistant structural 
engineering. The stability analysis of multi-segment (stepped) members is usually very 
complicated, however, due to the complex differential equations to be solved. In fact, most 
of the design formulae/charts given in design specifications are developed for uniform 
members. For this reason, there is a need for a practical tool to analyze buckling behavior of 
nonuniform members.  
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In this study, elastic buckling behavior of three-segment symmetric stepped compression 
members with pinned ends is analyzed using three different approaches: (i) analytical, (ii) 
numerical and (iii) experimental approaches. In the analytical study, first the governing 
equations of the studied stability problem are derived. Then, exact solution is obtained. 
Since exact solution requires finding the smallest root of a rather complex characteristic 
equation which highly depends on initial guess, the governing equations are also solved 
using a recently developed analytical technique, called Variational Iteration Method (VIM), 
and it is shown that it is much easier to solve the characteristic equation derived using VIM. 
The problem is also handled, for some special cases, by using widely known structural 
analysis program SAP2000 (CSI, 2008). Agreement of numerical results with analytical 
results indicates that such an analysis program can also be effectively used in stability 
analysis of stepped columns. Finally, aiming at the verification of the analytical results, the 
buckling loads of steel columns with hollow rectangular cross section stiffened, in partial 
length, by welding steel plates are investigated experimentally. Experimental results point 
out that the buckling loads obtained for ideal columns using analytical formulations have to 
be modified to reflect the initial imperfections. If welding is used while forming the stiffened 
members, as done in this study, not only the initial out-of-straightness, but also the effects of 
welding have to be considered in this modification. Based on the limited test data, a 
modification factor which is a linear function of the stiffened length ratio is proposed for 
three-segment symmetric steel compression members formed by welding steel plates in the 
stiffened regions.  
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