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1. Introduction

Quantum field theory is the most universal method in physics, applied to all the area from
condensed-matter physics to high-energy physics. The standard tool to deal with quantum
field theory is the perturbation method, which is quite useful if we know the vacuum of the
system, namely the starting point of our analysis. On the other hand, sometimes the vacuum
itself is not obvious due to the quantum nature of the system. In that case, since the pertur‐
bative method is not available any longer, we have to treat the theory in a non-perturbative
way.

Supersymmetric gauge theory plays an important role in study on the non-perturbative as‐
pects of quantum field theory. The milestone paper by Seiberg and Witten proposed a solu‐
tion to ��= 2 supersymmetric gauge theory [1], [2], which completely describes the low energy
effective behavior of the theory. Their solution can be written down by an auxiliary complex
curve, called Seiberg-Witten curve, but its meaning was not yet clear and the origin was still
mysterious. Since the establishment of Seiberg-Witten theory, tremendous number of works
are devoted to understand the Seiberg-Witten's solution, not only by physicists but also
mathematicians. In this sense the solution was not a solution at that time, but just a starting
point of the exploration.

One of the most remarkable progress in ��= 2 theories referring to Seiberg-Witten theory is
then the exact derivation of the gauge theory partition function by performing the integral
over the instanton moduli space [3]. The partition function is written down by multiple par‐
titions, thus we can discuss it in a combinatorial way. It was mathematically proved that the
partition function correctly reproduces the Seiberg-Witten solution. This means Seiberg-Wit‐
ten theory was mathematically established at that time.

The recent progress on the four dimensional ��= 2 supersymmetric gauge theory has revealed
a remarkable relation to the two dimensional conformal field theory [4]. This relation pro‐
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vides the explicit interpretation for the partition function of the four dimensional gauge
theory as the conformal block of the two dimensional Liouville field theory. It is naturally
regarded as a consequence of the M-brane compactifications [5], [6], and also reproduces the
results of Seiberg-Witten theory. It shows how Seiberg-Witten curve characterizes the corre‐
sponding four dimensional gauge theory, and thus we can obtain a novel viewpoint of Sei‐
berg-Witten theory.

Based on the connection between the two and four dimensional theories, established results
on the two dimensional side can be reconsidered from the viewpoint of the four dimension‐
al theory, and vice versa. One of the useful applications is the matrix model description of
the supersymmetric gauge theory [7], [8], [9], [10]. This is based on the fact that the confor‐
mal block on the sphere can be also regarded as the matrix integral, which is called Dotsen‐
ko-Fateev integral representation [11], [12]. In this direction some extensions of the matrix
model description are performed by starting with the two dimensional conformal field theo‐
ry.

Another type of the matrix model is also investigated so far [13], [14], [15], [16], [17]. This is
apparently different from the Dotsenko-Fateev type matrix models, but both of them cor‐
rectly reproduce the results of the four dimensional gauge theory, e.g. Seiberg-Witten curve.
While these studies mainly focus on rederiving the gauge theory results, the present author
reveals the new kind of Seiberg-Witten curve by studying the corresponding new matrix
model [16], [17]. Such a matrix models is directly derived from the combinatorial representa‐
tion of the partition function by considering its asymptotic behavior. This treatment is quite
analogous to the matrix integral representation of the combinatorial object, for example, the
longest increasing subsequences in random permutations [18], the non-equilibrium stochas‐
tic model, so-called TASEP [19], and so on (see also [20]). Their remarkable connection to the
Tracy-Widom distribution [21] can be understood from the viewpoint of the random matrix
theory through the Robinson-Schensted-Knuth (RSK) correspondence (see e.g. [22]).

In this article we review such a universal relation between combinatorics and the matrix
model, and discuss its relation to the gauge theory. The gauge theory consequence can be
naturally extacted from such a matrix model description. Actually the spectral curve of the
matrix model can be interpreted as Seiberg-Witten curve for ��= 2 supersymmetric gauge
theory. This identification suggests some aspects of the gauge theory are also described by
the significant universality of the matrix model.

This article is organized as follows. In section ▭ we introduce statistical models defined in a
combinaorial manner. These models are based on the Plancherel measure on a combinatorial
object, and its origin from the gauge theory perspective is also discussed. In section ▭ it is
shown that the matrix model is derived from the combinatorial model by considering its
asymptotic limit. There are various matrix integral representations, corresponding to some
deformations of the combinatorial model. In section ▭ we investigate the large matrix size
limit of the matrix model. It is pointed out that the algebraic curve is quite useful to study
one-point function. Its relation to Seiberg-Witten theory is also discussed. Section ▭ is de‐
voted to conclusion.

Linear Algebra2



2. Combinatorial partition function

In this section we introduce several kinds of combinatorial models. Their partition functions
are defined as summation over partitions with a certain weight function, which is called
Plancherel measure. It is also shown that such a combinatorial partition function is obtained
by performing the path integral for supersymmetric gauge theories.

2.1. Random partition model

Let us first recall a partition of a positive integer n: it is a way of writing n as a sum of posi‐
tive integers

λ = (λ1, λ2, ⋯ , λℓ(λ)) (id2)

satisfying the following conditions,

n = ∑
i=1

ℓ(λ)
λi ≡ | λ | , λ1 ≥ λ2 ≥ ⋯ λℓ(λ) > 0 (id3)

Here ℓ(λ) is the number of non-zero entries in λ. Now it is convenient to define λi = 0 for
i > ℓ(λ). Fig. ▭ shows Young diagram, which graphically describes a partition
λ = (5, 4, 2, 1, 1) with ℓ(λ) = 5.

It is known that the partition is quite usefull for representation theory. We can obtain an ir‐
reducible representation of symmetric group ��n, which is in one-to-one correspondence with
a partition λ with | λ | = n. For such a finite group, one can define a natural measure,
which is called Plancherel measure,

μn(λ) =
(dim λ)2

n !
(id5)

This measure is normalized as

∑
λ s.t . |λ|=n

μn(λ) = 1 (id6)

It is also interpreted as Fourier transform of Haar measure on the group. This measure has
another useful representation, which is described in a combinatorial way,

Figure 1. Graphical representation of a partition λ=(5,4,3,1,1) and its transposed partition λ ˇ=(5,3,2,2,1) by the associ‐
ated Young diagrams. There are 5 non-zero entries in both of them, ℓ(λ)=λ ˇ 1 =5 and ℓ(λ ˇ)=λ 1 =5.
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μn(λ) = n ! ∏
(i, j)∈λ

1
h (i, j)2 (id7)

This h (i, j) is called hook length, which is defined with arm length and leg length,

h (i, j) = a(i, j) + l(i, j) + 1,
a(i, j) = λi - j,

l(i, j) = λ̌ j - i
(id8)

Here λ̌ stands for the transposed partition. Thus the height of a partition λ can be explicitly

written as ℓ(λ) = λ̌1.

With this combinatorial measure, we now introduce the following partition function,

ZU(1) = ∑
λ

( Λ
ℏ )2|λ|

∏
(i, j)∈λ

1
h (i, j)2 (id10)

Figure 2. Combinatorics of Young diagram. Definitions of hook, arm and leg lengths are shown in (). For the shaded
box in this figure, a(2,3)=4, l(2,3)=3, and h(2,3)=8.
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This model is often called random partition model. Here Λ is regarded as a parameter like a
chemical potential, or a fugacity, and ℏ stands for the size of boxes.

Note that a deformed model, which includes higher Casimir potentials, is also investigated
in detail [23],

Zhigher = ∑
λ
∏

(i, j)∈λ

1
h (i, j)2∏

k=1
e -gk Ck (λ) (id11)

In this case the chemical potential term is absorbed by the linear potential term. There is an
interesting interpretation of this deformation in terms of topological string, gauge theory
and so on [24], [25].

In order to compute the U(1) partition function it is useful to rewrite it in a “canonical form”
instead of the “grand canonical form” which is originally shown in (▭),

ZU(1) = ∑
n=0

∑
λ s.t . |λ|=n

( Λ
ℏ )2n

∏
(i, j)∈λ

1
h (i, j)2 (id12)

Due to the normalization condition (▭), this partition function can be computed as

ZU(1) = exp ( Λ
ℏ )2

(id13)

Although this is explicitly solvable, its universal property and explicit connections to other
models are not yet obvious. We will show, in section ▭ and section ▭, the matrix model de‐
scription plays an important role in discussing such an interesting aspect of the combinatori‐
al model.

Now let us remark one interesting observation, which is partially related to the following
discussion. The combinatorial partition function (▭) has another field theoretical representa‐
tion using the free boson field [26]. We now consider the following coherent state,

| ψ = exp ( Λ
ℏ a-1) | 0 (id14)

Here we introduce Heisenberg algebra, satisfying the commutation relation,
an, am = nδn+m,0, and the vacuum | 0  annihilated by any positive modes, an | 0 = 0 for

n > 0. Then it is easy to show the norm of this state gives rise to the partition function,

ZU(1) = ψ | ψ (id15)

Similar kinds of observation is also performed for generalized combinatorial models intro‐
duced in section ▭ [26], [27], [28].
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Let us then introduce some generalizations of the U(1) model. First is what we call β-de‐
formed model including an arbitrary parameter β ∈ ℝ,

ZU(1)
(β) = ∑

λ
( Λ

ℏ )2|λ|
∏

(i, j)∈λ

1
h β(i, j)h β(i, j) (id16)

Here we involve the deformed hook lengths,

h β(i, j) = a(i, j) + βl(i, j) + 1, h β(i, j) = a(i, j) + βl(i, j) + β (id17)

This generalized model corresponds to Jack polynomial, which is a kind of symmetric poly‐
nomial obtained by introducing a free parameter to Schur polynomial [29]. This Jack polyno‐
mial is applied to several physical theories: quantum integrable model called Calogero-
Sutherland model [30], [31], quantum Hall effect [32], [33], [34] and so on.

Second is a further generalized model involving two free parameters,

ZU(1)
(q,t ) = ∑

λ
( Λ

ℏ )2|λ|
∏

(i, j)∈λ

(1 - q)(1 - q -1)
(1 - q a(i , j)+1t l (i , j))(1 - q -a(i , j)t -l (i , j)-1) (id18)

This is just a q-analog of the previous combinatorial model. One can see this is reduced to
the β-deformed model (▭) in the limit of q → 1 with fixing t = q β. This generalization is also
related to the symmetric polynomial, which is called Macdonald polynomial [29]. This sym‐
metric polynomial is used to study Ruijsenaars-Schneider model [35], and the stochastic
process based on this function has been recently proposed [36].

Next is ℤr-generalization of the model, which is defined as

Zorbifold,U(1) = ∑
λ

( Λ
ℏ )2|λ|

∏
Γ-inv⊂λ

1
h (i, j)2 (id20)

Here the product is taken only for the Γ-invariant sector as shown in Fig. ▭,

h (i, j) = a(i, j) + l(i, j) + 1 ≡ 0 (mod r) (id21)

This restriction is considered in order to study the four dimensional supersymmetric gauge
theory on orbifold ℝ4 / ℤr ≅ 2 / ℤr  [37], [38], [16], thus we call this orbifold partition function.
This also corresponds to a certain symmetric polynomial [39] (see also [40]), which is related
to the Calogero-Sutherland model involving spin degrees of freedom. We can further gener‐
alize this model (▭) to the β- or the q-deformed ℤr-orbifold model, and the generic toric or‐
bifold model [17].
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Let us comment on a relation between the orbifold partition function and the q-deformed

model. Taking the limit of q → 1, the latter is reduced to the U(1) model because the q-inte‐

ger is just replaced by the usual integer in such a limit,

x q ≡
1 - q -x

1 - q -1 �x (id22)

This can be easily shown by l'Hopital's rule and so on. On the other hand, parametrizing

q → ωrq with ωr = exp (2πi / r) being the primitive r-th root of unity, we have

1 - (ωrq)-x

1 - (ωrq)-1 �
q→1 {x (x ≡ 0, mod r)

1 (x ¬ ≡ 0, mod r) (id23)

Therefore the orbifold partition function (▭) is derived from the q-deformed one (▭) by tak‐

ing this root of unity limit. This prescription is useful to study its asymptotic behavior.

Figure 3. Γ-invariant sector for U(1) theory with λ=(8,5,5,4,2,2,2,1). Numbers in boxes stand for their hook lengths
h(i,j)=λ i -j+λ ˇ j -i+1. Shaded boxes are invariant under the action of Γ=ℤ 3 .
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2.2. Gauge theory partition function

The path integral in quantum field theory involves some kinds of divergence, which are due
to infinite degrees of freedom in the theory. On the other hand, we can exactly perform the
path integral for several highly supersymmetric theories. We now show that the gauge theo‐
ry partition function can be described in a combinatorial way, and yields some extended
versions of the model we have introduced in section ▭.

The main part of the gauge theory path integral is just evaluation of the moduli space vol‐
ume for a topological excitation, for example, a vortex in two dimensional theory and an in‐
stanton in four dimensional theory. Here we concentrate on the four dimentional case. See
[41], [42], [43] for the two dimensional vortex partition function. The most usuful method to
deal with the instanton is ADHM construction [44]. According to this, the instanton moduli
space for k-instanton in SU(n) gauge theory on ℝ4, is written as a kind of hyper-Kähler quo‐
tient,

ℳn,k = {(B1, B2, I , J ) | μℝ = 0, μ0} / U(k ) (id25)

B1,2 ∈ Hom(k , k ), I ∈ Hom(n, k), J ∈ Hom(k , n) (id26)

μℝ = B1, B1
† + B2, B2

† + I I † - J †J ,

μ= B1, B2 + IJ
(id27)

The k × k  matrix condition μℝ = μ0, and parameters (B1, B2, I , J ) satisfying this condition are
called ADHM equation and ADHM data. Note that they are identified under the following
U(k ) transformation,

(B1, B2, I , J ) ∼ (g B1g -1, g B2g -1, gI , J g -1), g ∈ U(k ) (id28)

Thus all we have to do is to estimate the volume of this parameter space. However it is well
known that there are some singularities in this moduli space, so that one has to regularize it
in order to obtain a meaningful result. Its regularized volume had been derived by applying
the localization formula to the moduli space integral [45], and it was then shown that the
partition function correctly reproduces Seiberg-Witten theory [3].

We then consider the action of isometries on 2 ≅ ℝ4 for the ADHM data. If we assign

(z1, z2) → (e i �1z1, e i �2z2) for the spatial coordinate of 2, and U(1)n-1 rotation coming from the
gauge symmetry SU(n), ADHM data transform as
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(B1, B2, I , J ) � (T1B1, T2B2, I Ta
-1, T1T2TaJ ) (id29)

where we define the torus actions as Ta = diag(e ia1, ⋯ , e ian) ∈ U(1)n-1, Tα = e i �α ∈ U(1)2. Note
that these toric actions are based on the maximal torus of the gauge theory symmetry,
U(1)2 × U(1)n-1 ⊂ SO(4) × SU(n). We have to consider the fixed point of these isometries up
to gauge transformation g ∈ U(k ) to perform the localization formula.

The localization formula in the instanton moduli space is based on the vector field ξ *, which
is associated with ξ ∈ U(1)2 × U(1)n-1. It generates the one-parameter flow e tξ on the moduli
space ℳ, corresponding to the isometries. The vector field is represented by the element of
the maximal torus of the gauge theory symmetry under the Ω-background deformation.
The gauge theory action is invariant under the deformed BRST transformation, whose gen‐
erator satisfies ξ * = {Q *, Q *} / 2. Thus this generator can be interpreted as the equivariant de‐
rivative dξ = d + iξ * where iξ * stands for the contraction with the vector field ξ *. The

localization formula is given by

∫ℳα(ξ) = ( - 2π)n/2∑
x0

α0(ξ)(x0)
det1/2 ℒx0

(id30)

where α(ξ) is an equivariant form, which is related to the gauge theory action. α0(ξ) is zero

degree part and ℒx0
: T x0

ℳ → T x0
ℳ is the map generated by the vector field ξ * at the fixed

points x0. These fixed points are defined as ξ *(x0) = 0 up to U(k ) transformation of the in‐
stanton moduli space.

Let us then study the fixed point in the moduli space. The fixed point condition for them are
obtained from the infinitesimal version of (▭) and (▭) as

(φi - φj + �α)Bα,ij = 0, (φi - al)I il = 0, ( - φi + al + �)J li = 0 (id31)

where the element of U(k ) gauge transformation is diagonalized as

e iφ = diag(e iφ1, ⋯ , e iφk ) ∈ U(k ) with �= �1 + �2. We can show that an eigenvalue of φ turns out
to be

al + ( j - 1)�1 + (i - 1)�2 (id32)

and the corresponding eigenvector is given by

B1
j-1B2

i-1I l (id33)
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Since φ is a finite dimensional matrix, we can obtain kl  independent vectors from (▭) with
k1 + ⋯ + kn = k . This means that the solution of this condition can be characterized by n-tu‐

ple Young diagrams, or partitions λ→ = (λ (1), ⋯ , λ (n)) [46]. Thus the characters of the vector
spaces are yielding

V = ∑
l=1

n
∑

(i, j)∈λ (l )
Tal

T1
- j+1T2

-i+1, W = ∑
l=1

n
Tal

(id34)

and that of the tangent space at the fixed point under the isometries can be represented in
terms of the n-tuple partition as

χλ
→ = -V *V (1 - T1)(1 - T2) + W *V + V *W T1T2

= ∑
l ,m

n
∑

(i, j)∈λ (l )
(Taml

T1
-λ̌ j

(l )+iT2
λi

(m)- j+1 + Talm
T1

λ̌ j
(l )-i+1T2

-λi
(m)+ j) (id35)

Here λ̌ is a conjugated partition. Therefore the instanton partition function is obtained by
reading the weight function from the character [3], [26],

ZSU(n) = ∑
λ→

Λ 2n|λ
→ |Zλ

→

Zλ
→ = ∏

l ,m

n
∏

(i, j)∈λ (l )

1
aml + �2(λi

(m) - j + 1) - �1(λ̌ j
(l ) - i)

1
alm - �2(λi

(m) - j) + �1(λ̌ j
(l ) - i + 1)

(id36)

This is regarded as a generalized model of (▭) or (▭). Furthermore by lifting it to the five
dimensional theory on ℝ4 × S 1, one can obtain a generalized version of the q-deformed par‐
tition function (▭). Actually it is easy to see these SU(n) models are reduced to the U(1)
models in the case of n = 1. Note, if we take into account other matter contributions in addi‐
tion to the vector multiplet, this partition function involves the associated combinatorial fac‐
tors. We can extract various properties of the gauge theory from these partition functions,
especially its asymptotic behavior.

3. Matrix model description

In this section we discuss the matrix model description of the combinatorial partition func‐
tion. The matrix integral representation can be treated in a standard manner, which is devel‐
oped in the random matrix theory [47].

3.1. Matrix integral

Let us consider the following N × N  matrix integral,
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Zmatrix = ∫��X e -
1
ℏ Tr V (X ) (id38)

Here X  is an hermitian matrix, and ��X  is the associated matrix measure. This matrix can be

diagonalized by a unitary transformation, gX g -1 = diag(x1, ⋯ , xN ) with g ∈ U(N ), and the

integrand is invariant under this transformation, Tr V (X ) = Tr V (gX g -1) = ∑i=1
N V (xi). On the

other hand, we have to take care of the matrix measure in (▭): the non-trivial Jacobian is
arising from the matrix diagonalization (see, e.g. [47]),

��X = ��x ��U Δ(x)2 (id39)

The Jacobian part is called Vandermonde determinant, which is written as

Δ(x) = ∏
i< j

N
(xi - xj) (id40)

and ��U  is the Haar measure, which is invariant under unitary transformation, ��(gU ) = ��U . The

diagonal part is simply given by ��x ≡ ∏i=1
N d xi. Therefore, by integrating out the off-diagonal

part, the matrix integral (▭) is reduced to the integral over the matrix eigenvalues,

Zmatrix = ∫��x Δ(x)2 e -
1
ℏ ∑i=1

N V (xi) (id41)

This expression is up to a constant factor, associated with the volume of the unitary group,
vol(U(N )), coming from the off-diagonal integral.

When we consider a real symmetric or a quaternionic self-dual matrix, it can be diagonal‐
ized by orthogonal/symplectic transformation. In these cases, the Jacobian part is slightly
modified,

Zmatrix = ∫��x Δ(x)2β e -
1
ℏ ∑i=1

N V (xi) (id42)

The power of the Vandermonde determinant is given by β = 1
2 , 1, 2 for symmetric, hermi‐

tian and self-dual, respcecively.This notation is different from the standard one:
2β → β = 1, 2, 4 for symmetric, hermitian and self-dual matrices. They correspond to orthog‐
onal, unitary, symplectic ensembles in random matrix theory, and the model with a generic
β ∈ ℝ is called β-ensemble matrix model.
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3.2. U(1) partition function

We would like to show an essential connection between the combinatorial partition function
and the matrix model. By considering the thermodynamical limit of the partition function, it
can be represented as a matrix integral discussed above.

Let us start with the most fundamental partition function (▭). The main part of its partition
function is the product all over the boxes in the partition λ. After some calculations, we can
show this combinatorial factor is rewritten as

∏
(i, j)∈λ

1
h (i, j) = ∏

i< j

N
(λi - λj + j - i)∏

i=1

N 1
Γ(λi + N - i + 1) (id45)

where N  is an arbitrary integer satisfying N > ℓ(λ). This can be also represented in an infin‐
ite product form,

∏
(i, j)∈λ

1
h (i, j) = ∏

i< j

∞ λi - λj + j - i
j - i (id46)

These expressions correspond to an embedding of the finite dimensional symmetric group
��N  into the infinite dimensional one ��∞.

By introducing a new set of variables ξi = λi + N - i + 1, we have another representation of
the partition function,

ZU(1) = ∑
λ

( Λ
ℏ )2∑i=1

N ξi-N (N +1)
∏
i< j

N
(ξi - ξj)2∏

i=1

N 1
Γ(ξi)2 (id47)

These new variables satisfy ξi > ξ2 > ⋯ > ξℓ(λ) while the original ones satisfy
λ1 ≥ λ2 ≥ ⋯ ≥ λℓ(λ). This means {ξi} and {λi} are interpreted as fermionic and bosonic de‐
grees of freedom. Fig. ▭ shows the correspondence between the bosinic and fermionic varia‐
bles. The bosonic excitation is regarded as density fluctuation of the fermionic particles
around the Fermi energy. This is just the bosonization method, which is often used to study
quantum one-dimensional systems (For example, see [48]). Especially we concentrate only
on either of the Fermi points. Thus it yields the chiral conformal field theory.

We would like to show that the matrix integral form is obtained from the expression (▭).
First we rewrite the summation over partitions as

∑
λ

= ∑
λ1≥⋯≥λN

= ∑
ξ1>⋯>ξN

=
1

N ! ∑
ξ1,⋯,ξN

(id49)

Then, introducing another variable defined as xi = ℏξi, it can be regarded as a continuous
variable in the large N  limit,
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N �∞, ℏ �0, ℏN = ��(1) (id50)

This is called 't Hooft limit. The measure for this variable is given by

d xi ≈ ℏ ∼
1
N (id51)

Therefore the partition function (▭) is rewritten as the following matrix integral,

ZU(1) ≈ ∫��x Δ(x)2 e -
1
ℏ ∑i=1

N V (xi) (id52)

Here the matrix potential is derived from the asymptotic behavior of the Γ-function,

ℏ log Γ(x / ℏ) �x log x - x, ℏ �0 (id53)

Since this variable can take a negative value, the potential term should be simply extended
to the region of x < 0. Thus, taking into account the fugacity parameter Λ, the matrix poten‐
tial is given by

V (x) = 2 x log | x
Λ | - x (id54)

This is the simplest version of the 1 matrix model [24]. If we start with the partition function
including the higher Casimir operators (▭), the associated integral expression just yields the
1 matrix model.

Let us comment on other possibilities to obtain the matrix model. It is shown that the matrix
integral form can be derived without taking the large N  limit [23]. Anyway one can see that
it is reduced to the model we discussed above in the large N  limit. There is another kind of
the matrix model derived from the combinatorial partition function by poissonizing the prob‐

Figure 4. Shape of Young diagram can be represented by introducing one-dimensional exclusive particles. Positions
of particles would be interpreted as eigenvalues of the matrix.
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ability measure. In this case, only the linear potential is arising in the matrix potential term.
Such a matrix model is called Bessel-type matrix model, where its short range fluctuation is
described by the Bessel kernel.

Next we shall derive the matrix model corresponding to the β-deformed U(1) model (▭).
The combinatorial part of the partition function is similarly given by

∏
(i, j)∈λ

1
h β(i, j)h β(i, j) = Γ(β)N∏

i< j

N Γ(λi - λj + β( j - i) + β)
Γ(λi - λj + β( j - i))

Γ(λi - λj + β( j - i) + 1)
Γ(λi - λj + β( j - i) + 1 - β)

× ∏
i=1

N 1
Γ(λi + β(N - i) + β)

1
Γ(λi + β(N - i) + 1)

(id55)

In this case we shall introduce the following variables, ξi
(β) = λi + β(N - i) + 1 or

ξi
(β) = λi + β(N - i) + β, satisfying ξi

(β) - ξi+1
(β) ≥ β. This means the parameter β characterizes how

they are exclusive. They satisfy the generalized fractional exclusive statistics for β ≠ 1 [49]
(see also [40]). They are reduced to fermions and bosons for β = 1 and β = 0, respectively.
Then, rescaling the variables, xi = ℏξi

(β), the combinatorial part (▭) in the 't Hooft limit yields

∏
(i, j)∈λ

1
h β(i, j)h β(i, j)

�Δ(x)2β e -
1
ℏ ∑i=1

N V (xi) (id56)

Here we use Γ(α + β) / Γ(α) ∼ α β with α → ∞. The matrix potential obtained here is the same
as (▭). Therefore the matrix model associated with the β-deformed partition function is giv‐
en by

ZU(1)
(β) ≈ ∫��x Δ(x)2β e -

1
ℏ ∑i=1

N V (xi) (id57)

This is just the β-ensemble matrix model shown in (▭).

We can consider the matrix model description of the (q, t)-deformed partition function. In
this case the combinatorial part of (▭) is written as

∏
(i, j)∈λ

1 - q
1 - q a(i , j)+1t l (i , j) = (1 - q)|λ|∏

i< j

N (q λi-λj+1t j-i-1; q)∞
(q λi-λj+1t j-i; q)∞

∏
i=1

N (q λi+1t N -i; q)∞
(q; q)∞

∏
(i, j)∈λ

1 - q -1

1 - q -a(i , j)t -l (i , j)-1 = (1 - q -1)|λ|∏
i< j

N (q -λi+λj+1t - j+i-1; q)∞
(q -λi+λj+1t - j+i; q)∞

∏
i=1

N (qt -1; q)∞
(q -λi+1t -N +i-1; q)∞

(id58)

Here (x; q)n = ∏m=0
n-1 (1 - xq m) is the q-Pochhammer symbol. When we parametrize q = e -ℏR

and t = q β, a set of the variables {ξi
(β)} plays an important role in considering the large N
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limit as well as the β-deformed model. Thus, rescaling these as xi = ℏξi
(β) and taking the 't

Hooft limit, we obtain the integral expression of the q-deformed partition function,

ZU(1)
(q,t ) ≈ ∫��x (ΔR(x))2β e -

1
ℏ ∑i=1

N V R(xi) (id59)

The matrix measure and potential are given by

ΔR(x) = ∏
i< j

N 2
R sinh

R
2 (xi - xj) (id60)

VR(x) = -
1
R Li2(e Rx) - Li2(e -Rx) (id61)

We will discuss how to obtain these expressions below. We can see they are reduced to the
standard ones in the limit of R → 0,

ΔR(x) �Δ(x), VR(x) �V (x) (id62)

Note that this hyperbolic-type matrix measure is also investigated in the Chern-Simons ma‐
trix model [50], which is extensively involved with the recent progress on the three dimen‐
sional supersymmetric gauge theory via the localization method [51].

Let us comment on useful formulas to derive the integral expression (▭). The measure part
is relevant to the asymptotic form of the following function,

(x; q)∞
(tx; q)∞

�
(x; q)∞
(tx; q)∞

|
q→1

= (1 - x)β, x �∞ (id63)

This essentially corresponds to the q → 1 limit of the q-Vandermonde determinantThis ex‐
pression is up to logarithmic term, which can be regarded as the zero mode contribution of
the free boson field. See [17], [52] for details.,

Δq,t
2 (x) = ∏

i≠ j

N (xi / xj; q)∞
(t xi / xj; q)∞

(id65)

Then, to investigate the matrix potential term, we now introduce the quantum dilogarithm
function,

g(x; q) = ∏
n=1

∞ (1 -
1
x q n) (id66)
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Its asymptotic expansion is given by (see, e.g. [23])

log g(x; q = e -ℏR) = -
1

ℏR ∑m=0

∞
Li2-m(x -1) Bm

m ! (ℏR)m (id67)

where Bm is the m-th Bernouilli number, and Lim(x) = ∑k =1
∞ x k / k m is the polylogarithm func‐

tion. The potential term is coming from the leading term of this expression.

3.3. SU (n) partition function

Generalizing the result shown in section ▭, we deal with the combinatorial partition func‐
tion for SU(n) gauge theory (▭). Its matrix model description is evolved in [13].

The combinatorial factor of the SU(n) partition function (▭) can be represented as

Zλ
→ = 1

�2
2n|λ

→ | ∏
(l ,i)≠(m, j)

Γ(λi
(l ) - λj

(m) + β( j - i) + blm + β)
Γ(λi

(l ) - λj
(m) + β( j - i) + blm)

Γ(β( j - i) + blk )
Γ(β( j - i) + blk + β) (id69)

where we define parameters as β = - �1 / �2, blm = alm / �2. This is an infinite product expression of
the partition function. Anyway in this case one can see it is useful to introduce n kinds of
fermionic variables, corresponding to the n-tupe partition,

ξi
(l ) = λi

(l ) + β(N - i) + 1 + bl (id70)

Then, assuming blm ≫ 1, let us introduce a set of variables,

(ζ1, ζ2, ⋯ , ζnN ) = (ξ1
(n), ⋯ , ξN

(n), ξ1
(n-1), ⋯ ⋯ , ξN

(2), ξ1
(1), ⋯ , ξN

(1)) (id71)

satisfying ζ1 > ζ2 > ⋯ > ζnN . The combinatorial factor (▭) is rewritten with these variables as

Zλ
→ =

1
�2
2n|λ

→ |∏
i< j

nN Γ(ζi - ζj + β)
Γ(ζi - ζj) ∏

i=1

nN
∏
l=1

n Γ( - ζi + bl + 1)
Γ(ζi - bl - 1 + β) (id72)

From this expression we can obtain the matrix model description for SU(n) gauge theory
partition function, by rescaling xi = ℏζi with reparametrizing ℏ = �2,

ZSU(n) ≈ ∫��x Δ(x)2β e -
1
ℏ ∑i=1

nN V SU(n)(xi) (id73)

In this case the matrix potential is given by
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VSU(n)(x) = 2∑
l=1

n
(x - al) log | x - al

Λ | - (x - al) (id74)

Note that this matrix model is regarded as the U(1) matrix model with external fields al . We
will discuss how to extract the gauge theory consequences from this matrix model in sec‐
tion ▭.

3.4. Orbifold partition function

The matrix model description for the random partition model is also possible for the orbi‐
fold theory. We would like to derive another kind of the matrix model from the combinato‐
rial orbifold partition function (▭). We now concentrate on the U(1) orbifold partition
function for simplicity. See [16], [17] for details of the SU(n) theory.

To obtain the matrix integral representation of the combinatorial partition function, we have
to find the associated one-dimensional particle description of the combinatorial factor. In
this case, although the combinatorial weight itself is the same as the standard U(1) model,
there is restriction on its product region. Thus it is useful to introduce another basis obtained
by dividing the partition as follows,

{r(λi
(u) + N (u) - i) + u | i = 1, ⋯ , N (u), u = 0, ⋯ , r - 1} = {λi+N - i | i = 1, ⋯ , N } (id77)

Fig.▭ shows the meaning of this procedure graphically. We now assume N (u) = N  for all u.
With these one-dimensional particles, we now utilize the relation between the orbifold parti‐
tion function and the q-deformed model as discussed in section ▭. Its calculation is quite
straightforward, but a little bit complicated. See [16], [17] for details.

After some computations, we finally obtain the matrix model for the β-deformed orbifold
partition function,

Figure 5. The decomposition of the partition for ℤ r=3 . First suppose the standard correspondence between the one-
dimensional particles and the original partition, and then rearrange them with respect to mod r.
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Zorbifold,U(1)
(β) ≈ ∫��x→ (Δorb

(β)(x))2e -
1
ℏ ∑u=0

r -1∑i=1
N V (xi

(u)) (id78)

In this case, we have a multi-matrix integral representation, since we introduce r  kinds of
partitions from the original partition. The matrix measure and the matrix potential are given
as follows,

��x→ = ∏
u=0

r-1
∏
i=1

N
d xi

(u) (id79)

(Δorb
(β)(x))2 = ∏

u=0

r-1
∏
i< j

N (xi
(u) - xj

(u))2(β-1)/r+2∏
u<v

r-1
∏
i, j

N (xi
(u) - xj

(v))2(β-1)/r (id80)

V (x) =
2
r x log | x

Λ | - x (id81)

The matrix measure consists of two parts, interaction between eigenvalues from the same
matrix and that between eigenvalues from different matrices. Note that in the case of β = 1,
because the interaction part in the matrix measure beteen different matrices is vanishing,
this multi-matrix model is simply reduced to the one-matrix model.

4. Large N analysis

One of the most important aspects of the matrix model is universality arising in the large N
limit. The universality class described by the matrix model covers huge kinds of the statisti‐
cal models, in particular its characteristic fluctuation rather than the eigenvalue density
function. In the large N  limit, which is regarded as a justification to apply a kind of the
mean field approximation, anslysis of the matrix model is extremely reduced to the saddle
point equation and a simple fluctuation around it.

4.1. Saddle point equation and spectral curve

Let us first define the prepotential, which is also interpreted as the effective action for the
eigenvalues, from the matrix integral representation

(▭),

-
1

ℏ2 ℱ({xi}) = -
1
ℏ∑i=1

N
V (xi) + 2∑

i< j

N
log (xi - xj) (id83)

This is essentially the genus zero part of the prepotential. In the large N  limit, in particular 't
Hooft limit (▭) with N ℏ ≡ t , we shall investigate the saddle point equation for the matrix
integral. We can obtain the condition for criticality by differentiating the prepotential,
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V '(xi) = 2ℏ∑
j(≠i)

N 1
xj - xi

, for all i (id84)

This is also given by the extremal condition of the effective potential defined as

Veff(xi) = V (xi) - 2ℏ∑
j(≠i)

N
log (xi - xj) (id85)

This potential involves a logarithmic Coulomb repulsion between eigenvalues. If the 't
Hooft coupling is small, the potential term dominates the Coulomb interaction and eigen‐
values concentrate on extrema of the potential V '(x) = 0. On the other hand, as the coupling
gets bigger, the eigenvalue distribution is extended.

To deal with such a situation, we now define the density of eigenvalues,

ρ(x) =
1
N ∑

i=1

N
δ(x - xi) (id86)

where xi is the solution of the criticality condition (▭). In the large N  limit, it is natural to
think this eigenvalue distribution is smeared, and becomes a continuous function. Further‐
more, we assume the eigenvalues are distributed around the critical points of the potential
V (x) as linear segments. Thus we generically denote the l-th segment for ρ(x) as ��l , and the
total number of eigenvalues N  splits into n integers for these segments,

N = ∑
l=1

n
N l (id87)

where N l  is the number of eigenvalues in the interval ��l . The density of eigenvalues ρ(x)

takes non-zero value only on the segment ��l , and is normalized as

∫��ldx ρ(x) =
N l
N ≡ νl

(id88)

where we call it filling fraction. According to these fractions, we can introduce the partial 't
Hooft parameters, tl = N lℏ. Note there are n 't Hooft couplings and filling fractions, but only

n - 1 fractions are independent since they have to satisfy ∑l=1
n νl = 1 while all the 't Hooft cou‐

plings are independent.

We then introduce the resolvent for this model as an auxiliary function, a kind of Green
function. By taking the large N  limit, it can be given by the integral representation,
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ω(x) = t∫dy
ρ(y)
x - y (id89)

This means that the density of states is regarded as the Hilbert transformation of this resol‐
vent function. Indeed the density of states is associated with the discontinuities of the resol‐
vent,

ρ(x) = -
1

2πit (ω(x + i�) - ω(x - i�)) (id90)

Thus all we have to do is to determine the resolvent instead of the density of states with sat‐
isfying the asymptotic behavior,

ω(x) �
1
x , x �∞ (id91)

Writing down the prepotential with the density of states,

ℱ({xi}) = t∫dx ρ(x)V (x) - t 2P∫dxdy ρ(x)ρ(y) log (x - y) (id92)

the criticality condition is given by

1
2t V '(x) = P∫dy

ρ(y)
x - y (id93)

Here P stands for the principal value. Thus this saddle point equation can be also written in
the following convenient form to discuss its analytic property,

V '(x) = ω(x + i�) + ω(x - i�) (id94)

On the other hand, we have another convenient form to treat the saddle point equation,
which is called loop equation, given by

y 2(x) - V '(x)2 + R(x) = 0 (id95)

where we denote

y(x) = V '(x) - 2ω(x) = - 2ωsing(x) (id96)

R(x) =
4t
N ∑

i=1

N V '(x) - V '(xi)
x - xi

(id97)
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It is obtained from the saddle point equation by multiplying 1 / (x - xi) and taking their sum‐

mation and the large N  limit. This representation (▭) is more appropriate to reveal its geo‐
metric meaning. Indeed this algebraic curve is interpreted as the hyperelliptic curve which
is given by resolving the singular form,

y 2(x) - V '(x)2 = 0 (id98)

The genus of the Riemann surface is directly related to the number of cuts of the corre‐
sponding resolvent. The filling fraction, or the partial 't Hooft coupling, is simply given by
the contour integral on the hyperelliptic curve

tl =
1

2πi ∮ ��l
dx ωsing(x) = -

1
4πi ∮ ��l

dx y(x) (id99)

4.2. Relation to Seiberg-Witten theory

We now discuss the relation between Seiberg-Witten curve and the matrix model. In the first
place, the matrix model captures the asymptotic behavior of the combinatorial representa‐
tion of the partition function. The energy functional, which is derived from the asymptotics
of the partition function [26], in terms of the profile function

ℰΛ( f ) =
1
4 P∫y<xdxdy f ''(x) f ''(y)(x - y)2( log ( x - y

Λ ) -
3
2 ) (id101)

can be rewritten as

EΛ(�) = - P∫x≠ydxdy
�(x)�(y)
(x - y)2 - 2∫dx �(x) log ∏

l=1

N ( x - al
Λ ) (id102)

up to the perturbative contribution

1
2 ∑l ,m

(al - am)2 log ( al - am
Λ ) (id103)

by identifying

f (x) - ∑
l=1

n
| x - al | = �(x) (id104)

Then integrating (▭) by parts, we have
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EΛ(�) = - P∫x≠ydxdy �'(x)�'(y) log (x - y) + 2∫dx �'(x)∑
l=1

n
(x - al) log ( x - al

Λ ) - (x - al) (id105)

This is just the matrix model discussed in section ▭ if we identify �'(x) = ρ(x). Therefore anal‐
ysis of this matrix model is equivalent to that of [53]. But in this section we reconsider the
result of the gauge theory from the viewpoint of the matrix model.

We can introduce a regular function on the complex plane, except at the infinity,

Pn(x) = Λ n(e y/2 + e -y/2) ≡ Λ n(w +
1
w ) (id106)

It is because the saddle point equation (▭) yields the following equation,

e y(x+i�)/2 + e -y(x+i�)/2 = e y(x-i�)/2 + e -y(x-i�)/2 (id107)

This entire function turns out to be a monic polynomial Pn(x) = x n + ⋯ , because it is an ana‐

lytic function with the following asymptotic behavior,

Λ ne y/2 = Λ ne -ω(x)∏
l=1

n ( x - al
Λ ) �x n, x �∞ (id108)

Here w should be the smaller root with the boundary condition as

w �
Λ n

x n , x �∞ (id109)

thus we now identify

w = e -y/2 (id110)

Therefore from the hyperelliptic curve (▭) we can relate Seiberg-Witten curve to the spectral
curve of the matrix model,

dS =
1

2πi x
dw
w

= -
1

2πi log w dx

=
1

4πi y(x)dz

(id111)
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Note that it is shown in [25], [54] we have to take the vanishing fraction limit to obtain the
Coulomb moduli from the matrix model contour integral. This is the essential difference be‐
tween the profile function method and the matrix model description.

4.3. Eigenvalue distribution

We now demonstrate that the eigenvalue distribution function is indeed derived from the
spectral curve of the matrix model. The spectral curve (▭) in the case of n = 1 with setting
Λ = 1 and Pn=1(x) = x is written as

x = w +
1
w (id113)

From this relation the singular part of the resolvent can be extracted as

ωsing(x) = arccosh( x
2 ) (id114)

This has a branch cut only on x ∈ - 2, 2 , namely a one-cut solution. Thus the eigenvalue
distribution function is witten as follows at least on x ∈ - 2, 2 ,

ρ(x) =
1
π arccos ( x

2 ) (id115)

Note that this function has a non-zero value at the left boundary of the cut, ρ( - 2) = 1, while
at the right boundary we have ρ(2) = 0. Equivalently we now choose the cut of arccos  func‐
tion in this way. This seems a little bit strange because the eigenvalue density has to vanish
except for on the cut. On the other hand, recalling the meaning of the eigenvalues, i.e. posi‐
tions of one-dimensional particles, as shown in Fig. ▭, this situation is quite reasonable. The
region below the Fermi level is filled of the particles, and thus the density has to be a non-
zero constant in such a region. This is just a property of the Fermi distribution function.
(1 / N  correction could be interpreted as a finite temperature effect.) Therefore the total ei‐
genvalue distribution function is given by

ρ(x) = { 1 x < - 2
1
π arccos ( x

2 ) | x | < 2

0 x > 2

(id116)

Remark the eigenvalue density (▭) is quite similar to the Wigner's semi-circle distribution
function, especially its behavior around the edge,
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ρcirc(x) =
1
π 1 - ( x

2 )2
�
1
π 2 - x, x �2 (id118)

The fluctuation at the spectral edge of the random matrix obeys Tracy-Widom distribution
[21], thus it is natural that the edge fluctuation of the combinatorial model is also described
by Tracy-Widom distribution. This remarkable fact was actually shown by [55]. Evolving
such a similarity to the gaussian random matrix theory, the kernel of this model is also given
by the following sine kernel,

K (x, y) =
sin ρ0π(x - y)

π(x - y) (id119)

where ρ0 is the averaged density of eigenvalues. This means the U(1) combinatorial model
belongs to the GUE random matrix universal class [47]. Then all the correlation functions
can be written as a determinant of this kernel,

ρ(x1, ⋯ , xk ) = det K (xi, xj) 1≤i , j ,≤k (id120)

Let us then remark a relation to the profile function of the Young diagram. It was shown
that the shape of the Young diagram goes to the following form in the thermodynamical
limit [56], [57], [58],

Ω(x) = { 2
π (x arcsin

x
2 + 4 - x 2) | x | < 2

| x | | x | > 2
(id121)

Rather than this profile function itself, the derivative of this function is more relevant to our
study,

Ω '(x) = { -1 x < - 2
2
π arcsin ( x

2 ) | x | < 2

1 x > 2

(id122)

Figure 6. The eigenvalue distribution function for the U(1) model.
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One can see the eigenvalue density (▭) is directly related to this derivative function (▭) as

ρ(x) =
1 - Ω '(x)

2
(id123)

This relation is easily obtained from the correspondence between the Young diagram and
the one-dimensional particle as shown in Fig. ▭.

5. Conclusion

In this article we have investigated the combinatorial statistical model through its matrix
model description. Starting from the U(1) model, which is motivated by representation theo‐
ry, we have dealt with its β-deformation and q-deformation. We have shown that its non-
Abelian generalization, including external field parameters, is obtained as the four
dimensional supersymmetric gauge theory partition function. We have also referred to the
orbifold partition function, and its relation to the q-deformed model through the root of uni‐
ty limit.

We have then shown the matrix integral representation is derived from such a combinatorial
partition function by considering its asymptotic behavior in the large N  limit. Due to variety
of the combinatorial model, we can obtain the β-ensemble matrix model, the hyperbolic ma‐
trix model, and those with external fields. Furthermore from the orbifold partition function
the multi-matrix model is derived.

Based on the matrix model description, we have study the asymptotic behavior of the com‐
binatorial models in the large N  limit. In this limit we can extract various important proper‐
ties of the matrix model by analysing the saddle point equation. Introducing the resolvent as
an auxiliary function, we have obtained the algebraic curve for the matrix model, which is
called the spectral curve. We have shown it can be interpreted as Seiberg-Witten curve, and
then the eigenvalue distribution function is also obtained from this algebraic curve.

Let us comment on some possibilities of generalization and perspective. As discussed in this
article we can obtain various interesting results from Macdonald polynomial by taking the
corresponding limit. It is interesting to research its matrix model consequence from the exot‐
ic limit of Macdonald polynomial. For example, the q → 0 limit of Macdonald polynomial,
which is called Hall-Littlewood polynomial, is not investigated with respect to its connec‐
tion with the matrix model. We also would like to study properties of the BC-type polyno‐
mial [59], which is associated with the corresponding root system. Recalling the meaning of
the q-deformation in terms of the gauge theory, namely lifting up to the five dimensional
theory ℝ4 × S 1 by taking into account all the Kaluza-Klein modes, it seems interesting to
study the six dimensional theory on ℝ4 × T 2. In this case it is natural to obtain the elliptic
generalization of the matrix model. It can not be interpreted as matrix integral representa‐
tion any longer, however the large N  analysis could be anyway performed in the standard
manner. We would like to expect further develpopment beyond this work.
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