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1. Introduction

A lot of high-energy physical processes develop within large domains of space along the di‐
rection of particle motion (see, for example monographs [1-3] and references in them). In the
case of electromagnetic processes the size of these domains can substantially exceed some‐
times not only interatomic distances of substance but the size of experimental facility (detec‐
tors) as well [1,2,4-13]. Essential in this case is the fact that interaction of particles with atoms
and experimental facility situated within such domains and outside them can substantially
differ. Such situation arises, for example, when considering long-wave radiation in process‐
es of bremsstrahlung and transition radiation by ultra relativistic electrons. Therefore, it is
necessary to know what happens within such regions and what the peculiarities of evolu‐
tion of such processes in space and time are. The present chapter is dedicated to the consid‐
eration of different aspects of this problem, which concern the behavior of high-energy wave
packets, which take place in processes of bremsstrahlung and transition radiation.

We begin with consideration of the behavior of localized high-energy wave packets of a sca‐
lar massive particle in wave mechanics [2,14], of Gaussian packets of free electromagnetic
waves and of packets, which take place in the equivalent photon method [15]. It is shown
that in all cases high energies make the stabilizing effect upon the packet motion. Some pe‐
culiarities of dispersion of such packets and their reconstruction into the packets of diverg‐
ing waves are considered as well.
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Further we show that the discussed wave packets naturally arise in processes of bremsstrah‐
lung and transition radiation by high-energy electrons. For this purpose, firstly, the proc‐
ess  of  bremsstrahlung at  an ultra relativistic  electron instantaneous scattering to a  large
angle is considered [16,17]. The consideration is made on the basis of classical electrodynam‐
ics. In this case the moving electron is considered as a charge with its own coulomb field
moving together with it. At the instantaneous scattering the perturbation of this field oc‐
curs. This perturbation is treated here as appearance of a packet of free plane electromag‐
netic waves, which reconstructs then into a packet of diverging waves. For ultra relativistic
particles, however, this does not happen at once. The length within which this process de‐

velops has a name of the coherence length of the radiation process [1,2]. It is 2γ 2 times larg‐
er  than the  length λ  of  the  considered radiated waves  (γis  here  the  electron's  Lorentz-
factor). We show that within this length the field around the electron substantially differs
from the coulomb one. This leads, in particular, to the fact that the bremsstrahlung charac‐
teristics in this case substantially depend on both the detector’s size and its position rela‐
tive to the scattering point.

It is shown further that analogous effects take place in the process of transition radiation by
an ultra relativistic electron during its traverse of thin ideally conducting plate as well
[16-18]. The picture of evolution in space and time of the electromagnetic field, which arises
before and after the electron traverse of thin metallic plate is considered here. The main at‐
tention is paid to effects in the process of backward transition radiation. In this case the
wave packets of the field reflected from the plate are the packets of free waves, which recon‐
struct into the field of transition radiation. We show that the structure of these packets is in
many respects analogous to the structure of the packets, which take place at instantaneous
scattering of the particle to a large angle. This fact explains the presence of analogous effects
in transition radiation and bremsstrahlung in the considered cases.

The special attention is drawn to the transition radiation by a scattered electron, which own
field is not totally reconstructed after the scattering [17-19]. During a long period of time
in this case the electron is in ‘half-bare’ state, which is the state in which some Fourier har‐
monics in the field around the electron are suppressed compared to the equilibrium cou‐
lomb field. The large values of distances, which the electron covers in this state allow us
to place the plate within these distances and to consider the transition radiation by such elec‐
tron on this plate. We show that in this case characteristics of backward transition radia‐
tion substantially differ from transition radiation characteristics in the case when the target
is situated on large distances from the scattering point. The effect of transition radiation sup‐
pression and the effect of oscillatory dependence of transition radiation characteristics on
the distance between the plate and the scattering point take place in this case. The causes
of such effects are discussed.
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2. High energy wave packets

2.1. Dispersion of relativistic wave packets

The general solution of the wave equation can be presented in the form of a wave packet,
which spatially disperses in course of time. In semiclassical approximation such packet does
not disperse. It moves according to the laws of classical mechanics (see, for example [2, 20]).
It is going beyond the semiclassical approximation that leads to the packet dispersion. The
high-energy wave packets are of special interest because the speed of their dispersion de‐
creases with the increase of their energy. Let us pay attention to some peculiarities of disper‐
sion of such packets. Significant here is the fact that characteristic features of this dispersion
are similar for all fields. Therefore it is sufficient to consider just scalar field.

The general solution of the wave equation

( ∂2

∂ t 2 −∇
2 −m 2)ϕ(r→ , t)=0 (1)

for a scalar particle with the mass m can be written in the following form of the expansion of
the field ϕ(r→ , t)over plane waves:

ϕ(r→ , t)= ∫ d 3κ
(2π)3 e i(κ

→
r

→
−ω t )Cκ

→ (2)

where ω = κ→ 2 + m 2 and Cκ
→  - are the expansion coefficients. Here and further we will use the

system of units in which the speed of light c and the Plank constant ℏ equal unit.

Let us consider the dispersion of the wave packet, which at the initial moment of time coin‐
cides with the Gaussian packet modulated by the plane wave with large value of the mo‐
mentum p→  [2,14]. Moreover we will assume that the initial widths of the packet a|| and a⊥
parallel and perpendicular to the particle momentum p→  are different. For such packet at the
initial moment of time the field ϕ(r→ , t) has the following form:

ϕ(r→ , t)= e
i p

→
r

→
−

z 2

2a||
2 −

ρ
→ 2

2a⊥
2 (3)

where z and ρ→  are the coordinates parallel and orthogonal top→ . At the moment of time t  this
packet will be defined by the relation (2) with

Cκ
→ =(2π)3/2a||a⊥

2e −
( p−κz )2a||

2

2 −
κ⊥

2a⊥
2

2 (4)

We can write the obtained expression for the field ϕ(r→ , t) in the form
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ϕ(r→ , t)= Ae i( p
→

r
→
−ε t )I (r→ , t) (5)

in which A=a||a⊥
2, ε = p→ 2 + m 2and

I (r→ , t)= (2π)−3/2∫d 3κe i(κ
→
−p

→
)r

→
−

( p−κz )2a||
2

2 −
κ⊥

2a⊥
2

2 −i(ωk−ε)t (6)

Having made in this expression the variable substitution κ→ = p→ + q→  we find that

I (r→ , t)= (2π)−3/2∫d 3qe iq
→
r

→
−

qz
2a||

2

2 −
q⊥

2a⊥
2

2 −i(ωp
→

+q
→−ε)t (7)

In the case of large energies it is possible to make the expansion over |q→ | / p in the quantity
(ωp

→
+q

→ −ε) in (7). Having preserved the quadratic terms of expansion we obtain

ωp
→

+q
→ −ε ≈vqz +

qz
2

2εγ 2 +
q⊥

2

2ε
(8)

where v = p / ε andγ =(1−v 2)−1/2. Substituting this expression into (6) after simple calculations
we obtain

I (r→ , t)=
1

a||
2 + i

t
εγ 2

1

a⊥
2 + i

t
ε

exp{− (z −vt)2

2(a||
2 + i

t
εγ 2 ) −

ρ 2

2(a⊥2 + i
t
ε ) } (9)

The formula (9) can be written in the following form as well:

I (r→ , t)= A(t)exp{iα(r→ , t)−
(z −vt)2

2Δ||
2 (t)

−
ρ 2

2Δ⊥
2(t) } (10)

in which A(t)is a slowly changing quantity

A(t)=
1

(a⊥2 + i
t
ε ) a||

2 + i
t

εγ 2
(11)

α(r→ , t)is the real phase
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α(r→ , t)=
(z −vt)2

2
t / εγ 2

a||
4 + (t / εγ 2)2 +

ρ 2

2
t / ε

a⊥
4 + (t / ε)2 (12)

Δ||(t) and Δ⊥(t) are the longitudinal and transverse widths of the packet at the moment of
time t

Δ||
2 (t)=a||

2 + ( t
a||εγ 2 )2

, Δ⊥
2(t)=a⊥

2 + ( t
a⊥ε )2

(13)

In the case of a|| =a⊥ the obtained above formulae coincide with the corresponding result of
the paper [14].

The formulae (13) show that in longitudinal and transverse directions the squares of the widths
of the packet Δ||

2 (t) and Δ⊥
2(t) grow with time proportionally to t 2m 4 / ε 6 andt 2 / ε 2. In nonre‐

lativistic case these quantities do not depend on the particle energy (t 2 / ε 2 = t 2 / m 2). In relativ‐
istic case the quantities t 2m 4 / ε 6 and t 2 / ε 2 are substantially smaller than the corresponding
values for nonreativistic particles. Let us note that the additional factor m 4 / ε 4 exists for lon‐
gitudinal direction inΔ||

2 (t). It leads to the substantial decrease of the speed of the packet dis‐
persion in this direction compared to the speed of the packet dispersion in transverse direction.
Thus the relativistic effects do the stabilizing influence upon the wave packets.

In conclusion let us note that while deriving the formula (9) we neglected the terms propor‐
tional to tq 4 / ε 3 in the exponential factor in (7). Therefore the formula (9) is valid during the
interval of time, which satisfies the condition

tqeff
4 / ε 3≪1 (14)

where qeff  are the characteristic values of the variable q→  in (7), which make contribution to
this integral. For a||≈a⊥the inequality (14) can be written in the form

t
a⊥

2ε
1

(a⊥ε)2 ≪1 (15)

Thus the formula (9) is valid for the time interval t , which satisfies the inequality (15). For ul‐
tra relativistic particles this interval rapidly grows with the increase of the particle’s energy.

2.2. Dispersion of a high-energy packet of electromagnetic waves

Now let us consider high energy packets of free electromagnetic waves. Scalar and vector
potentials of such packets are the solutions of the wave equation (1) with m =0. Therefore in
order to analyze the peculiarities of dispersion of such packets we can use the formulae of
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the previous section assuming that all the terms in them containing the Lorentz-factor γ
equal zero. In this case for scalar potential we find that

ϕ(r→ , t)= Ae i(k
→
r

→
−ω t )I (r→ , t) (16)

where k
→
 and ω are the wave vector and the frequency of the electromagnetic wave and

I (r→ , t)= A(t)exp{iαk (r→ , t)−
(z − t)2

2Δ||
2 (t)

−
ρ 2

2Δ⊥
2(t) } (17)

Here

A(t)=
1

a||(a⊥2 + it / ω) , α(r→ , t)=
ρ 2

2
t / ω

a⊥
4 + (t / ω)2

and

Δ||
2 (t)=a||

2 , Δ⊥
2(t)=a⊥

2 + (t / a⊥ω)2

(18)

The obtained formulae show that the initially Gaussian packet does not disperse in the di‐
rection parallel to the k

→
 vector. In transverse direction the square of the packet widths grows

proportionally to(t / ω)2. Thus the speed of the packet dispersion decreases with the increase
of the wave frequencyω.

When considering a process of radiation by relativistic electrons it is often necessary to deal
with packets, which are constructed of plane waves with wave vectors, which directions are
close to the direction of a given vectork

→
. Such wave packets differ somehow from the ones

considered above. Let us consider some peculiarities of dispersion of such packets assuming
for simplicity that at the initial moment of tome t =0 the distribution of the waves over the
wave vectors is Gaussian relative to the given vector k

→
 [15]. For such distribution in the ini‐

tial moment of time the scalar potential ϕk (r→ ,0) has the following form:

ϕk (r→ ,0)=
1

πΔ̄ϑ
2 ∫d 2ϑe −ϑ

2/Δ̄ϑ
2

e ik
→
r

→
(19)

where ϑ is the angle between the packet wave vector and the wave vectork
→
, Δ̄ϑ

2 is the aver‐

age value of the square of the angleϑ,Δ̄ϑ
2 ≪1.

The coefficients Cq
→  of the Fourier expansion (2) for such initial packet have the following

form
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Cq
→ =(2π)3∫ d 2ϑ

πΔ̄ϑ
2 e −ϑ

2/Δ̄ϑ
2

δ(k
→
−q→ ) (20)

in which δ(k
→
−q→ ) is the delta-function. As a result we come to the following expression for

the scalar potential

ϕk (r→ , t)=
1

1 + ikzΔ̄ϑ
2 / 2

e
ik (z−t )−

(kρ /2)2Δ̄ ϑ
2

1+ikz Δ̄ ϑ
2 /2 (21)

where z and ρ→  are the coordinates parallel and orthogonal tok
→
.

Let us note that the considered case corresponds to the wave packet, which consists of the
plane waves the directions of the wave vectors of which have some small scatter around the
z axis. If the initial packet has some small variation in frequencyω, the formula (21) should
be averaged over this variation of the waves in frequency. Assuming for simplicity that the
distribution of the waves over frequency has the Gaussian form with the average value of
the square of the frequency variation Δ̄ω

2  we find that

ϕk (r→ , t) =
1

1 + iωzΔ̄ϑ
2 / 2

e
iω(z−t )−

(z−t )2Δ̄ ω
2

4 −
(ωρ /2)2Δ̄ ϑ

2

1+iω zΔ̄ ϑ
2 /2 (22)

The given expression for the wave packet has the same structure as the corresponding ex‐
pression for the packet (16). If the substitutions (t / a⊥

2ε)→(ω zΔ̄ϑ
2 / 2) and a||

2 →4Δ̄ω
2  are made

in the latter expression the both formulae for the wave packet will become identical.

The formula (22) shows that for ω zΔ̄ϑ
2 / 2≪1

ϕk (r→ , t) ≈exp{iω(z − t)−
(z − t)2Δ̄ω

2

4 − ( ωρ
2 )2

Δ̄ϑ
2 } (23)

and for ω zΔ̄ϑ
2 / 2≫1

ϕk (r→ , t) ≈ −
2i

ω zΔ̄ϑ
2 exp{iω(z − t)−

(z − t)2Δ̄ω
2

4 + iω
ρ 2

2z −
ρ 2

z 2Δ̄ϑ
2 } (24)

For z≫ρ the latter formula can be written in the form of a diverging wave

ϕk (r→ , t) ≈ −
2i

ω rΔ̄ϑ
2 exp{iω(r − t)−

(z − t)2Δ̄ω
2

4 −
ρ 2

z 2Δ̄ϑ
2 } (25)
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wherer = z 2 + ρ 2≈ z + ρ 2 / 2z. Thus on distances z from the center of the initial packet, which
satisfy the condition

ω zΔ̄ϑ
2 / 2≪1 (26)

the form of the packet (22) coincides with the form of the packet att =0. Only on the distan‐
ces, which satisfy the condition

ω zΔ̄ϑ
2 / 2≫1 (27)

the transformation of the packet (22) to the packet of spherical diverging waves occurs.

Let us note that in the theory of radiation of electromagnetic waves by a moving electron the
spatial region in which the formation of spherical diverging waves occurs has a name of the
wave zone (see for example [21]). In particular, for nonrelativistic charged particles the wave
zone begins on distances from the radiation region, which exceed the length of the radiated
waveλ. However, the condition (27) shows that for Δ̄ϑ

2 ≪1 the wave zone formation occurs
not on distances z≫λ as in the case of a nonrelativistic particle but on distances

z≫2λ / Δ̄ϑ
2 (28)

which are much larger than the wave lengthλ =1 / ω. For sufficiently small values of Δ̄ϑ
2  the

length z =2λ / Δ̄ϑ
2  can reach macroscopic size.

2.3. Wave packets in the equivalent photon method

The problem of dispersion of wave packets naturally arises in the equivalent photon meth‐
od (or the method of virtual photons) in which at the certain moment of time (t =0) the elec‐
tron’s coulomb field is substituted by a packet of free electromagnetic waves (see [22] and
references there). Let us consider some peculiarities of wave packets behavior in this meth‐
od [15].

For this purpose we write the scalar potential of the coulomb field of the electron moving
along the z axis with the velocity v→  in the form of the following Fourier-expansion:

ϕC(r→ , t)=Re∫ d 3k
(2π)3 e i(k

→
r

→
−k

→
v
→
t )Ck

C (29)

in which
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Ck
C =

8πeθ(kz)
k⊥

2 + kz
2 / v 2γ 2 (30)

Here eis the electron’s charge, γis the Lorentz-factor, kzand k⊥ are the components of vector
k
→
 parallel and orthogonal to z axis, θ(kz)is the Heaviside step function.

In the equivalent photon method it is assumed that for t =0 the packet (2), which consists of
free electromagnetic waves coincides with the packet (29). It corresponds to the Fourier ex‐
pansion (2) with the coefficientsCκ

→ =Ck
C . Let us consider the behavior of such packet in ultra

relativistic case in whichγ≫1.

For γ≫1 the main contribution to (2) are made by the values of κ→  with directions close to
the direction of the electron’s velocityv→ . Taking this fact into account we can present the
packet (2) in the following form:

ϕ(r→ , t)=Re∫
0

∞

dkϕk (r→ , t) (31)

where

ϕk (r→ , t)=
2
π e ik (z−t )∫

0

∞

ϑdϑ
ϑ 2 + γ −2

J0(kρϑ)e −ikzϑ 2/2 (32)

Here ϑ is the angle between k
→
 and v→  (ϑ≪1) and J0(x) is the Bessel function.

The function ϕk (r→ , t) has the same structure as the function (21) corresponding to the Gaus‐

sian distribution of vectors k
→
 over the anglesϑ. Namely, ifkzϑ 2 / 2≪1, the main contribution

to the integral (32) is made by the values ϑ ≈γ −1 and

ϕk (r→ , t)≈
2
π K0(kρ / γ)e ik (z−t ) (33)

where K0(x) is the modified Hankel function. In this case after integration over k
→
 in (31) we

find that

ϕ(r→ , t)=
e

ρ 2γ −2 + (z − t)2 (34)
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The main contribution to (31) is made by the valuesk ≈γ / ρ, hence expression (34) is valid in
the range of coordinates ρ and z that satisfy the conditionz <γρ. In this range of coordinates
the packet under consideration moves with the velocity of light in the z axis direction.

So on distances z <2γ 2λ the considered wave packet practically coincides with the initial
one (att =0). Substantial transformation of the packet would happen only on distances

z >2γ 2λ (35)

In this case for the evaluation of the integral in (32) over ϑ one could apply the method of
stationary phase. As a result of using of this method we find that

ϕk (r→ , t)= −
2i
π

1
θ0

2 + γ −2
1
kr e ik (r−t ) (36)

where r ≈ z + ρ 2 / 2z  and ϑ0 =ρ / z  is the point of stationary phase of the integral (32). We see
that the components (36) of our packet have in the case under consideration the form of di‐
verging spherical waves. Under this condition the angle ϑ0 corresponds to the direction of ra‐
diation, and the function before the diverging wave describes the angular distribution of the
radiation. So, the condition (35) draws out the wave zone in application to given problem.

The value 2γ 2λ presenting in the condition (35) is known in the theory of radiation by ultra‐
relativistic particles as the formation length or the coherence length [1, 2].

3. The bremsstrahlung at an electron instantaneous scattering

3.1. The electromagnetic field structure at an electron instantaneous scattering. The ‘half-
bare’ electron

The electromagnetic wave packets similar to the ones considered above arise, for example,
in the processes of bremsstrahlung by relativistic electron at its instantaneous scattering to a
large angle and in the process of transition radiation during an electron traverse of thin met‐
allic plate in vacuum. The present section is dedicated to the analysis of evolution of electro‐
magnetic wave packets and peculiarities of formation of radiation by relativistic electron in
the wave and the pre wave zones in the first process, while the next one – to the analogous
questions concerning the second one.

Let a relativistic electron move along the z axis with the velocity v→  and at the moment of
time t =0 in the point z =0 change it abruptly from v→  to v→ ' (Figure 1).
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Figure 1. The picture of total field after instantaneous scattering of an electron to a large angle.

Scalar and vector potentials of the total electromagnetic field, which takes place in such
process can be defined from inhomogeneous Maxwell equations

Δϕ −
∂2 ϕ
∂ t 2 = −4πρ(r→ , t),

ΔA
→
−
∂2 A

→

∂ t 2 = −4π j
→
(r→ , t)

(37)

in which ρ and j
→
 are respectively the charge and the current density of the particle, which in

the case of a single point particle motion should be taken as

ρ(r→ , t)= eδ(r→ − r→ (t))
j

→
(r→ , t)= ev→ (t)δ(r→ − r→ (t))

(38)

where δ(r→ )is the delta-function and r→ (t)and v→ (t) are respectively the particle’s trajectory and
its velocity. The solution of the set of equations (37) has the physical sense if it has the form
of the retarded potentials. In our case of a point particle the required form of the solution of
(37) and (38) is the following [21]:

{A
→

, ϕ }= e ∫
−∞

+∞

dt '
| r→ − r→ (t ') | {v→ (t '), 1}δ(t '− t + | r→ − r→ (t ') | ) (39)

In the case of a uniform particle motion with the velocity v→ along the z axis (39) leads to the
following explicit expressions for the potentials:
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A
→

v(r→ , t)=
ev→

ρ 2γ −2 + (z −vt)2
, ϕv(r→ , t)=

e

ρ 2γ −2 + (z −vt)2 (40)

which are the coulomb potentials of the moving particle. Here γ = E / m is the particle’s Lor‐
entz-factor and ρ is the absolute value of the coordinate ρ→  of the observation point in the
plane orthogonal to the z axis. The formula (40) for ϕ(r→ , t)shows that the equipotential sur‐
faces of the field of the particle, which moves uniformly straightforward are the ellipsoids
flattened in the direction of particle motion.

In order to obtain the solution of (37) for the considered case of the particle instantaneous
scattering it is convenient to express the potentials in the form of Fourier-integrals. Let us
consider, for example, the vector potential:

A
→

(r→ , t)=
1

(2π)3 ∫A→ k
→ (t)e ik

→
r

→
d 3k (41)

In order to obtain the expansion in the form of the retarded potential we should calculate
the Fourier-component A

→
k
→ (t) with the use of the inverse Fourier-transform of the expression

(39) for the vector potential:

A
→

k
→ (t)= ∫A→ (r→ , t)e −ik

→
r

→
d 3r =

= e ∫
−∞

+∞

dt '∫d 3re −ik
→
r

→ v→ (t ')
| r→ − r→ (t ') | δ(t '− t + | r→ − r→ (t ') | )

Making here the substitution R
→

= r→ − r→ (t ') and integrating the expression over d 3R it is possi‐
ble finally to present the Fourier-expansion (41) of the vector potential in the following form:

A
→

(r→ , t)= −
e

2π 2 Im∫ d 3k
k e −i(kt−k

→
r

→
) ∫
−∞

t

dt 'v→ (t ')e i(kt '−k
→
r

→
(t ')) (42)

Substituting into (42)v→ (t ') =v→ θ(− t ') + v→ 'θ(t '), where θ(x)is the Heaviside theta function, we
have for t <0 (which is before the scattering moment):

A
→

(r→ , t)=
e

2π 2 Re∫ d 3k
k

v→

ck −k
→
v→ e i(k

→
r

→
−k

→
v
→
t ) (43)

As integration over k
→
may show, (43) is nothing else than the Fourier-expansion of the own

coulomb field (40) of a uniformly moving particle.
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The different and rather interesting situation takes place after the scattering moment (for
t >0). In this case from (42) we obtain:

A
→

(r→ , t)=
e

2π 2 Re∫ d 3k
k { v→ '

k −k
→
v→ ' 1− e −i(k−k

→
v
→
')t e −ik

→
v
→
't +

v→

k −k
→
v→ e −ikt}e ik

→
r

→
(44)

The integration over k
→
gives in this case:

A
→

(r→ , t)= A
→

v
→
'(r

→ , t)θ(t − r) + A
→

v
→ (r→ , t)θ(r − t) (45)

where A
→

v
→  and A

→
v
→
'are respectively the coulomb potentials of the particles, which uniformly

move in the directions of z and z ' axes. The analogous expressions for the scalar potential
can be easily obtained by the same method.

The expression (43) shows that before the scattering moment the total field around the elec‐
tron coincides with its own coulomb field, which moves with the velocity v→ together with the
electron. After the scattering, according to (44) and (45), the total field around the electron
breaks into two parts represented by two items in the considered expressions.

The first item in braces in (44) corresponds to the nonequilibrium field, which the scattered
electron has already managed to rebuild around itself by the moment of timet . This field
consists of the own coulomb field of the electron, which moves along the z ' axis with the
velocity v→ ' (the first item in square brackets in (44) corresponds to it) and the packet of free
waves, which moves in the same direction (it is described by the second item in square
brackets). There is substantial interference between these fields due to which (as the first
item in (45) shows) the total field vanishes in the regionr > t , which the signal about the elec‐
tron scattering at the moment of time t =0 has not yet reached. Inside the sphere of radius
r = t  the total field coincides with the equilibrium coulomb field of the electron.

The second item in braces in (44) describes the field, which as though `tears away' from the
electron at the scattering moment. It is a packet of free electromagnetic waves, which moves
in the direction of the initial electron's velocity v→ and gradually transforms into bremsstrah‐
lung. This field is different from zero outside the sphere r = t  and vanishes inside it.

The equipotential surfaces of the scalar potential of the field around the electron after its
scattering to a large angle are presented on Figure 1.

The behavior of certain Fourier-components of the nonequilibrium field of the electron after
its scattering and of the field ‘torn away’ from the electron at its scattering is of special inter‐
est. According to (44), the values ofk

→
, which make contribution to each item of the nonequili‐

brium field of the electron has directions close to the direction of the electron’s final velocity
v→ '. During the period of timet <(k −k

→
v→ ')−1, however, both of these items substantially cancel

each other due to the interference. Therefore the coulomb field, which corresponds to the
scattered electron, does not appear instantly. Namely, during the period of time t ≤ (k −k

→
v→ ')−1

the Fourier components with wave vector k
→
 are nearly absent in the field around the scat‐
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tered electron. As the main contribution to the coulomb field is made by k
→
 with directions

close to the direction of the velocity v→ ' this period of time is defined by the relationt ≤2γ 2 / k .
Figuratively speaking we can say that after the scattering during such period of time the
electron is in ‘half-bare’ state, which means without considerable part of its field. Such state
of electron with nonequilibrium field manifests itself during further scatterings of the elec‐
tron, which causes different effects of bremsstrahlung suppression during an electron's mo‐
tion in substance, such as Landau-Pomeranchuk-Migdal effect [23-25], the effect of radiation
suppression in thin layer of substance (TSF-effect [26-28]), etc. Recently the series of detailed
experimental investigations of these effects at ultra high energies was performed on SLAC
[29,30] and CERN[31,32] accelerators, which confirmed the main theoretical predictions.

The notion of a ‘half-bare’ electron was introduced in the papers of E.L. Feinberg [33,34]
who studied the time evolution of the state vector of the system ‘electron + photon’ after the
scattering of a fast electron to a large angle on atom. The classical theory of this effect was
given in [2, 27, 35].

Let us note that during the period of time t =2γ 2 / ω the electron covers the distance

lC =2γ 2v / ω (46)

In the theory of radiation by relativistic electrons the length lC  has a name of the coherence
length of the radiation process [1,2]. Within this length the interference effects in radiation
are significant. For ultra relativistic electrons in the region of small frequencies of radiated
waves the length lC  can have macroscopic size, which exceeds not only interatomic distance
of the substance but the size of the experimental facility as well. Indeed, in the millimeter
range of the waves radiated by electrons with the energy of 50Mev the coherence length is
lC =20m. It means that within such length after scattering the electron is in ‘half-bare’ state,
which means that the Fourier-components of the corresponding wavelengths are absent in
the field around the electron.

The field, which ‘tears away’ from the electron at its scattering (the second item in braces in
(44)) has the structure similar to the one, which has the packet of free waves considered
above in the equivalent photons method. Therefore the main peculiarities of the reconstruc‐
tion of the ‘torn away’ field to the field of radiation will be the same as the considered above
peculiarities of the wave packets evolution. Let us consider this process in detail.

3.2. The problem of measurement of bremsstrahlung characteristics

The results presented above show that for ultra relativistic electrons the radiation formation
process develops on large distances along the initial and final directions of the electron mo‐
tion, which can be of macroscopic size. In this case a detector, which registers the radiation
characteristics can be situated both in the wave zone (which means on large distances r →∞
from the scattering point) and in the pre wave zone (which means on within the coherence
length lC  of the radiation process). Let us show that the results of measurements can sub‐
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stantially differ in these cases. For this purpose let us consider the peculiarities of the forma‐
tion of radiation from the ‘torn-away’ field on different distances from the scattering point
[17]. The consideration will be made for a point detector situated in the point with coordi‐
natesr→ = (ρ→ , z). Here the z axis is parallel to the vector of the electron’s initial velocity and ρ→

are the coordinates in the orthogonal plane. In this case by the point detector we mean the
detector, which measures the characteristics of electromagnetic waves (wave packet), which
fall on a small element of surface situated in the point with the coordinates r→ = (ρ→ , z) and
seen at solid angle do from the scattering point.

Making in the second item in (44) the variable substitution kz →kby kz = k 2−q 2(kzand qare
respectively the components of the wave vector k

→
 along the z axis and orthogonal to it) and

denotingk =ω, it is possible to present the Fourier-expansion of the `torn-away' field scalar
potential in the following form:

ϕ(r→ , t)=
e

πv 2 ∫
−∞

+∞

dω e −iω t ∫
0

|ω|

dq
qJ0(qρ)

q 2 + ω 2 / v 2γ 2 Q(z) (47)

where

Q(z)=
ωcos( ω 2−q 2z)

ω 2−q 2
+ ivsin( ω 2−q 2z) (48)

and ρ = |ρ→ | .

In (47) and (48) the square root ω 2−q 2 is considered to be a single-valued branch of the

analytical function, which is equal to | ω 2−q 2 |  for ω >q and − | ω 2−q 2 |forω < −q.

In ultra relativistic case (γ≫1) the range ofq, which make the main contribution to the inte‐

gral (47) is q ≤ω / γ≪ω and it is possible to expand the square roots ω 2−q 2 in (48) in the
small factorq / ω. Let us leave the items proportional to the second power of q / ωin the argu‐
ments of sine and cosine, while in the other parts of the expression (48) neglect them. More‐
over the integration over qcan be extended to the region0<q <∞. This leads to the following
expression for the `torn-away' field potential in ultra relativistic case:

ϕ(r→ , t)=
e
π ∫
−∞

+∞

dω ∫
0

+∞

dq
qJ0(qρ)

q 2 + ω 2 / v 2γ 2 e iω(z−t )−iq 2z/2ω (49)

The equations (37) are presented in Lorentz gauge
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divA
→

+
∂ϕ
∂ t =0 (50)

If  we knowϕ(r→ , t),  we can derive the vector potential  component Az  from this  equation
(A

→
⊥=0in this case). In the considered case the vector potential equals to the scalar one up

to the neglected items of the order of(q / ω)2.

In order to determine the total energy radiated in the direction of a small area ds→ =n→ r 2do
situated in the point r→ = (ρ→ , z) we can calculate the flux of the Poynting vector through this
area during the whole time of the particle motion

dε =
r 2do
4π ∫dt(E

→
× H

→)n→

where do is the element of solid angle in the direction of radiationn→ = r→ / r . The fields E
→

 and H
→

in this expression are the fields of the packet of free electromagnetic waves (the field ‘torn-
away’ from the electron at its scattering). They are related to scalar ϕ and vector A

→
 poten‐

tials of the radiation field by

E
→

= −
∂A

→

∂ t −∇ϕ, H
→

=∇ × A
→ (51)

Proceeding to the Fourier-expansions of the fields ϕ and A
→

 over frequency ω we obtain the
following expression for the radiation spectral-angular density:

dε
dωdo =

r 2

4π 2 E
→

ω(r→ ) × H
→
−ω(r→ ) n→ (52)

in whichω ≥0.

With the use of the Maxwell equationH
→

ω =(− i / ω)∇ × E
→

ω, the radiation spectral-angular
density can be expressed in the terms of Fourier-component of the electric field alone:

dε
dωdo =

ir 2

ω E
→

ω ×(∇ × E
→
−ω(r→ )) ⋅n→ (53)

Let us note that the formulae (52) and (53) are valid for arbitrary distances from the scatter‐
ing point. Therefore they can be used for radiation consideration both in the wave and the
pre wave zones. In the wave zone (which means in the regionr →∞) they can be considera‐
bly simplified. Therefore, firstly, let us dwell on the consideration of this case.

On large distances from the scattering point (r →∞) a Fourier-component of the field of the
radiation waves E

→
ω(r→ ) reconstructs into a packet of diverging waves, which amplitude is
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proportional to the factorr −1exp(iωr). The action of the Hamilton operator ∇  in (53) upon
E
→
−ω in this case can be applied only to the factorexp(iωr):

∇ × E
→
−ω = − iω n→ × E

→
−ω (54)

As a result we obtain the following expression for the radiation spectral-angular density for
r →∞:

dε
dωdo =

r 2

4π 2 | E
→

ω(r→ ) | 2 (55)

Let us note that the formula (55) is valid on large distances from the scattering point (r →∞).
While proceeding from (53) to (55) we took into account thatn→ E

→
ω =0. This relation directly

comes from the expression of Fourier-components of electric and magnetic fields in terms of
potentials ϕω(r→ ) and A

→
ω(r→ )

E
→

ω = −∇ϕω(r→ ) + iω A
→

ω(r→ ), H
→

ω =∇ × A
→

ω(r→ ) (56)

where ϕω(r→ ) and A
→

ω(r→ ) are defined from the expression (49).

In the case of ultrarelativistic particle in the region of characteristic for this process small ra‐
diation angles ϑ≪1 the ‘torn-away’ electric field can be considered as transverse having on‐
ly E⊥ component orthogonal to z axis. In this case the formula (55) for the radiation spectral-
angular density has the following form:

dε
dωdo =

r 2

4π 2 | Eω⊥(r→ ) | 2 (57)

Using (49) we can derive the electric field Fourier-component orthogonal to z axis. Substitut‐
ing it into (57) for the spectral-angular distribution of bremsstrahlung we achieve:

dε
dωdo =( ez

π )2 | ∫
0

∞

dq
q 2J1(qρ)

q 2 + ω 2 / v 2γ 2 e −i
q 2z
2ω | 2

(58)

For large distances from the scattering point, namely in the wave zone of the radiation proc‐
ess (z≫2γ 2 / ω) the integral in (58) can be calculated with the use of stationary phase meth‐
od [36]. It leads to the well known expression for radiation distribution from the
bremsstrahlung theory [1,4,37]:
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dε
dωdo =

e 2

π 2
ϑ 2

(ϑ 2 + γ −2)2 (59)

where ϑ =ρ / zis the angle between the direction of radiation and the z axis. As we can see
from (59) in the wave zone the radiation is mainly concentrated within characteristic angles
ϑ ≈1 / γ. The schematic form of the bremsstrahlung angular distribution in the wave zone is
presented on the Figure 2 by the solid curve.

Figure 2. Bremsstrahlung angular distribution given by a point detector in the wave zone (solid curve) and in the pre-
wave zone (dashed curve) for a certain frequency ω

For ultra high energies of the radiating particle in the region of characteristic small angles of
radiation the expression (57) (and hence the expression (58)) is valid for the description of
radiation spectral-angular density on small distances from the scattering point as well (in
particular, in the pre-wave zone (z≪2γ 2 / ω) of the radiation process). Indeed, as the elec‐
tric field can be considered transverse in this case thanE

→
ω = −∇ϕω = −∂ϕω / ∂ρ→ . The equality

of ϕω(r→ ) and Aω(r→ ) leads to the following expression for the magnetic field:

H
→

ω =∇ × A
→

ω =∇ϕω × e→ z

where e→ z is a unit vector in the direction of z axis. Taking into account the orthogonality of
∇ϕω and e→ z for the absolute value of the magnetic field we obtain| H

→
ω | = |∇ϕω | , which is

equal to the absolute value of the electric field. Moreover, these fields are orthogonal
(E

→
ωH

→
ω =∇ϕω(∇ϕω × e→ z)=0). Taking into account the fact that the magnetic field H

→
(r→ , t) is

the real function, which leads to the relationH
→
−ω = H

→
ω
* , we can present the general expression

(52) in the following form:

dε
dωdo =

r 2

4π 2 Eω⊥Eω⊥
* (r→ ) e→ zn→

which coincides with (57) at small angles between e→ z andn→ . Now let us consider radiation in
the pre-wave zone on the basis of this formula.
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In the pre-wave zone (z≪2γ 2 / ω) of the radiation process it is not possible to use the sta‐
tionary phase method for the analysis of radiation characteristics. Here, making the substitu‐
tions q =ω x / γandρ = zϑ, we can present the integral (58) in the form:

dε
dωdo =( eω z

πγ )2
| I1− I2 | 2 (60)

where

I1 = ∫
0

+∞

dxJ1(ω zγ −1xϑ)e
−i

ω z

2γ 2 x 2

I2 = ∫
0

+∞

dx
J1(ω zγ −1xϑ)

x 2 + 1
e
−i

ω z

2γ 2 x 2

In the case γ≫1 the absolute value of the integral I2 is negligibly small comparing to the
corresponding value of I1 and for spectral-angular density of bremsstrahlung in the pre-
wave zone we obtain:

dε
dωdo =( eω z

π )2
| I1 | 2 =

4e 2

π 2
1

ϑ 2 sin2( ω zϑ 2

4 ) (61)

From (61) we can conclude that in the pre-wave zone the radiation is mainly concentrated
within anglesϑ ≈2 / ω z, which exceed the characteristic angles ϑ ≈1 / γof the wave zone.
Therefore in the pre-wave zone (z≪2γ 2 / ω) the point detector gives broader angular distri‐
bution of radiation (dashed curve on Figure 2) than in the wave zone (z≫2γ 2 / ω). More‐
over this distribution depends on the frequency ω of the radiated waves.

By the point detector we mean here the detector of the smaller size δρthan the transversal
radiation length of the processlT ≈γ / ω, which is the characteristic transversal distance on
which at the moment of time t =0the Fourier harmonics of frequency ω are concentrated in
the wave packet (49). Such detector registers the radiation of frequencyω, which falls on a
small domain of space, where the detector is situated.

The measurements, however, can be made by the extended detector of the larger size than
the characteristic transversal length of the radiation process, so thatδρ≫ lT . Such detector
registers not only the waves of frequencyω, which fall on the small element of surface with
coordinates ρ→  andz, as the point detector does, but all the electromagnetic waves of frequen‐
cyω, which propagate in the direction of wave vector k

→
(|k

→ | =ω). In order to calculate the
bremsstrahlung spectral-angular distribution, which is registered by an extensive detector,
which is a plate of large size, we need to integrate the expression (58) over the entire consid‐
ered plate and express the obtained result in the form of an integral over the directions of
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wave vectors of radiated waves. The integrand in this case will be nothing else than the re‐
quired distribution. In our case after performing the procedures described above we can
present the expression (58) in the following form:

dε
dωdoγ

=
e 2

π 2
ϑγ2

(ϑγ2 + γ −2)2 (62)

where ϑγ =q / ω is the angle between the direction of the wave vector k
→
and the z axis. Hence

the bremsstrahlung spectral-angular distribution obtained by the extended detector coin‐
cides with the one (59) obtained by the point detector in the wave zone. But unlike the case
with point detector this distribution does not depend on the distance from the scattering
point and is the same both in the wave and the pre-wave zones.

4. Transition radiation by relativistic electron on thin metallic plate

4.1. Scalar and vector potentials of transition radiation field

The electromagnetic wave packets of the structure analogous to the one considered in the
process of an electron instantaneous scattering take place also in the process of relativistic
electron traverse of thin conducting plate. Let us consider a problem about transition radia‐
tion that arises during normal traverse of thin ideally conducting plate, situated in the plane
z =0, by an electron, which moves along the z axis from z = −∞to z = + ∞ (Figure 3). Let us
investigate the structure of electromagnetic fields that take place before and after the elec‐
tron's traverse of the plate in vacuum [16-18].

Figure 3. The electron normal traverse of thin metallic plate.
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Scalar and vector potentials of the electromagnetic field, which is generated by an electron
moving in vacuum are the solutions of inhomogeneous Maxwell equations (37). The equa‐
tions set (37) in the considered problem should be supplemented by a boundary condition,
which corresponds to the fact that on the plate's surface the tangential component of the to‐
tal electric field equals zero. The general solutions of the equations (37) for the electron,
which moves uniformly with the velocity v→  can be represented in the form of the following
Fourier-expansions of the potentials ϕ(r→ , t)andA

→
(r→ , t):

ϕ(r→ , t)= ∫ d 3kdω
(2π)4 e i(k

→
r

→
−ω t ) ϕk

→
,ω

C δ(ω −k
⇀
v→ ) + ϕk

→
,ω
f δ(k 2−ω 2)

A
→

(r→ , t)= ∫ d 3kdω
(2π)4 e i(k

→
r

→
−ω t ) A

→
k
→
,ω

C δ(ω −k
⇀
v→ ) + A

→
k
→
,ω

f δ(k 2−ω 2)
(63)

The first items in (63) are the Fourier-expansion of the electron's Coulomb field, for which

ϕk
→
,ω

C = −
8π 2e

ω 2−k 2 , A
→

k
→
,ω

C =v→ ϕk
→
,ω

C (64)

The second items in (63) are the Fourier-expansion of the field of induced surface currents
on the plate (we will name it the free field), for which in vacuum |k

→ | = |ω | . On large dis‐
tances from the region in which the transformation of the surrounding electron field takes
place this items form the transition radiation field. It can be derived from the boundary con‐
dition for the total electric field E

→
= E

→ C + E
→ f on the surface of the plate:

E
→
⊥
C(ρ→ , z =0,t) + E

→
⊥
f (ρ→ , z =0,t)=0 (65)

Here E
→ Cis the electron's Coulomb field and E

→ f is the field of induced surface currents on the
plate. Moreover it is required that the free field produced by the plate propagates on the left
and on the right of the plate respectively in the negative and positive directions of z axis. The
scalar and the vector potentials define electric and magnetic fields by the relation (51). Due to
the symmetry of the problem the vector potential is directed along the particle velocityv→ :

A
→

(r→ , t)=v→ A(r→ , t) (66)

and the relation

A C(r→ , t)=ϕ C(r→ , t) (67)

for the particle's field in vacuum is valid. In general case such relation between potentials is
not valid.
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Using Fourier expansion (63) it is possible to derive the potential ϕ(r→ , t) from the condition
(65). For this let us perform the integration over the component kzin (63). Taking also into
account the relation between potentials and fields (51) we obtain the following expression
for transversal component of the electric field:

E
→
⊥(r→ , t)= −

∂
∂ρ→ ∫ d

2k⊥dω
(2π)4 e i(k

→
⊥ρ

→
+kz z−ω t ) ϕk

→
,ω

C |
kz=

ω
v

+
1

2| ω 2−k⊥2 | (ϕk
→
,ω
f |

kz= ω 2−k⊥2
+

+ϕk
→
,ω
f |

kz=− ω 2−k⊥2 ) .
(68)

Forz =0, according to (65) this component should equal zero. From this we find that

−ϕk
→
,ω

C |
kz=ω/v

=
1

2| ω 2−k⊥2 | (ϕk
→
,ω
f |

kz= ω 2−k⊥2
+ ϕk

→
,ω
f |

kz=− ω 2−k⊥2 ) (69)

The values kz = ± ω 2−k⊥
2 satisfy the dispersion relationω 2 =kz

2 + k⊥
2, which is defined by the

respective δ- function in (63). The sign before the square root ω 2−k⊥
2determines the direc‐

tion of propagation of plane waves (Fourier components) with given values ofωand |k⊥| [1,
4]. Indeed, the equation of a plane wave constant phase along the zaxis iskzz −ω t =const . The
plane waves, which the free field produced by the plate consists of, should propagate away
from the plate. Hence for ω >0 on the right of the plate (which meansz >0) it is necessary to

take into account only Fourier-components with positive sign before the root ω 2−k⊥
2 in

(62), while for ω <0 and z >0- only Fourier-components with negative sign before this root in
(68). In the region z <0 for ω >0 and ω <0 in (68) we should take into account the items with

opposite signs before the root ω 2−k⊥
2 relatively to the case forz >0. The value of the square

root itself is considered either positive or to belong to the upper complex half plane.

Thus, taking into account all requirements mentioned above we can write the scalar poten‐
tial of the free field in the following form:

ϕ f (r→ , t)= −
e

2π 2v ∫d 2k⊥ ∫
−∞

∞

dω
1

k⊥
2 + ω 2 / p 2 e i(zω 1−k⊥

2/ω 2−ω t+k
→
⊥ρ

→ ) (70)

where p =vγ (γ– electron's Lorentz-factor). It is a packet of free electromagnetic waves,
which gradually turns into the field of transition radiation in such way that each harmonic
with frequency ω reconstructs into diverging spherical wave on distancez > lC ≈2γ 2 / ω,
which is the formation length of the radiation process.
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Let us note that the value of |k⊥|  in (63) is arbitrary. Therefore it is necessary to perform

the integration in (63) not only over travelling wavesk⊥
2 <ω 2, but over surface ones k⊥

2 >ω 2 as
well.

Using (70) and the Lorentz gauge (50) in which the equations (37) are presented we can de‐
rive the vector potential:

A f (r→ , t)= −
e

2π 2 ∫d 2k⊥ ∫
−∞

∞

dω
1

k⊥
2 + ω 2 / p 2

1

1−k⊥
2 / ω 2

e i(zω 1−k⊥
2/ω 2−ω t+k

→
⊥ρ

→ ) (71)

Making in (70) the substitution |k⊥| = |ω | x and separating the contributions to the poten‐
tial by the free field of travelling and surface waves, we can write the potential of this field
in the following form:

ϕ f (r→ , t)=Ф1(r
→ , t) + Ф2(r

→ , t) (72)

where

Ф1(r
→ , t)= −

2e
πv ∫

0

1

xdx
x 2 + p −2 ∫

0

∞

dω J0(ωxρ)cos ω(| z | 1− x 2− t) (73)

Ф2(r
→ , t)= −

2e
πv ∫

1

∞

xdx
x 2 + p −2 ∫

0

∞

dω J0(ωxρ)cos(ωt)e −|z|ω x 2−1 (74)

Deriving (72), we performed in (70) integration over azimuth angle between k⊥ and ρand
proceeded from integration over ω along the interval −∞ <ω < + ∞ to integration over only
positive values of this variable.

The corresponding expressions for vector potentialA f = A1 + A2, according to (71), differ

from (73) and (74) only by additional factor 1 / 1− x 2 in the integrands.

4.2. The structure of transition radiation field

Let us discuss the structure of the fields that arise during the electron traverse of thin ideally
conducting plate. Firstly, let us consider the structure of this field along the z axis for ρ =0
[16]. This case is interesting for the fact that the calculation of all the integrals in (73) and (74)
essentially simplifies forρ =0. Nevertheless, in this case all the main peculiarities of free
waves formation in the considered process remain intact.
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As a result of rather simple calculations (see Appendix) we obtain the following expression
for the field produced by the plate on the z axis forρ =0:

ϕ f (z, t)= −
e

| | z | −vt | θ(| z | − t)−
e

| | z | + vt | θ(t − | z |) (75)

The total field produced by the electron and the plate can be obtained by addition of the ex‐
pression (75) and the electron’s own coulomb field on the z axis:

ϕ C(z, t)= e / | z −vt |

The obtained results show that for t <0the total field produced by the electron and the plate in
the region z <0 is the electron’s own coulomb field, which moves towards the plate and the
field, which coincides with the field of electron’s image inside the plate. By the field of elec‐
tron's image we assume the field, which is created by an imaginary particle with a charge of
the opposite sign, which is situated on the opposite side of the plate and moves symmetrical‐
ly to the electron relatively to the plate. In the region z >0the total field equals zero fort <0.

For t >0 the picture of the total field distribution is the following. In the region z <0 for
| z | > t  the total field is defined by the electron’s field in this coordinate region (the electron
in this case is situated on the right of the plate) and the field of its ‘image’, which moves in
the direction opposite to the z axis. In the region z <0 for | z | < t  the total field equals zero.
In the region of positive z values for z > t  the total field equals zero while for z < t  this field is
the sum of the field of the electron, which is situated in this coordinate region for t >0 and
the field of its ‘image’ situated on the left of the plate.

The integrals in (73) and (74) can be analytically calculated as well. After rather long calcula‐
tions we finally obtain the following expression forϕ f (r→ , t):

ϕ f (r→ , t)= −
e

ρ 2γ −2 + (| z | −vt)2
θ(r − t)−

e

ρ 2γ −2 + (| z | + vt)2
θ(t − r) (76)

The electron’s own coulomb field has the following form:

ϕ C(r→ , t)=
e

ρ 2γ −2 + (z −vt)2 (77)

The structure of the expressions for scalar potential is the same as the structure of these ex‐
pressions forρ =0. If t <0 then, according to (76) and (77), the total field in the left half-space is
equal to the sum of the electron’s coulomb field in this region and the field of its image:

ϕ(r→ , t)=
e

ρ 2γ −2 + (z −vt)2
−

e

ρ 2γ −2 + (| z | −vt)2

In the right half-space the total field equals zero fort <0.
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After electron's traverse of the plate, which means fort >0, according to (76) and (77), the to‐
tal field in the left half-space is defined by the formula

ϕ(r→ , t)=
e

ρ 2γ −2 + (z −vt)2
−

e

ρ 2γ −2 + (| z | −vt)2
θ(r − t) (78)

In the right half-space, where the electron is situated after the traverse of the plate, the total
field has the following form:

ϕ(r→ , t)=
e

ρ 2γ −2 + (z −vt)2
−

e

ρ 2γ −2 + (z + vt)2
θ(t − r) (79)

Thus for t >0 the picture of the total field, which is created by the electron-plate system is as
following. In the left half-space in the coordinate region r > t  it is a sum of the electron's cou‐
lomb field of the opposite sign reflected from the plate and the own field of electron, which is
situated on the right of the plate. The reflected field in this case moves with velocity −v→  in the
direction opposite to the direction of electron's motion. In the coordinate regionr < t , which the
signal about the electron's traverse of the plate at t =0 has already reached, the total field equals
zero. In the right half-space for t >0 and r < t  the total field equals the sum of the fields of the
electron and its `image' on the left of the plate. For r > t the total field equals zero.

The analogous expressions can be obtained for vector potential as well. Namely, for t >0 the
total field vector potential (the sum of particle's coulomb field and radiation potentials) has
the following form:

A
→

(r→ , t)=v→
e

ρ 2γ −2 + (z −vt)2
+

e

ρ 2γ −2 + (| z | −vt)2
θ(r − t) (80)

The expression in square brackets in (80) differs from the same expression for scalar poten‐
tial (78) only by the sign of second item. The reason of this can be understood from the fol‐
lowing reasoning. For z <0 in the region r > t  the field (78) is the difference between two
coulomb fields, the sources of which are the electron and its image. The vector potential of
the coulomb field is related to its scalar potential byA

→
=v→ ϕ, where v→  is the velocity of the

field source. As electron moves with velocity v→  and its image - with velocity−v→ , their vector
potentials respectively equal A

→
e =v→ ϕe andA

→
i = −v→ ϕi. It is the presence of the `minus' sign in

the expression for A
→

i that causes the discussed difference in the signs of the items in square
brackets in (78) and (80).

In the region z >0 for t >0 the vector potential has the following form:

A
→

(r→ , t)=v→
e

ρ 2γ −2 + (z −vt)2
+

e

ρ 2γ −2 + (z + vt)2
θ(t − r) (81)
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The obtained results are valid for arbitrary electron velocities. The case of an ultra relativis‐
tic particle is of special interest because for such particles the reconstruction of the total field,
created by the plate and the electron after its traverse of the plate, into the field of radiation
occurs on large distances. The results obtained in this case are illustrated by Figure 4. Here
the equipotential surfaces of the scalar potential of the field reflected to the left half-space
and the field around the electron on the right of the plate are presented fort >0.

Figure 4. The total field in ultra relativistic case fort > 0.

In order to understand what occurs with the electric field on the surface of the sphere of ra‐
dius r = t  with the center in the point of the electron traverse of the plate (θ - sphere) let us
consider the structure of the force lines of the total field for t >0 and, for example,z <0.

While building the force lines it is necessary to take into account that they should originate
or end either on charges or in the infinity and not to cross each other. In the case of an infin‐
ite plate all the field lines originate and end either on the surface charges of the plate or on
the electron, which traverses it.

Thus each force line of the total field (78), which originates on a surface charge of the plate
somewhere in the area ρ > t and stretches through the space region r > t to the θ - sphere, should
be refracted and stretch further along the surface of the sphere, ending on another surface
charge of the plate at ρ = t(Figure 5). It is the force lines, which overlap each other on the θ -
sphere are the force lines of the transition radiation field. Indeed, the field on the θ - sphere
propagates in the radial direction with the speed of light and is perpendicular to this direction.
Moreover, as will be shown in further discussion, this field decreases with the distance as1 / r .

It is necessary to note that the given picture of the force lines indicates the necessity of the
existence of the field (78) outside the θ - sphere along with the radiation field on it. It is only
in this case that the force lines of the radiation field, which originate (end) on the surface
charges of the plate and stretch along the θ - sphere can proceed to the region r > t  forming
the lines of the field (78) and not intersect or break on the θ - sphere.
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Figure 5. The picture of the total field force lines fort > 0,z < 0.

4.3. The transition radiation field and its intensity

In ultra relativistic case (γ≫1) the range ofk⊥, which make the main contribution to the in‐
tegral (70), which represents the transition radiation field is k⊥≤ω / γ≪ω and it is possible

to make in (70) the same expansion of the square root ω 2−k⊥
2in the small factor k⊥ / ω as we

did in (47) and (48) for the bremsstrahlung field. Such expansion represents the fact that
transition radiation is considered at small angles around the particle’s trajectory
ϑ =k⊥ / ω ≈1 / γ within which the most part of the radiation is concentrated in ultra relativis‐
tic case. In the result of the expansion of (70) we obtain the expression for the transition radi‐
ation field, which coincides with the analogous expression (49) for the bremsstrahlung field.
This means that the packets of free electromagnetic waves, which arise in the processes of
electron instantaneous scattering and the particle traverse of thin metallic plate have similar
(but not totally identical) structure and the radiation effects, which take place in these proc‐
esses should be analogous.

Let us consider the radiation, which arises during an electron normal traverse of thin ideal‐
ly conducting plate [16-18]. In this case by radiation we mean the part of the electromagnet‐
ic energy, which belongs to the frequency interval (ω, ω + dω) and falls into the small detector,
which is placed on different distances r  from the point of electron traverse of the plate. The
detector’s position relative to this point is defined by the transverse ρ→  and longitudinal z co‐
ordinates (Figure 4). The radiation direction ϑ is then defined by the ratio of these coordinates:

ϑ =arctg
ρ

| z | (82)
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In further discussion we will mainly concentrate our attention on the peculiarities of the ra‐
diation formation process in the left half-space, which is the region of negative z. Naturally,
the general expression (55) for the radiation spectral-angular density on large distances from
the target is valid in this case as well. The discussed structural similarity of the fields in the
processes of electron instantaneous scattering and electron traverse of thin metallic plate al‐
so gives us the possibility to use the expression (57) for the description of the transition radi‐
ation field in the range of small angles ϑ ≈1 / γ characteristic to this process on arbitrary
distances z from the plate. Firstly, let us consider the transition radiation in the wave zone.

Let us show that in the region of large distances from the target (r →∞) the formula (55)
gives the well known result from the theory of transition radiation by electron on metallic
plate [1, 4, 37]. Indeed, in differentiating of (78) and (80) the items proportional to deriva‐
tives of the square brackets will give the total field outside the θ- sphere, which decreases
with the distance r  faster thanr −1. The item proportional to the derivative of the θ- function
is on large distances the diverging wave, which amplitude is proportional tor −1. This item
defines all the transition radiation characteristics.

The scalar ϕ f  and vector A
→ f  potentials on the θ- sphere can be written as

ϕ = −2v
e
r

cosϑ
1−v 2cos2ϑ

θ(r − t), A
→

= −v→
ϕ

cosϑ (83)

where ϑ is the angle between r  and−v→ . So the transition radiation electric field is totally de‐
fined by the spatial derivative of the scalar potential:

E
→ f (r→ , ϑ, t)=2v

e
r

δ(r − t)
1−v 2cos2ϑ

( v→

v + n→ cosϑ) (84)

The Fourier-component of this expression has the following form:

E
→

ω
f (r→ , ϑ)=2v

e
r

1
1−v 2cos2ϑ

( v→

v + n→ cosϑ)e iω r (85)

Let us note that the relation n→ E
→

ω =0 is valid for (81) asn→ v→ = −vcosϑ.

Substituting (85) into (55) we obtain the well known expression for spectral-angular density
of backward transition radiation [1, 4, 5]:

dε
dωdo =

e 2v 2

π 2
sin2ϑ

(1−v 2cos2ϑ)2 (86)
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The presented derivation of the formula (86) for the transition radiation spectral-angular
density is based on the analysis of the electron’s field reflected from the plate on large dis‐
tances r →∞ from the plate. In this case by large distances we mean the distances from the
target, which substantially exceed the coherence length of the radiation process [1, 2]

lC(ϑ)=
ω −1

1−vcosϑ
(87)

For ultrarelativistic electrons the transition radiation is mainly concentrated inside a narrow
cone with the opening angleϑ ≈1 / γ. In this region of angles ϑ the coherence length (87)
quickly increases with the increase of the electron’s Lotentz-factor:

lC(ϑ)=
2γ 2 / ω

1 + γ 2ϑ 2 (88)

For large γ and small ω this length can have ultra large values, which allow, for example, a
detector to be situated within this length. The analysis of the transition radiation process in
this case requires the development of the methods, which allow to consider the radiation
process not only on large distances from the target comparing to the coherence length, lC ,
but on the small ones as well. One of such methods is based on the application in the consid‐
ered problem the Fourier-expansions of scalar, ϕ f , and vector, A

→ f , potentials of the free
field, which is generated by the plate during its traverse by the electron. Primarily, it is nec‐
essary to note that these fields are the wave packets, which consist of plane electromagnetic
waves. At large values of the time interval after the interaction of the electron with the target
these wave packets reconstruct into spherical diverging waves of radiation. On small distan‐
ces from the target the spatial structure of these packets is close to the structure of the packet
formed by the electron’s own field, which is reflected from the plate.

Firstly, let us consider on the base of this method the transition radiation on large distances
from the plate| z |≫2γ 2 / ω. In this case the integrals over xin (72) can be calculated with the
use of the stationary phase method. Using for this purpose the asymptotic expression for the
Bessel function J0(ωxρ) for large values of its argument we can write ϕω

f (r→ ) in the next way:

ϕω
f (r→ ) = −

2e
v Re∫

0

1

xdx
x 2 + p −2

2
πωρ x

{e i(ωρ x −
π
4 +|z|ω 1−x 2)

+ e i(ωρ x −
π
4 −|z|ω 1−x 2)} (89)

The first item in the braces gives the stationary phase point

x0 =
ρ / | z |

ρ 2 / z 2 + 1
=sinϑ (90)

Electromagnetic Wave Packets in the Theory of Bremsstrahlung and Transition Radiation by High-Energy Electrons
http://dx.doi.org/10.5772/50866

295



where the ratio ρ / | z |  is defined by the relation (82). As stationary phase point is absent in
the second item in (89) in the considered region of the variablex, we can neglect the contri‐
bution of this item to the integral overx. For the same reason we neglect the contribution to
ϕω

f (r→ ) of the item in (72), which contains the integration over the valuesx >1. In the result for

ϕω
f (r→ ) we obtain:

ϕω
f (r→ ) = −

2e
ω vr

cos2ϑ
sin2ϑ + p −2

e i(ω r−π/2) (91)

We took into account the fact that in spherical coordinate system ρ = rsinϑ and| z | = rcosϑ.

With the use of (56) the expression (E→ ω × H
→
−ω)n⇀  in (52) can be written in the form:

(E→ ω × H
→
−ω)n⇀ = (−∂z ϕω

f + iω A
→

ω
f )n→⊥⋅∇⊥A−ω

f −cos∇⊥ϕω
f ⋅∇⊥A−ω

f (92)

In the point of stationary phase for r →∞ Aω
f = −ϕω

f / cosϑ. Taking into account
∂
∂ρ ϕω = iωsinϑϕω and 

∂
∂ z ϕω = iωcosϑϕω we find that

(E→ ω × H
→
−ω)n⇀ =ω 2tg 2ϑϕω

f ϕ−ω
f (93)

Substituting the asymptotic (91) for the potential ϕω into this expression we obtain the for‐
mula (86) for the radiation spectral-angular density.

For ultra relativistic particles characteristic values of the radiation angles ϑ ≈γ −1 are much
less than unit. The radiation spectral-angular density (86) in this case has the following form:

dε
dωdo =

e 2

π 2
ϑ 2

(γ −2 + ϑ 2)2 (94)

In this region of radiation angles the characteristic values of the variablex, which make con‐
tribution to the integral over x in (72) are smallxeff ≈γ −1. The stationary phase method is val‐
id for calculation of this integral if

In other words, it is required that the distance between the target and the detector should
substantially exceed the coherence length of the radiation process, which means the radia‐
tion should be considered in the wave zone.
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As it was pointed out, the length lC  can have macroscopic values and the detector can be
situated in the pre-wave zone, which is on smaller distances that the coherence length of the
radiation process. The stationary phase method is not applicable for calculation of the inte‐
gral over x in (72) in this case. For this purpose the expansion of the phase over small values
of x in the exponential factor in (72) can be made. Neglecting the items proportional to high‐
er powers than x 2 we find that

ϕω
f = −

2e
πv Re∫

0

∞

xdx
x 2 + p −2

J0(ωxρ)e i(ω|z|−ω|z|x 2/2) (95)

In the region of small radiation angles for whichϑ 2 | z |ω ≤1, the convergence of the integral
(95) is determined by the valuesx ≈1 / | z |ω, therefore the items proportional to x 2 should
be preserved in the exponent phase. With the same accuracy in the region of small angles
the vector potential Aω

f  is related ϕω
f  by

In this case (E→ ω × H
→
−ω)n⇀ =∇⊥ϕω

f ⋅∇⊥ϕ−ω
f  and the radiation spectral-angular density has the

following form:

dε
dωdo =( 2e 2

πv )2
| B(z)| 2 (96)

where

B(z)=ω | z | ∫
0

∞

x 2dx
J1(xω | z |ϑ)

x 2 + γ −2
e −iω|z|x 2/2 (97)

Let us note that during the derivation of the expression (97) we only took into account the fact
that the consideration of the radiation process was made in the region of small angles of radi‐
ation. Therefore the formula (97) is valid both for large (z≫ lC) and small (z≪ lC) distances
between the detector and the target. If| z |≫ lC , the calculation of the integral B(z) can be
made with the use of the stationary phase method. As a result formula (97) gives the corre‐
sponding result of the transition radiation theory (see formula (94)). In the region | z | < lC the
formula (96) leads to the broader radiation angular distribution than the one defined by the
expression (94). The possibility of existence of such effect was considered in the paper [10]. Its
theory was elaborated in the paper [8]. According to it, in particular, in the region of small an‐
gles on distances | z | < lC  the radiation spectral-angular density is defined by the formula:
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dε
dωdo =

4e 2

π 2
1

ϑ 2 sin2( ω | z |ϑ 2

4 ) (98)

Such modification of the radiation angular distribution for | z | < lC  comparing to the case of
| z |≫ lC  is caused by the fact that in the region | z | < lC  only part of the waves reflected
from the plate fall into the point detector (see [8]). It is necessary to note that for | z | < lC  the
radiation angular distribution depends on the frequency of the radiated electromagnetic
wave. If the measurements are performed by the detector of the larger size than the charac‐
teristic transversal length of the radiation process the radiation spectral-angular density is
defined by the expression (94) on arbitrary distances from the plate and the discussed above
pre-wave zone effects disappear.

The obtained results show that the effects analogous to the ones which take place in the
process of bremsstrahlung at the instantaneous scattering of the electron to a large angle (the
broadening of the radiation angular distribution and its dependence on the frequency of the
registered photon in the measurements performed by a point detector on small distances
from the scattering point) take place also for backward transition radiation in the process of
an electron traverse of metallic plate. For ultra relativistic particles, according to (94) and
(98), the radiation is mainly concentrated in the region of small anglesϑ≪1: ϑeff ≈1 / γin the

wave zone, in the pre-wave zoneϑeff ≈2 / ω | z | .

5. Transition radiation by ‘half-bare’ electron

The wave packets,  which arise  at  ultra  relativistic  electron instantaneous scattering to  a
large angle, reconstruct into radiation field on distances along the initial and final direc‐
tions of the electron’s velocity, which are of the order of the coherence length of the radia‐
tion process. For large energies of the electron and low frequencies of the radiated waves,
as was stated above, this length can be of macroscopic size. In this case the possibility of
investigating of the evolution of such wave packets in space and time by macroscopic de‐
vices appears. In [15] one of such possibilities, which concerns the reflection of wave pack‐
ets from an ideally conducting plate situated on different distances from the scattering point,
was discussed. In this case if  the plate is situated in the direction of motion of the scat‐
tered electron perpendicular to its velocity the reflected field is the backward transition ra‐
diation. However, the peculiarity of this process lies in the fact that unlike the ordinary
backward transition radiation the considered one is the radiation by the particle with non‐
eqiulibrium field. The plate in this case can be considered as an element of the radiation
detector. Let us obtain the formulae, which describe the given process and discuss some of
its peculiarities on their basis [17].

Electromagnetic Waves298



Figure 6. Normal incidence of the scattered ‘half-bare’ electron on thin metallic plate.

Let the ideally conducting plate be situated in the plane z ' = z'0 (Figure 6). The Fourier-ex‐
pansion of the field around the scattered electron

ϕ(r→ , t)=
e

2π 2 Re∫ d 3k
k

e ik
→
(r

→
−v

→
't )

k −k
→
v→ ' −

e ik
→
r

→
−ikt

ck −k
→
v→ ' (99)

consists of two parts, the first of which describes the equilibrium coulomb field of the elec‐
tron, which moves with the velocity v→ ' along the direction of scattering, while the second part
is the nonequilibrium field, which is structurally equal to the ‘torn away’ field (it is equal to
equilibrium coulomb field outside the θ- sphere and vanishes inside it). Hence, the second
part of the field (99) can be presented in the form (47) with a mere substitutionv→ →v→ '. The first
part of the field (99) can be presented in the analogous form by making the substitution kz →k

from k = kz
2 + q 2 and denotingkzv ' =ω. From the expression for scalar potential obtained by

the considered transformations we can derive the expression for the Fourier-component of the
electric field perpendicular to z axis, which in ultra relativistic case is:

E⊥(r→ , ω)=2e ∫
−∞

+∞

dω e i
ω z '

v ' ∫
0

∞

dq
q 2J1(qρ)

q 2 + ω 2 / v'2 γ 2 1− e
−i

ω z '

2v '2
(γ −2+q 2v '2/ω 2) (100)

From (100) it follows that the rebuilding of the field around the electron occurs in such way
that each Fourier-harmonic of frequency ω0 totally reconstructs and becomes the harmonic
of equilibrium coulomb field on the distance from the scattering point, which coincides with
radiation formation length (| z ' | ≈2γ 2 / ω0) for thisω0. It is possible to place the plate quite
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close to the scattering point so that at the moment of electron's traverse of the plate the Four‐
ier-harmonics of certain frequencies ω <ω0 will have not yet reconstructed. In other words it
is possible to place the plate in the pre-wave zone for these frequencies. In this case the inci‐
dent electron will be ‘half-bare’ and its transition radiation should differ from such radiation
by electron with equilibrium field.

The total field of the electron-plate system consists of the field of 'half-bare' electron E⊥ and

the field E⊥
f  of currents induced on the surface of the plate. Applying the boundary condi‐

tion for electric field on the surface of the plate

we can find the expression for the Fourier-harmonic of the field of induced surface currents:

E⊥
f (r→ , ω)=2e

e iωR

R
ϑ

ϑ 2 + γ −2
Fω(r→ )−1 (101)

where Fω(r→ ) =
1
v

ρ'2 + γ −2(z '−2z'0 )2

ρ'2 + γ −2(z '− z'0 )2 exp{ iω z'0
2

1
v 2γ 2 +

ρ'2
(z '− z'0 )(z '−2z'0 ) } ,

Ris the distance between the point of the electron's traverse of the plate and the point where
the field is considered, R ≈ z'0 − z ' + ρ'2 / 2(z '− z'0 )and ϑ is counted from the direction of−v→ '.
This field gradually transforms into backward transition radiation.

The expression (101) can be simplified for− z '≫2γ 2 / ω. In this case:

E⊥
f (r→ , ω)=2e

e iωR

R
ϑ

ϑ 2 + γ −2
1
v e

i
z '0ω

2γ 2 (1+γ 2ϑ 2)
−1 (102)

and using (57) for spectral-angular density of transition radiation by 'half-bare' electron we
obtain:

dε
dωdo =

e 2

π 2
ϑ 2

(ϑ 2 + γ −2)2 2{1−cos
ω z'0

2 (γ −2 + ϑ 2) } (103)

The expression (103) differs from the corresponding expression for transition radiation by
electron with equilibrium field by the interference factor inside the braces and the coefficient
two in front of them. As we can see from (103), when the distance z'0  between the scattering

point and the plate is much less than the radiation formation length (lC ≈2γ 2 / ω) the radia‐
tion is highly suppressed. For larger values of z'0  the dependence of the radiation intensity
on z'0  has the oscillation type with the period of the order of the formation length:
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Λ =
4π

ω(ϑ 2 + γ −2)
(104)

Due to the nonzero frequency resolution Δω of the detector it is possible to observe such os‐
cillations only in the area limited by the condition

z'0 <
2π

Δω(ϑ 2 + γ −2)
(105)

Also due to the nonzero size and, therefore, angular resolution of the detector the oscilla‐
tions can be observed only inside the region

z'0 <
π

ωϑ Δϑ (106)

For large distances z'0≫Λ the considered oscillations disappear and the detector registers
an incoherent sum of contributions to transition radiation by electron's own field reflected
from the plate and by the field of bremsstrahlung in this direction.

6. Conclusion

The behavior of localized high-energy electromagnetic wave packets, which take place in
processes of transition radiation and bremsstrahlung by relativistic electrons has been con‐
sidered. It was shown that with the increase of the energy the stabilization of characteristics
of motion of such packets takes place, which consists in substantial decrease of the speed of
their dispersion. Essential here is the fact that at high energies the lengths, on which the re‐
construction of the form of such packets into packets of diverging waves takes place, can
reach macroscopic size, which can exceed the size of experimental facility. In this case both
the size of the used detector and its position relative to the region of the wave packet forma‐
tion become essential for measurements.

Such situation takes place, for example, after the sharp scattering of an electron to a large
angle. It was shown that as a result of such scattering the electron’s own coulomb field tears
away from it and turns into a localized packet of free electromagnetic waves, which trans‐
forms into a packet of diverging waves on large distance from the scattering point. For ultra
relativistic electrons such transformation of certain Fourier-harmonics of the packet field
takes place within the coherence length of the radiation process, which substantially exceeds
the length of the considered wave of radiation. In the case of low-frequency radiation this
coherence length can be macroscopic. It gives birth to the problem of bremsstrahlung char‐
acteristics measurement by different detectors, which consists in the dependence of the re‐
sults of measurement on the detector’s size and its position relative to the scattering point.
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In the final direction of the electron motion (after the scattering) certain Fourier-components
of the field around it do not appear at once. The regeneration of these Fourier-components
occurs within the coherence length of the radiation processlC ≈2γ 2 / ω. In this case during a
long period of time the ultra relativistic electron is in ‘half-bare’ state without a certain part
of Fourier-components of its field. Such state of electron manifests itself, for example, during
further collisions of the electron with atoms of a substance, which causes different effects of
bremsstrahlung suppression (Landau-Pomeranchuk-Migdal effect, the effect of radiation
suppression in thin layer of substance – TSF-effect, etc.). We have shown that the ‘half-bare’
state of the scattered electron should manifest itself in the process of further transition radia‐
tion by such electron as well. This manifestation consists in the fact that characteristics of
transition radiation by such electron substantially depend on the position of the metallic
plate relative to the scattering point. In this case both the transition radiation suppression
and the oscillatory dependence of its characteristics on the distance between the plate and
the scattering point take place.

The transition radiation formation process also develops within distances of the order of the
coherence length of the radiation process,lC . Such situation takes place both in the direction
of the electron motion and in the opposite one. In the case of transition radiation, as in the
case of bremsstrahlung, these distances can be macroscopic. The analysis of development of
this process in space and time has shown that the packet of the waves reflected from the
plate has the same structure as the wave packet torn away from the electron at its instanta‐
neous scattering to a large angle. The structure of the field around the electron after its tra‐
verse of thin metallic plate is similar to the structure of the field, which forms around the
electron after its scattering to a large angle. In other words, in this case the electron can be in
the ‘half-bare’ state during a long period of time: a certain part of the Fourier components in
the field around it is suppressed. The mentioned analogies cause the existence of the similar
effects in transition radiation and bremsstrahlung. Thus the possibility of long existence of
electron in the ‘half-bare’ state and of different manifestations of such state of electron can
be investigated on the basis of the process of transition radiation by such electron.

Appendix

According to (72) the potential ϕ f (r→ , t) of the free field of electromagnetic waves is the sum
of the contributions to it by the propagating Ф1(r

→ , t) and the surface Ф2(r
→ , t) waves. While

deriving these functions we will pay special attention to the reasons of the step functions ap‐
pearance in (75).

In order to calculate Ф1(r
→ , t) we will present this function in the form:

Ф1(r
→ , t)= −

2e
π lim

η→0
∫
0

1

xdx
x 2 + p −2 ∫

0

∞

dω cosω(| z | 1− x 2− t)e −ηω (107)
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whereη >0. Then after the variable substitution y = 1− x 2 and integration over ω it is easy to
obtain that

Ф1(r
→ , t)= −

2e
πv lim

η→0
∫
0

1

ydy
v 2− y −2

η
η 2 + (y | z | − t)2 (108)

Integration over yin this expression leads to

Ф1(r
→ , t)= −

2e
πv lim

η→0

η
1−v 2(η 2 + t 2 + z 2 / v 2)2 / (4z 2t 2) {− v 2(η 2 + t 2 + z 2 / v 2)

4z 2t 2 lnγ

−
v

2zt lnγ(1 + v)−
v 2(η 2 + t 2 + z 2 / v 2)

4t 2
1

2z 2 ln
η 2 + (| z | − t)2

η 2 + t 2

+
t

z 2η
(arctg

| z | − t
η + arctg

t
η ) +

v 2(η 2 + t 2)
2zt

1
zη (arctg

| z | − t
η + arctg

t
η )}

(109)

Taking into account that for η →0 only items proportional to
(arctg (| z | − t) / η + arctg t / η ) remain in (109) and that for these items

arctg
| z | − t

η + arctg
t
η =

π
2 sign(| z | − t) + sign(t) =

π
2 θ(| z | − t)θ(t)

we obtain the following expression forФ1(r
→ , t):

Ф1(r
→ , t)=

e
2 ( 1

| z | + vt −
1

| z | −vt )θ(| z | − t)θ(t) (110)

Thus the appearance of the step function θ(| z | − t) in Ф1(r
→ , t) is connected with the limiting

procedure η →0 in (109).

The calculation of Ф2(r
→ , t) does not represent any difficulties as the integral over ω in it con‐

verges. As a result of the variable substitution u = 1− x 2 and elementary integration we find
that:

Ф2(r
→ , t)=

e
2 ( 1

| z | −vt −
1

| z | + vt )sign(t)−
e
2 ( 1

| z | −vt +
1

| z | + vt )=

= −
1

| z | −vt θ(− t)−
1

| z | + vt θ(t).
(111)

Substituting the obtained expressions (110) and (111) for Ф1 and Ф2 into (72) we obtain the
expression (75) for the potential of the free waves.
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