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1. Introduction 

There are a great variety of processing the analytical spectroscopy data, especially useful in 
multicomponent systems [Ewing et al., 1953; Garrido et al., 2004; Lykkesfeld, 2001; Oka et 
al., 1991; Sánchez & Kowalski, 1986]. These methods essentially are based on different 
strategies of mathematical strategies including specific formalism of mathematical statistics 
and of matrix algebra [Garrido et al., 2004; Szabadai, 2005]. The matrix-based methods reffer 
to quantitative analysis [Bosch-Reigh et al., 1991; Garrido et al., 2008; Li et al., 2011; Lozano 
et al., 2009; Ruckenbusch et al., 2006; Szabadai, 2005], to determination of the number of 
independent chemical equilibria in multicomponent systems [Szabadai, 2005] and for 
correction the action of various perturbing factors such as stray light or backgroud 
absorption [Burnius, 1959; Fox & Mueller, 1950; Melnick, 1952; Morton & Stubbs, 1946, 1947, 
1948; Owen, 1995; Page & Berkovitz, 1943; Szabadai, 2005]. 

In the present chapter original approaches of matrix treatment of the aforementioned items 
are presented, with special consideration to the simultaneous assay of compounds in a 
mixter, to backgruond correction procedures and to the standard addition method in a 
generalized form. 

2. Simultaneous assay of nonreacting compunds in a mixture 

The issue of the quantitative analysis of a mixture, when the components do not interact 
chemically, can be approached, in a rigorous and general manner, with the help of matrix 
computation [Ewing et al., 1953; Garrido et al., 2004, 2008; Lozano et al., 2009; Lykkesfeld, 
2001; Oka et al., 1991; Ruckenbusch et al., 2006; Sánchez & Kowalski, 1986; Szabadai, 2005]. 
In the case of a mixture with M component, the quantitative determination of the 
components, one has to measure the absorbance at  distinct values of wavelength ( > M). 
Given a set of N standard solutions (N > M and supposing that, as a rule, each standard 
solution may contain all of M chemical components of interest in known concentrations), 
absorbances are to be measured at the same set of wavelengths and in identical conditions 
as done for standard solutions.  
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The following notations will be used in what follows: X
n
m()  represents a quantity X 

referring to the standard mixture of number n (superscript index), at the individual 
chemical component of number m (subscript index), measured at the wavelength of number 
 (between parentheses). Thus, 

c
n
m represents the concentration of the component of number m in the standard solution of 

number “n” ; 
cm represents the concentration of the component of number m in the mixture undergoing 

the analysis (sample of unknown composition) ; 

A
n
  () is the absorbance of the standard mixture of number m measured at the wavelength 

of number ““ ; 
Am() is the contribution of the pure m-numbered component to the absorbance of the 

analyzed mixture, registered at the wavelength  ; 
A() is the absorbance of the mixture under analysis, measured at the wavelength of number 
 ; 
m()  is the molar absorptivity of the chemical component of number “m”, measured at the 

wavelength of number  ; 

p
n
  is the weight percent of the spectrum of the standard solution of number n in the 

spectrum of the mixture under analysis. 

If the components of a mixture do not interact chemically and if the absorbances of each 
component satisfies the Bouguer-Lambert-Beer relation, then the absorbance of the 
mixture, at each wavelength taken into account, consists of the sum of contributions of 
the individual absorbent chemical components. The absorbances of the N standard 
solutions, measured at  distinct values of wavelength, may be arranged in matrix form 
(1). 

1 1
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(1)

 

The left side of the relation includes the matrix of absorbances of the standard solutions and 
the optical path the radiation has been covered, „d” (i.e. the width of the cell used).  

It may be allowed that the absorbance of the sample, measured at the same set of 
wavelengths as in the case of standard solutions, consists of the weighted contributions of 
the standard solutions. The contribution weight of each standard solution to the absorbance 
of the sample depends on the concentration of the chemical components in the sample 
under analysis and in the individual standard solutions. This is expressed, in matrix form, 
according to relation (2). 



 
Multivariate Data Processing in Spectrophotometric Analysis of Complex Chemical Systems 

 

293 

 

1 1

1

1

(1) (1) (1)(1)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n N

n N n

n N N

A A A pA

A A A A p

A A A A p

   

    
    
    
          
    
              

 
   

 
    
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 (2) 

In what follows, bold characters are used for denoting matrices: the matrix of the 
absorbances of the sample will be denoted by A, the matrix of the absorbances of the 
standard solutions by Ast, the matrix of the concentrations of chemical components in the 
analysed sample and in the standard solutions by C and Cst respectively, the matrix of the 
molar absorptivities by E and the matrix of the contribution weight of the standard 
solutions, generating the absorbance of the sample, by P. In order to comprehend more 
easily the matrix formalism, the symbol of matrices is followed (between right brackets) by 
the specification of the number of rows and columns in the respective matrix. Therefore, 
matrix Ast, made up of  rows and N columns, is denoted as follows : Ast[,N]. Relations (1) 
and (2) are equivalent to matrix expressions (3) and (4). 

 Ast[,N] = d.E[,M].Cst[M,N] (3) 

 A[,1] = Ast[,N].P[N,1] = d.E[,M].C[M,1] (4) 

Relations (1) and (2) may be written in a condensed matrix form (5). 

 [ ,1] [ , ] [ ,1] [ , ] [ , ] [ ,1]
1 1

N N M M N Ns sd d
        t tA A P E C P  (5) 

The product matrix Ast[,N].P[N,1] consisting of  rows and one column may be presented 

in the shortened form  (Ast
.P)[,1].  

Practically, the aim is to calculate the elements of matrix C[M,1]. In most of the real 
situations, the molar absorptivities of the chemical components under analysis are not 
known (especially not for a set of different wavelengths). For this reason, the 
spectrophotometric analysis is conditioned by the spectrophotometric study of a number of 
standard solutions, where the concentrations of the chemical components of interest are 
known. The matrix formalism presented allows for the standard solutions used to contain 
several chemical components (basically, each of the N standard solutions may contain all the 
M chemical components at known concentrations). In particular cases, it may happen (but it 
is not mandatory) that each standard solution contains only one chemical component 
(different from the other chemical components present in the other standard solutions); in 
this case the matrix Cst of the concentrations in standard solutions is square (has the same 

number of rows and columns) and diagonal (i.e. the c
n
m elements are null when m and n are 

different). In this particular case, the number of standard solutions is identical to the number 
of chemical components of analytical interest. 

After the spectrophotometric measurements are accomplished, the elements of matrices 
Ast[,N], A[,1] and Cst[M,N] are known, and the further aim is to calculate the elements of 
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matrix C[M,1]. These matrices satisfy relations (6) and (7). In what follows, the desired result 
is to eliminate matrix E[,M] from these two matrix relations and to explicit the resulting 
relation in relation to matrix C[M,1]. 

 Ast[,N] = d.E[,M].Cst[M,N] (6) 

 A[,1] = d.E[,M].C[M,1] (7) 

In order to solve the above system of equation in relation to matrix C[M,1], both members of 
equation (6) are multiplied on the right by the transpose of matrix Cst[M,N]. 

 Ast[,N].CT
st[N,M] = d.E[,M].Cst[M,N].CT

st[N,M] (8) 

The product Cst[M,N] CT
st[N,M] is a MxM square matrix represented, according to the 

adopted notations, as (Cst
.CT

st) [M,M]. If the determinant of this matrix is not zero (i.e. if the 
set of wavelengths was selected suitably for relevant absorbance values), then the product 

matrix has an inverse, represented as (Cst
.CT

st)-1[M,M], with the property expressed by (9). 

 (Cst
.CT

st)-1[M,M].(Cst
.CT

st) [M,M] = (Cst
.CT

st) [M,M].(Cst
.CT

st)-1[M,M] = I[M,M] (9) 

In relation (9) I[M,M] is the unit matrix of order M. The elements of this matrix situated on 
the main diagonal are equal to the unity, and all its other elements are null. The 
multiplication operation of any matrix by the unit matrix (of the corresponding order) 
leaves the matrix unchanged. Consequently, after multiplying the equation (8) on the right 

by (Cst
.CT

st)-1[M,M], the resulting relation is (10). 

 Ast[,N].CT
st[N,M].(Cst

.CT
st)-1[M,M] = d.E[,M].I[M,M] = d.E[,M] (10) 

In what follows, both members of equation (7) are multiplied on the left by the transpose of 
matrix E[,M] , namely by E

T
[M,]; the result is (11). 

 ET[M,].A[,1] = d.ET[M,].E[,M].C[M,1] (11) 

The product E
T
[M,].E[,M] = (E

T.E)[,M] in the expression (11) is a square matrix 

allowing an inverse, (E
T.E)

-1
[,M], provided that the product matrix is not singular (its 

determinant is different fron zero). By multiplying equation (11) on the left by matrix (E
T.E)

-

1
[,M], the expression (12) is obtained. This expresses explicitly the seeked column matrix 

C[M,1] of the concentrations of components in the analysed mixture.  

 (ET.E)-1[,M].ET[M,].A[,1] = d.C[M,1] (12) 

Matrix E[,M], occuring in expression (4.43), can be calculated with relation (10). 

In order to express the matrix of concentrations C[M,1] only in relation to quantities 
resulting directly from spectrophotometric measurements (the elements of matrix A[,1] ) 
and in relation to known quantities (the elements of matrix Cet[M,N] ), the matrix E[,M] has 
to be eliminated from relations (10) and (12). 
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The transpose of matrix E[,M], namely matrix E
T
[M,], is expressed from relation (10) : 

 d. ET[M,] = (Cst
.CT

st)-1[M,M].Cst[M,N].AT
st[N,] (13) 

whereas the inverse matrix of the product of matrices E[,M] and E
T
[M,] is expressed from 

(10) and (13): 

 (ET.E)-1[M,M] = d2.(Cst
.CT

st)[M,M].(Cst[M,N].AT
st[N,].Ast[,N]. (14) 

 .CT
st[N,])-1.(Cst

.CT
st)-1[M,M] 

By replacing expressions (13) and (14) in (12), and taking into consideration relation (15), 

 (Cst
.CT

st)-1[M,M].(Cst
.CT

st)[M,M] = I[M,M] (15) 

the expression (16) is obtained. This presents, in an explicit form, the matrix of unknown 
concentrations. 

 C[M,1] = (Cst
.CT

st)[M,M].(Cst[M,N].AT
st[N,].Ast[,N]. (16) 

 CT
st[N,])-1.Cst[M,N].AT

st[N,].A[,1] 

In relation (16) the optical pathway (d) no longer appears if the absorbances of standards 

st[,N] and the absorbances of the sample A[,1] are measured at the same cell thickness. 

Relation (10) allows to obtain the elements of matrix E[,M] as well, values which are 
proportional to the absorbances of the pure components measured at the selected 
wavelengths. Relation (10) allows thus to obtain the spectrum of the M individual 
components. This is important if a sufficiently large number of standard solutions are 
available with known concentrations of components, but individual components are not 
available for recording their individual spectra. 

A particular case of the above reasoning is that with each of standard solutions contain only 
one dissolved chemical component (other than those present in the other standard 
solutions), so N = M. In this case notation S refers to their common value (N = M = S). 
Consequently, matrix Cst[S,S] of the concentrations of components in standard solutions is 
square and diagonal (only elements on the matrix main diagonal differ from zero) (17)). 

 

1
1

[ , ]

0

0
s
s

S
S

S S

c

c

c



 
 
 
 
 
 
 
  

C




st  (17) 

If the entry data (the absorbance readings at the selected wavelengths and the 
concentrations of the standard solutions) do not form sets of relevant data, then singular 
matrices may be obtained when processing the data (whose determinant is null), namely 
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matrices which do not admit an inverse. In order to avoid this failure, the condition  ≥ N ≥ 
M is imposed. This is the necessary (but no sufficient) condition to avoid the apparition of 
singular matrices. The necessity of the condition above results after inspecting the relations 

(10) and (12). In relation (10) the inverse of a matrix (Cst
.C

T
st)

-1
[M,M] appears calculated from 

matrix Cst[M,N]. Consequently, the matrix of the concentrations of the standard solutions 
must have higher – or at least equal – rank to the number M of chemical components in 
the sample. The necessary (but sufficient) condition for this requirement is N ≥ M. In 

relation (12) the inverse of a matrix (E
T.E)

-1
[,M], is calculated from the matrix of molar 

absorptivities, E[,M] . The necessary (but not sufficient) condition of the non-singularity 

of matrix (E
T.E)

-1
[,M] is the compliance of inegality  ≥ N. The two necessary conditions 

for avoiding matrix singularity are expressed in the united form  ≥ N ≥ M. Also in order 
to avoid singularity in relation (10), the appropriate choice of concentrations of standard 
solutions is imposed, so that in matrix Cst[M,N] both rows and columns should be linearly 
independent. Otherwise expressed, it is essential that there should not be any significant 
intercorrelation neither between different columns nor between different rows of the 
matrix of standard concentrations (in algebraic terms, the concentrations in standard 
solutions must form a complete basis in the linear M-dimensional field). In other words, 
the spectra of individual chemical components should differ significantly in the spectral 
field chosen for analysis (more precisely, for the selected set of wavelengths). The 
relevance of the choice of the wavelength set, from the point of view of the above-
mentioned facts, can be tested by calculating the eigenvalues of the square and symmetric 

matrix A
T

st[N,].Ast[,N]. If one eigenvalue of this matrix is null (or very close to the null 
value), the selection of the wavelength set is not adequate for the intended analysis. The 
selection of another wavelength set is therefore necessary. The general issue of row (or 
column) intercorrelation is solved in linear algaebra by taking into consideration the issue 
of eigenvalues and eigenvectors. However, the complete and rigorous mathematical 
treatment of the issue of basis vectors in linear algaebra goes beyond the purpose of the 
present work. 

2.1 Example 

Let be N = 5 standard solutions containing M = 3 components of known concentrations. The 
concentrations, expressed in mg/l, are included in matrix Cst[3,5]. As illustrated by this 
matrix, each of the 5 standard solutions contains (in different and known concentrations) all 
three dissolved chemical components. 

 

2.50 3.00 4.00
4.25 1.00 0.802.50 4.25 1.25 0.85 2.22
1.25 1.62 5.003.00 1.00 1.62 1.15 3.36
0.85 1.15 4.454.00 0.80 5.00 4.45 0.82
2.22 3.36 0.82

[3, 5] [5, 3]; 

 
  
  
     
 

T

t
t

C Cs
s

 

The matrix (Cst
.CT

st)[3,3] resulting after multiplication and the eigenvalues of the product 
matrix (EV[3,1] ) are illustrated below: 
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;

31.5259 22.2117 25.2529 4.915255

22.2117 25.2365 28.7727 18.974022
25.2529 28.7727 62.1149 94.988023

[3, 3] [3, 1]  
  
  

   
( )

T

t tC C VEs s  

All three eigenvalues are different from zero (taking into account the concentration values 
and the precision in expressing concentration values), so the rank of the matrix Cst[3,5] is 3. 
In other words, the set of concentration values allows to determine quantitatively all three 
chemical components in their mixture (provided that the wavelength set at which the 
absorbance values are going to be measured is chosen correctly). 

The situation would differ if the matrix of concentrations of the standard solutions 
contained the following values: 

2.50 3.00 5.50
4.25 1.00 5.252.50 4.25 1.25 0.85 2.22
1.25 1.62 2.873.00 1.00 1.62 1.15 3.36
0.85 1.15 2.005.50 5.25 2.87 2.00 5.58
2.22 3.36 5.58

[3, 5] [5, 3]; 

 
  
  
     
 

T

t
t

C Cs
s

 

In this situation, the product (Cst
.CT

st)[3,3] of the two matrices has other eigenvalues. 
 

14

31.5259 22.2117 53.7376
22.2117 25.2365 47.4482
53.7376 47.4482 101.1858

5.966037

2.6393 10
151.982163

( )[3, 3]

[3,1] 

 

 

 
 
  

 
 
 
  

T

t tC C

VE

s s

 

In this case the rank of matrix Cst[3,5] is only two because the second element in the column 
matrix of eigenvalues ( EV[3,1] ) is a lot smaller than the elements of the initial matrix and a 
lot smaller than the estimated accepted errors in expressing the standard concentrations. 
Consequently, even if a number of N = 5 standard solutions were used (with the considered 
concentrations), the concentrations of the three components in their mixture cannot be 
determined (irrespective of the wavelengths set chosen for measuring the absorbances), 
because the values of the concentrations of the standard solution have not been chosen 
properly. 

2.2 Example 

For numeric illustration of the spectrophotometric data processing with matrix formalism, 
the measurement data obtained analyzing the mixture of salicylic acid, caffeine and 
acetaminophen will be further presented [Szabadai, 2005]. The number of standard solutions 
is N = 5 and each standard solution contains all three components (in known 
concentrations). Table 1 contains absorbance values for the 5 standard solutions (Ast) and for 
the mixture of three substances (A), registered at the same set of 18 wavelengths. Table 1 
also presents the known concentrations of the three components in the five standard 
solutions (elements of matrix Cst[3,5]), i.e. M = 3, N = 5,  = 18. The matrix of concentrations 
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of the standard solutions Cst[3,5], the matrix of absorbances of the standard solutions 
Aet[,5] and the matrix of absorbances of the sample A[,1] have the following forms: 
 

Table 1 
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(c
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 =
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 c

m
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1.167 0.456 1.179 1.011 0.565 0.581 

  1.192 0.435 1.257 1.048 0.513 0.566 

  1.169 0.377 1.288 1.123 0.439 0.515 

  1.109 0.290 1.265 1.109 0.374 0.443 

  1.020 0.244 1.154 1.010 0.362 0.395 

  0.932 0.228 1.000 0.867 0.402 0.370 

  0.822 0.218 0.799 0.679 0.462 0.350 

  0.747 0.217 0.645 0.534 0.524 0.336 

  0.714 0.233 0.548 0.440 0.585 0.347 

  0.654 0.232 0.487 0.388 0.552 0.329 

  0.509 0.209 0.379 0.302 0.422 0.276 

  0.295 0.167 0.228 0.183 0.225 0.195 

  0.152 0.133 0.115 0.092 0.110 0.130 

  0.089 0.100 0.060 0.046 0.069 0.095 

  0.049 0.058 0.032 0.025 0.038 0.048 

  0.030 0.026 0.023 0.018 0.021 0.030 

  0.022 0.013 0.019 0.016 0.015 0.011 

  0.020 0.009 0.018 0.015 0.013 0.010 

C
on

ce
nr

ta
ti

on
s 

 
of

 c
om

po
ne

nt
s 

 (m
g/

l)
 

Salicylic acid 2.50 4.25 1.25 0.85 2.22  

Caffeine 3.00 1.00 1.62 1.15 3.36  

Acetaminophen 4.00 0.80 5.00 4.45 0.82  

2.50 4.25 1.25 0.85 2.22
3.00 1.00 1.62 1.15 3.36
4.00 0.80 5.00 4.45 0.82

[3, 5] 
 
 
  

tCs  



 
Multivariate Data Processing in Spectrophotometric Analysis of Complex Chemical Systems 

 

299 

1.167 0.456 1.179 1.011 0.565
1.192 0.435 1.257 1.087 0.513
1.169 0.377 1.288 1.123 0.439
1.109 0.290 1.265 1.109 0.374
1.020 0.244 1.154 1.010 0.362
0.932 0.228 1.000 0.867 0.402
0.822 0.218 0.799 0.679 0.462
0.747 0.217 0.645

[18,5] tAs

0.534 0.524
0.714 0.233 0.548 0.440 0.585
0.654 0.232 0.487 0.388 0.552
0.509 0.209 0.379 0.302 0.422
0.295 0.167 0.228 0.183 0.225
0.152 0.133 0.115 0.092 0.110
0.089 0.100 0.060 0.046 0.069
0.049 0.058 0.032 0.025 0.038
0.030 0.026 0.023

;

0.581
0.566
0.515
0.443
0.395
0.370
0.350
0.336
0.347
0.329
0.276
0.195
0.130
0.095
0.048

0.018 0.021 0.030
0.022 0.013 0.019 0.016 0.015 0.011
0.020 0.009 0.018 0.015 0.013 0.

[18,1] 

 
 
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 
 
 
 
 
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 
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 
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After performing the matrix operations in relation (16), the elements of matrix C[3,1] are 
obtained. They represent the concentrations, expressed in mg/l, of the three components of 
interest (salicylic acid, caffeine and paracetamol) in the analysed sample. 

3.538

1.553
1.381

[3, 1] 
 
 
 

C  

3. Generalization of the 3-point method to correct backgroud absorption 

Before dealing generally with the issue of foreign components in the sample (components 
which cannot be found in standard solutions) – which may cause deviations from the 
hypothesis according to which the sample spectrum is formed by adding (with different 
weights) the spectra of standard solutions – the quantitative analysis method and the baseline 
correction algorithm suggested by Morton and Stubbs [Burnius, 1959; Ewing et al., 1953; Fox & 
Mueller, 1950; Melnick et al., 1952; Morton & Stubbs, 1946, 1947, 1948; Owen, 1995; Page & 
Berkovitz, 1943; Szabadai, 2005;] (also known as “3-point method”) will be presented. 

The Morton – Stubbs method takes into account that the sample often contains – besides the 
chemical substance of interest – other foreign absorbent chemical components. If the 
chemical removal of these foreign components is difficult, the elimination (or at least the 
minimisation) of their contribution to the final result of the analysis by correcting the 
absorbance read could be a confortable solution. Accordind to the original form of the 
Morton and Stubbs method [Morton & Stubbs, 1946, 1947, 1948], it is possible to eliminate the 
disturbing effect of a foreign component only in the case in which the absorption of the 
disturbing component, manifested in the spectral field taken into consideration, does not 
present a maximum of absorption, but appears as a baseline absorption, dependent on the 
wavelength according to a linear function, which overlaps the absorption spectrum of the 
chemical component of interest. 
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The absorption spectrum of the component of intereset is deformed because of the 
background absorption (linearly dependent on the wavelength), and the effect of this 
deformation is eliminated through the special method of processing the measured 
absorbance values. According to the original Morton – Stubbs formalism, it is essential to 
determinate the absorbance of the sample at at least three wavelengths [Morton & Stubbs, 
1946]. The wavelengths values involved are selected as follows: the wavelength used (max) 
is the one at which the standard solution of the substance of interest (where the disturbing 
component is not present) presents a local absorbance maximum and another two 
wavelengths ((1 and 2 , max being between these wavelengths) at which the substace of 

interest presents equal molar absorptivities (A’(1) = A’(2)). Figure 1 represents the spectrum of 
the standard solution by dotted line whereas the spectrum of the mixture, where the 
quantitative determination of the substances of interest is intended, is represented by a 
continuous line. The absorbance values corresponding to the three wavelengths selected (1 , 

2 and max) are denoted as A(1), A(2) and A(max) in the spectrum of the sample and as A’(1), 

A’(2) and A’(max) in the spectrum of the pure (standard) component. The purpose is to 

calculate quantity A’(max) (namely the absorbance associated with the substance of interest 
but without the backgroud absorbance) from the measured values A(1), A(2) and A(max). 

The absorbance A’(max) is obtained by subtracting from the measured value A(max) the 
value denoted by x + y in Figure 1. 

 A’(max) = A(max) – (x + y) (18) 

The value x is expressed from the similarity of two triangles chosen conveniently: 

 
       2 1 2

2 max 2 1

1 2 max
; 1 2

A A
x A A

x

   
   

        
 (19) 

For calculating the value y in expression (18), the ratio of the absorbances A’(max) and A’(2) is 
needed, which can be determined from the spectrum of the standard solution. When 
elaborating an analytical method in order to determine a certain substance of interest, in a 

standardized work method, the ratio of the absorbances A’(max) and A’(2) once determined, 
it can be used for subsequent analyses, provided that analyses should be performed strictly 
in unchanged conditions (in the same solvent, at the same pH, the same temperature, with 
the same slit program of the spectrophotometer, preferably the same type of 
spectrophotometer as the one used for determining the above mentioned ratio). Let be 
denoted the aforementioned ratio as : 

 
'(max)

'(2)
A

A
   (20) 

In possession of the ratio , the value y is obtained from relation (18) and (21). 

 A’(2) = A(2) – y (21) 

After dividing member by member relations (18) and (21), results: 
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 

 (22) 

 
Fig. 1. Illustration of the Morton – Stubbs method 

After replacing the expressions x and y in the latter relation, relation (23) results. It expresses 
the absorbance associated to the component of interest A’(max), which lacks baseline 
absorption. 
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2 1

max2
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


    




    






 (23) 

The liniarity of the background absorption in a large spectral field is not always satisfied. In 
the case of wide absorption bands it is recommended to measure the absorbance of the 
sample at several wavelengths; in these cases however, the processing of the absorbance 
values measured requires more elaborated mathematical methods. 

As it can be noticed, the Morton – Stubbs formalism allows the presence in the spectrum of 
the sample a linear background (a linear foreign spectrum in relation to the wavelength) 
which cannot be put down to any component of the standard solutions, ensuring corrected 
results (sample concentrations of the components of interest).  

The original algorithm may be extended to ensure the obtention of corrected results in the 
case in which the sample spectrum contains, besides the chemical components represented 
in the standard spectra, a G degree polynomial baseline in relation to the wavelength. The 
spectrum of the sample is thus considered to consist of the spectra of the standard solutions 
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and of the background spectrum, the latter being approximated to an adequate G degree 
polynomial (relation 24). 

 
1 0

( ) ( ) ; ( 1,2, , )
K G

g
i k k i g i

k g

A p A q i N  
 

        (24) 

The purpose is to calculate the contribution weight pk of each standard solution to the 
spectrum of the sample, namely the coefficients pk (k = 1 , 2 , . . . , K). In the ideal case, when 
the spectrum of the sample does not contain a foreign baseline, but only the components 
represented in standard solutions, the coefficients qg (g = 0 , 1 , 2 , . . . , G) are all null. 
Because of inherent measurement errors these coefficients are not null, but if the polynomial 
(25) is positive and has small values (for all wavelengths i selected) in relation to the 
measured absorbances, the approach of the issue is correct and there are still chances to 
remove, by calculation, the effect of the polynomial backgroud (G degree) from the 
spectrum of the sample on the results. On the contrary, if the polynomial (25) has a high 
value or a negative one, even for one wavelength (one i value), the foreign backgroud 
cannot be approximated to a G degree polynomial form, and forcing the algorithm might 
lead to an erroneous result. 

 
0

( )
G

g
g i

g

P i q 


   (25) 

Obviously, the highest the G degree of the polynomial (25) which corrects the foreign 
backgroud in the spectrum of the sample, The more flexible the correction algorithm of a 
real backgroud absorption, but the more wavelengths should be selected where the 
absorbance readings are performed (in other words the inegality N > G + K + 1 is imposed 
in practice in order to obtain, from the measured absorbance values, a supra-determined 
system of equations). 

For the statistical processing of the set of N absorbance values obtained for the sample and 
NK absorbance values for the K standard solutions, the function (26) is defined  imposing 
that for the values pk (k = 1 , 2 , . . . , K) and the values qg (g = 0 , 1 , . . . , G), which ensure the 
best global correspondence between the measured absorbances of the sample and the 
absorbances approximated with the relation (24), the function F(pk,qg) should present a local 
minimum. The condition formulated is equivalent cancel the partial derivatives of the 
function (26) calculated in relation to pk (k = 1 , 2 , . . . , . . . , K) and qg (g = 0 , 1 , . . . , G). The 
cancellation of partial derivatives in (26) represents the necessary (but sufficient) condition 
for a local minimum of the function (26). 
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After derivation and equalization the derivatives to zero, a system of K + G + 1 linear 
equations is obtained, having the same number of unknowns (27). 
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 (27) 

In order to express the wavelength (and its different powers) any unit of measure can be used, 
provided that the same unit of measure is used in all equations and for all wavelengths. 

The generalisation of the Morton – Stubbs algorithm for the polynomial correction of the 
spectrum of the sample can also be presented in a matrix form. The equation system (24), 
written in a conventional algebraic form, is equivalent to matrix relation (28). 
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 (28) 

If the matrix of the absorbance values of the sample (on the left member of the equation (28)) is 
denoted by X[N,1], the first matrix factor on the right member by Y[N,K+G+1] and the second 
matrix factor on the right member by Z[K+G+1,1], the equation (28) can have the form (29). 

 X[N,1] = Y[N,K+G+1].Z[K+G+1,1] (29) 

The unknowns of interest are found in matrix Z[K+G+ 1,1] ; the relative weights are pk (k = 
1, 2 , . . . , K). In order to explain the elements of matrix Z, both members of relation (29) are 
multiplied on the left by the transpose of matrix Y. 

 YT[K+G+1,N].X[N,1] = YT[K+G+1,N].Y[N,K+G+1].Z[K+G+1,1] (30) 

Matrix (YT.Y) = YT[K+G+1,N].Y[N,K+G+1] is square and allows an inverse matrix (YT.Y)-

1[N,N] if the associated determinant is not null. By multiplying relation (30) on the left by 
the inverse matrix, the explicit form of matrix Z results. 
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 (YT.Y)-1[N,N].YT [K+G+1,N].X[N,1] = Z[K+G+1,1] (31) 

It is decisively important to determine the correct set of wavelengths at which the 
absorbance values should be measured in case of a concrete analytical problem. The choice 
of the optimal wavelength (or wavelengths) is often a difficult issue even in case of a single 
component of interest. In real samples the component of interest may be accompanied by 
different other components whithout analytical interest (“the sample ballast”), but which 
can modify the molar absorptivity of the component of interest and so the sensitivity of the 
spectral answer of the chemical substance representing the object of the analysis. If one can 
identify the wavelength value at which the absorption of the sample ballast is negligible and 
at which the absorption of the component of interest is considerable, the respective 
wavelength is recommended for the determination. When at this wavelength the component 
of interest has even a local absorption maximum, this is an additional advantage, because at 
this wavelength the absorbance value depends in a minimum extent on the possible 
disorders in setting the wavelengths of the spectrophotometer. In the less fortunate case, 
where the sample ballast covers the entire spectral field available, more wavelengths are 
selected in order to determine the component in the sample in order to improve the 
specificity of the spectral answer in favour of the component of interest.  

When the absorption of the component of interest and that of the ballast cannot be 
separated, a set of wavelengths can often be chosen so that the absorbances measured 
express the concentration of the component of interest through a multilinear relation (32). 

 c = f(1).A(1) + f(2).A(2) + . . . + f(i).A(i) + . . . + f(N).A(N) (32) 

The aim is to determine numerically the coefficients f(i) ; (i = 1 , 2 , . . . , N) for each 
wavelength in the spectral field considered (it is considered that the entire spectrum consists 
of N absorbance values associated to N discrete wavelength values) to calculate according to 
(32) the concentration of the chemical substance of interest in different samples, containing a 
different and unpredictable ballast. This purpose can sometimes be accomplished, 
sometimes not, according to the ballast variability of the analysed samples.  

If there is any chance to determine a set of coefficients in agreement with the requirements 
mentioned for a component of interest, in presence of a ballast range in different samples, their 
calculation could be performed through calibration with a number of standard samples (let 
their number S) containing a ballast range as close as possible to that of real samples (of 
unknown composition) under analysis. Thus, two different standard samples may have the 
same concentration of the component of interest if they have a different ballast. 

The concentrations of the component of interest in the S standard samples and the 
absorbances As(i) ; (s = 1 , 2 ,  . . . , S) of the standard samples satisfy the equation (32). The 
equation system obtained with the standard sample data can be rendered in matrix form 
(33). 

If S = N, the number of unknowns equals the number of equations, so we dispose of the 
minimum number of equations necessary to solve the system (33) in relation to the N 
unknowns. For the reasons discussed above, the creation of a supra-determined system of 
equations is preferred (S > N), as well as the search for a solution with an optimal global fit 
with least squares method. 
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 (33) 

Values f(i) ; (i = 1 , 2 , . . . , N), representing the solution to the equation system (33), can be 
positive and negative numbers, both type being relevant for the analysis. If the absolute value 
of one of the coefficients f(i) ; (i = 1 , 2 , . . . , N) is small (negligible in relation to the mean of 
the absolute values of all coefficients), their contribution to the equation (32) is insignificant, 
they can be considered null, and the respective wavelengths are not relevant for the intended 
quantitative analysis. Therefore, to each wavelength in the spectrum a coefficient is associated 
expressing the relevance of that wavelength for the quantitative analysis of the component of 
interest in the presence of the matrix included in the calibration stage. 

By excluding the irrelevant wavelengths, which do not improve the selectivity of the 
analytical method, one may reduce the number of wavelengths at which the measurement 
of absorbances is imposed when executing a real sample analysis. 

In possession of the coefficients f(i) ; (i = 1 , 2 , . . . , N), the concentrations in the standard 
samples can be recalculated by relation (4.65) (the concentrations obtained are denoted c1 , c2 
, . . . , cs , . . . , cS). Ideally, concentrations for all standard samples can be found. In reality, the 
correspondance between the set of existing (and known) concentrations in the S standard 
samples and the set of concentrations recalculated with relation (33) is not perfect. The 
success of the calibration operation can be expressed through the value of the linear 
correlation coefficient between the set of existing concentrations in the standard samples 
and the recalculated ones. Since the arithmetic mean of the existing (and known) 
concentrations in the S standard samples and the arithmetic mean of the concentrations 
recalculated with relation (33) are equal (according to a known theorem of mathematical 
statistics), their notation with a common symbol is justified: 
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The linear correlation coefficient between the set of concentrations cs
st and cs (s = 1 , 2 , . . . . . . 

, S) is calculated with relation (34). 
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If the correlation coefficient (34) has an acceptable value from a statistical point of view (for 
example r > 0,95), it is likely that the set of coefficients f(i) ; (i = 1 , 2 , . . . . . . , N), obtained 
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by solving the equation system (33) will allow to find the correct concentration of the 
substance of interest in real samples, provided that the real sample ballast is not completely 
different from the ballast range covered when calibrating the method (when determining 
the coefficients f(i) ; (i = 1 , 2 , . . . , N)). This requirement is met to a certain extent in the 
case of serial analyses, where the nature of individual samples does not differ much, 
meaning that their ballast is similar. 

Presenting a spectrum in a spectral field through pairs of wavelength-absorbance values 
(A() vs. , "digitized presentation") implies a large amount of data (for a faithful 
reprensentation of a spectrum the N number of sampling points is large). It results that, in 
order to genearate a supra-determinant equation system (33), an even larger number of 
standard samples is necessary (S > N). This is generally inconvenient to realize in practice 
because it implies the use of a too large number of standard samples. 

If S < N, the equation system (33) allows several sets of wavelengths for which the 
concentrations in standard samples correlate satisfactorily with the absorbance values, and 
the remaining problem is to identify at least one of these sets. This method is frequently 
used in practice, and establishing a profitable set of wavelengths involves the following 
stages: 

(1) The matrix of absorbance values A[S,N] turns into a new square matrix B[S,S] whose 
columns are a complete orthogonal basis. The orthogonality of columns in the new matrix 
B[S,S] can be realized, for example, by multiplying the matrix A[S,N] on the right by a 
matrix Q[N,S] chosen conveniently (35), so that the elements of matrix B[S,S] = 

A[S,N].Q[N,S] satisfy the orthogonality relation of columns (36). The construction of such a 
matrix Q[N,S] is not unique; theoretically, there is an infinite number of such matrices 
capable of generating orthogonal columns satisfying the requirement (36). In 
spectrophotometric practice a diagonal-superior form of the matrix Q[N,S] is sometimes 
used (where only elements on the main diagonal and those above this diagonal are different 
from zero). 
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(2) Calculate the correlation coefficient of the elements of matrix Cet[S,1] in relation (33) one 
by one with the columns of matrix B[S,S] (for j = 1 , 2 , . . . , S), thus obtaining N correlation 
coefficient values, in real cases all being smaller than theoretical value 1. The correlation 
coefficient of the elements of matrix Cst[S,1] with the column “j” of matrix B[S,S] is 
calculated by the relation (37). 
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In relation (37) Bj[S,1] represents the column vector made up of the column of number “j” of 

matrix B[S,S], C
–  

is the mean value of the elements of matrix Cst[S,1] and B
–

 j is the mean value 
of elements in column “j” in matrix B[S,S] . 

1 1
;
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The correlation coefficients, calculated with relation (37) for j = 1, 2, . . . , S, in relation to “j” 
and the value “j” is retained (denoted by 1) for which the correlation coefficient is highest (in 
case of obtaining equal values of the correlation coefficient for more “j” values, one of these 
“j” values is retained arbitrarily). 

(3) By using the multiple linear regression method, the elements of column matrix Cet[S,1] 
are correlated with all the pairs of columns of matrix B[S,S] obtained by combining column 
1 with all the other columns of matrix B[S,S]. The values of the multiple correlation 
coefficient r(Cet[S,1], (B1&Bj)[S,2]) are calculated in relation to the values taken by “j” and is 
retained (and denoted by 2) the value ” j”  for which the multiple correlation coefficient is 
highest. Two “j” values are thus obtained (denoted by 1 and 2) indicating the pair of 
columns in matrix B[S,S] which correlate conveniently with the column matrix Cet[S,1]. 

(4) By using the multiple linear regression method, the elements of column matrix Cet[S,1] 
are correlated with all sets of three columns of matrix B[S,S], obtained by combining 
columns 1 and 2 with all the other columns of matrix B[S,S]. The values r(Cet[S,1], 
(B1&B2&Bj)[S,3]) are calculated in relation to the values taken by “j” and is retained (and 
denoted by 3) the value ” j” for which the multiple correlation coefficient is highest. Three “j’ 
values result this way (denoted by 1 , 2 , and 3), indicating the set of three columns of matrix 
B[S,S] which correlates conveniently with the column matrix Cet[S,1]. 

(5) The procedure described above continues by increasing progressively the number of 
columns of matrix B[S,S] with which is correlated, by multiple linear regression, the column 
matrix Cet[S,1]. The columns of matrix B[S,S], involved at this phase, include those retained 
in the previous phase and a column which hasn not been yet retained. It is obvious that, by 
increasing the number of columns in B[S,S], involved in the multiple correlation, the optimal 
correlation coefficient approaches progressively the ideal value r = 1. Because the columns 
in matrix B[S,S] are orthogonal, there is no danger that, at a certain phase, the maximum 
correlation coefficient will be exceeded by a correlation coefficient corresponding to a 
combination of columns including a column (therefore a ”j” value) which has not been 
retained in a previous phase. If the columns in matrix B[S,S] were not orthogonal, the above-
mentioned danger would have appeared. This justifies the transformation of matrix A[S,N] 
(whose columns are not generally orthogonal) into a matrix B[S,S] with orthogonal columns. 
In practice, the procedure continues until obtaining a compromise situation, namely a 
satisfactory multiple correlation coefficient at a minimum number of involved columns if 
matrix B[S,S]. 
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(6) Following the correlations described above, a set of columns of matrix B[S,S] results. These 
have been retained and denoted by 1 , 2 , . . . , J. A convenient set is then established, made up 
of wavelength values or, in other words, a set of J columns of the A[S,N] matrix. The set of J 
columns of matrix A[S,N] (conceived as J vectors in an imaginary S-dimensional space) is 
chosen so that each column of matrix A[S,N] presents a maximum covariance with a column 
of matrix B[S,S] retained during the above-mentioned operations. More concretely, if one 
suppose that the column of order “j” of matrix B[S,S] is associated to the column of order “i” of 
matrix A[S,N], it means that for the value “j” the column of order “i” of matrix A[S,N] ensures 
a maximum value of the covariance (of the correlation coefficient) calculated with relation (38). 
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In relation (38) A
– 

(i) and B
–

 j represent the arithmetic means of the corresponding matrix 
elements in columns of order “i”, and “j” respectively. 

1 1
( ) ( ) ;

1 1

S S
A A B Bsi i j sjS Ss s
    

 
   

In what follows, the wavelengths selected during phase (6) will be denoted by 1 , 2 , . . . , 
J. By applying relation (38) for i = 1 , 2 , . . . , N and j = 1 , 2 , . . . , J , the matrix R[N,J] of the 
correlation coefficients is obtained (39). 
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In each column "j" of the matrix (39) an element rij with maximum absolute value is sought. 
The set of order numbers “i”, which associates an “i” for each column“j”, corresponds to the 
researched set of wavelengths. 

(7) The equation system (15) is reconstructed, using only the set of wavelengths 1 , 2 , . . . , 
J  selected in previous phases. 
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In order for the equation system (40) to be solvable in relation to the unknowns f(1) , f(2) , . 
. . , f(J), it is necessary that the number of selected wavelengths (J) be smaller than (or equal) 
to the number of standard samples (S). It is also essential that the determinant of matrix 

D[J,J], resulting after multiplying the transpose  of system matrix (A*)T[J,S] by the system 
matrix (A*)[ S,J] be significantly different from zero. 

(A*T[J,S].(A*)[ S,J] = D[J,J]; det(D[J,J])≠0 

At the simultaneous determination of several chemical components which do not interact 
chemically, the equation system (1) and (2) has been constituted, with the help of N 
standard solutions, measured at  distinct wavelength values. In order to correctly solve the 
analytical problem, it is recommendable that the spectra of the N standard solutions be “as 
distinct as possible”, because in the extreme (and imaginary) case where two standard 
solutions had identical spectra, the equation system would be undetermined, so impossible 
to solve. It is necessary to rigorously express the requirement that the spectra be as 
“different as possible”. A method of characterizing the difference between spectra consists 
in considering the absorbances of a standard solution, measured at the selected set of 
wavelengths, as components of a vector in the -dimensional space. The N spectra of 
standard solutions will thus form a set of N vectors. 
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Gramm  (41) 

The value of the Gramm determinant (41) of the vector set expresses quantitatively the 
difference between vectors. The higher the value of the determinant (41), the more satisfied 
the requirement that the standard spectra be “as different as possible”. At a higher value of 
the Gramm determinant the absorbance measurement error affects to a smaller extent the 
precision of the final results. 

4. Generalization the standard addition method for several components of 
interest 

In a real sample, subjected to be analyzed, one must take into consideration that the sample 
contains, besides the substance of interest, various other ingredients. Although it is possible 
to choose a wavelength at which the absorbance of the substance of interest should be 
significant and the absorbance of the ingredients negligible, it may happen that the 
ingredients, through their presence, modify the molar absorptivity of the component of 
interest, and thus modify the sensitivity of the spectrophotometric response to the 
component of interest. This possibility is more plausible in real pharmaceutical products, 



 
Macro to Nano Spectroscopy 

 

310 

where the ingredients are found, as a rule, in a larger quantity than the active components. 
In this case, comparing the absorbance of the sample with that of a standard solution (which 
does not contain any ingredients) could provide erroneous analytical results. In order to 
realize even in these cases the quantitative determination of the active substance (the 
component of interest), one may resort to the “standard addition method” [Bosch-Reigh et 
al., 1991; Lozano et al., 2009 ; Szabadai, 2005; Valderrama & Poppi, 2009]. 

The reasoning of the addition method in the general case, when aiming to determine several 
components quantitatively, can be described with the help of the matrix calculation 
formalism [Szabadai, 2005]. The primary sample, in which the concentrations c1 , c2 , . . . , cj , 
. . . , cM of the M chemical components are analysed, is dissolved with an adequate solvent, 
bringing it to the final known volume Va . A number of S + 1 equal portions (each having the 
volume “v”) will be drawn from this solution. The portion number “0” is diluted to the final 
known volume Vb , thus obtaining the final solution of number “0” in which the 
concentrations of the components of interest are c10 , c20 , . . . , cM0, and the concentration of 
ingredients is cb(ing). The portions number 1 , . . . , M are supplemented with known 
quantities of the M components of interest, so that, after completing to the final volume Vb, 
“S” solutions with modifications of known concentrations are obtained. In the final solution 
number “i”, which was prepared by adding the masses m1i , m2i , . . . , mMi of individual 
components, the concentration modifications of components are c1i , c2i , . . . , cMi , 
whereas the concentration of ingredients remains the same in all S solutions, independent of 
“i”. For each final solution the absorbance is measured at the same set of wavelengths 1 , 2 
, . . . , . For the final solution number “0” the values A0(1) , A0(2) , . . . , A0(L) are 
obtained. When measuring the absorbances of the final solutions of number 1 , 2 , . . . , S, at 
the same set of wavelengths and using the same optical path “d”, the values Ai(1) , Ai(2) , . 
. . , Ai(L) , i = 1 , 2 , . . . , S are obtained. The measured absorbances and the concentration 
modifications, generated by additions, can be arranged in matrix form. If j() denotes the 
molar absorptivity of the component of order “j” at the wavelength "", the absorbances 
satisfy relations (42) and (43). 
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If the column matrix on the left member of the quation (42) is denoted by A[,1], the matrix 
of molar absorptivities on the right member of the equation (42) by E[,M] and the column 
matrix of the concentrations on the right member of the same equation by C[M,1], the 
equation (42) takes the form (44). 

 (1/d).A[,1] = E[,M].C[M,1] (44) 

If equation (42) is subtracted, member by member, from equation (43) the result is equation 
(45). 

 

1
1 1 1 1

1

1
1 1 1 1 1

1
1

( ) ( ) ( ) ( )
1

( ) ( )( ) ( )

( ) ( )

( ) ( )

S

S

S
M

S
M M M

A A A A

d
A AA A

c c

c c

   

  

   

   

  

 

                      
   
      
       

 
   



 
   

 

 (45) 

1
1 1 1 1

1

1
1 1 1 1 1

1
1

( ) ( ) ( ) ( )
1

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

S

S

S
M

S
M M M

A A A A

d
A A A A

c c

c c

   

   

   

   

   

 

  
 
  
   

   
      
       


 



 
   

 

 

Denoting by A[,S] the matrix of differences of absorbances in equation (45) and the matrix 
of concentration differences in (45), by C[M,S], the resulting relation has the form (46). 

 (1/d).A[,S] = E[,M].C[M,S] (46) 

The matrix E[,S] is expressed from equation (46), and in its possession the equation (44) 
may be solved in relation to the column matrix C[M,1]. The necessary (but not sufficient) 
condition for solvency the equations in relation to matrix C[M,1] is that  should be higher 
than (or equal) to M or S should be higher than (or equal to) M. 

 M sau S M    (47) 

In order to express the matrix E[,M], both sides of the relation (46) will be multiplied on 
the right by the transpose of matrix C[M,S]. 

 (1/d).A[,S].C T[S,M] = E[,M].C[M,S].C T[S,M] (48) 

Both sides of (48) are then multiplied by the inverse of matrix C[M,S].C T[M,S]. Relation 
(49) is obtained, representing the explicit form of matrix E[,M]. 
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 (1/d).A[,S].C T[S,M].(C[M,S].C T[S,M])-1= E[,M] (49) 

The concentration matrix C[M,S] is expressed from relation (44). To this purpose, equation 
(44) is multiplied on the left by the transpose of matrix E[,M]. 

 (1/d).E T[,].A[,1] = E T[,].E[,M].C[M,1] (50) 

When the above relation is multipled on the left by (ET[,].E[,M])-1, the explicit form of 
the concentration matrix results (51). 

 (1/d).(ET[,].E[,M])-1.E T[,].A[,1] = C[M,1] (51) 

The particular case of standard addition method applied to a system with two components 
to be determined, is illustrated graphically in Figure 2. In this case, the procedure is reduced 
to determining the plane  passing through a number of figurative points and to reading the 
intersection points of this plane with the negative semi-axes of the concentrations. 

 
Fig. 2. Graphic representation of absorbances Ai() in relation to the modifications of 
concentrations c1i and c2i (i = 1 , 2 , . . . , n) 

At the graphic representation of absorbances Ai() vs. the increase of concentrations c1i and 
c2i (i = 1 , 2 , . . . , n), the figurative points are situated theoretically on a plane (denoted by  
in Figure 4-20). The axis of absorbances is intersected by plane  in point P, corresponding to 
the absorbance A0(), measured in the case of the solution with i = 0. If at the selected 
wavelength () the absorbance of the ingredients can be left out, the points X and Y, situated 
at the intersection of plane  with the negative parts of axes c1 and c2, have the 
coordinates –c10 respectively –c20 (in other words, the lengths of the segments OX and OY 
are proportional to the concentrations c10 and c20). From the values c10 and c20, and knowing 
the volumes Va, v  and Vb, one may calculate the concentrations c1 and c2 of the components 
of interest in the first solution, and finally their content in the primary sample. 
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4.1 Example 

In order to illustrate the application of the standard addition method and of the subsequent 
data processing procedure, let consider the mixture of salicylic acid, caffeine and 
acetaminophen, discussed in a previous example. The aim is to determine the concentrations 
of the three chemical components. Table 2 includes the modifications of the component 
concentrations (5 modifications are performed) and the absorbances both for the original 
solution (where concentrations have not been modified) and for the five solutions in which 
the three chemical components have been modified. All absorbance values are read at the 
same set of 18 wavelengths ( = 18). 

The elements of matrix E are calculated with relation (49) and are expressed in the tolerated 

unit of measure l/(mol.cm), employed in spectrophotometric practice, and the elements of 
matrix C, calculated with relation (51) are expressed in mol/l. 
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0.555 0.553 0.579 0.660 0.677 0.453 
  0.519 0.525 0.552 0.627 0.637 0.424 
  0.454 0.469 0.496 0.564 0.560 0.370 
  0.382 0.405 0.430 0.498 0.471 0.311 
  0.354 0.374 0.397 0.467 0.431 0.287 
  0.368 0.378 0.398 0.476 0.439 0.297 
  0.394 0.390 0.408 0.495 0.460 0.317 
  0.427 0.410 0.426 0.523 0.490 0.343 
  0.466 0.440 0.455 0.560 0.531 0.374 
  0.443 0.416 0.430 0.526 0.506 0.356 
  0.350 0.329 0.340 0.409 0.405 0.283 
  0.207 0.195 0.201 0.229 0.247 0.168 
  0.119 0.111 0.115 0.120 0.149 0.098 
  0.080 0.074 0.076 0.076 0.101 0.066 
  0.045 0.041 0.043 0.042 0.057 0.037 
  0.023 0.022 0.022 0.023 0.029 0.019 
  0.014 0.014 0.014 0.016 0.018 0.012 
  0.012 0.011 0.012 0.013 0.014 0.009 

ci 

mol/l) 
Salicylic acid 3.40 1.50 2.20 0.60 10.00  

Caffeine 2.60 1.50 1.80 5.00 4.00  

Acetaminophen 1.20 2.20 2.80 4.00 3.00  



 
Macro to Nano Spectroscopy 

 

314 

6721.72 17534.60 28741.06
5978.40 14156.50 32098.95
4390.01 10405.40 34854.40
1832.22 8685.62 35571.34

675.67 10070.25 32288.01
426.77 14575.14 26461.11
463.41 20233.58 19124.73
575.88 25871.08 12545.68

1045.49 29980.13 8855
E .66

1617.15 28153.68 7048.81
2330.58 20505.79 5443.55
3248.96 8960.11 3602.66
3540.99 2713.00 1580.26
2852.64 1204.43 613.63
1694.67 550.32 343.30

719.08 434.12 355.28
292.02 443.65 350.29
209.16 417.53 502.18





















;

17.819
10.290
5.307

/mol l











  
  
  
  

 



 
 
 
 
 
 
  



C  

5. Conclusions 

The application of matrix algebra to the quantitative spectrophotometry provides a unified 
formalism for treatment the mathematical issues. Unlike the usual mathematical 
approaches, the matrix description of the phenomena behind the analytical 
spectrophotometry promise new dimensions for the automatic processing of results. 
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